summaryrefslogtreecommitdiff
path: root/drivers/cpufreq/cpufreq_times.c
blob: 5b5248a7c87c476dd1b7fd064729712ef3f60188 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/* drivers/cpufreq/cpufreq_times.c
 *
 * Copyright (C) 2018 Google, Inc.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

#include <linux/cpufreq.h>
#include <linux/cpufreq_times.h>
#include <linux/hashtable.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/threads.h>

#define UID_HASH_BITS 10

static DECLARE_HASHTABLE(uid_hash_table, UID_HASH_BITS);

static DEFINE_SPINLOCK(task_time_in_state_lock); /* task->time_in_state */
static DEFINE_SPINLOCK(uid_lock); /* uid_hash_table */

struct concurrent_times {
	atomic64_t active[NR_CPUS];
	atomic64_t policy[NR_CPUS];
};

struct uid_entry {
	uid_t uid;
	unsigned int max_state;
	struct hlist_node hash;
	struct rcu_head rcu;
	struct concurrent_times *concurrent_times;
	u64 time_in_state[0];
};

/**
 * struct cpu_freqs - per-cpu frequency information
 * @offset: start of these freqs' stats in task time_in_state array
 * @max_state: number of entries in freq_table
 * @last_index: index in freq_table of last frequency switched to
 * @freq_table: list of available frequencies
 */
struct cpu_freqs {
	unsigned int offset;
	unsigned int max_state;
	unsigned int last_index;
	unsigned int freq_table[0];
};

static struct cpu_freqs *all_freqs[NR_CPUS];

static unsigned int next_offset;


/* Caller must hold rcu_read_lock() */
static struct uid_entry *find_uid_entry_rcu(uid_t uid)
{
	struct uid_entry *uid_entry;

	hash_for_each_possible_rcu(uid_hash_table, uid_entry, hash, uid) {
		if (uid_entry->uid == uid)
			return uid_entry;
	}
	return NULL;
}

/* Caller must hold uid lock */
static struct uid_entry *find_uid_entry_locked(uid_t uid)
{
	struct uid_entry *uid_entry;

	hash_for_each_possible(uid_hash_table, uid_entry, hash, uid) {
		if (uid_entry->uid == uid)
			return uid_entry;
	}
	return NULL;
}

/* Caller must hold uid lock */
static struct uid_entry *find_or_register_uid_locked(uid_t uid)
{
	struct uid_entry *uid_entry, *temp;
	struct concurrent_times *times;
	unsigned int max_state = READ_ONCE(next_offset);
	size_t alloc_size = sizeof(*uid_entry) + max_state *
		sizeof(uid_entry->time_in_state[0]);

	uid_entry = find_uid_entry_locked(uid);
	if (uid_entry) {
		if (uid_entry->max_state == max_state)
			return uid_entry;
		/* uid_entry->time_in_state is too small to track all freqs, so
		 * expand it.
		 */
		temp = __krealloc(uid_entry, alloc_size, GFP_ATOMIC);
		if (!temp)
			return uid_entry;
		temp->max_state = max_state;
		memset(temp->time_in_state + uid_entry->max_state, 0,
		       (max_state - uid_entry->max_state) *
		       sizeof(uid_entry->time_in_state[0]));
		if (temp != uid_entry) {
			hlist_replace_rcu(&uid_entry->hash, &temp->hash);
			kfree_rcu(uid_entry, rcu);
		}
		return temp;
	}

	uid_entry = kzalloc(alloc_size, GFP_ATOMIC);
	if (!uid_entry)
		return NULL;
	times = kzalloc(sizeof(*times), GFP_ATOMIC);
	if (!times) {
		kfree(uid_entry);
		return NULL;
	}

	uid_entry->uid = uid;
	uid_entry->max_state = max_state;
	uid_entry->concurrent_times = times;

	hash_add_rcu(uid_hash_table, &uid_entry->hash, uid);

	return uid_entry;
}

static int single_uid_time_in_state_show(struct seq_file *m, void *ptr)
{
	struct uid_entry *uid_entry;
	unsigned int i;
	uid_t uid = from_kuid_munged(current_user_ns(), *(kuid_t *)m->private);

	if (uid == overflowuid)
		return -EINVAL;

	rcu_read_lock();

	uid_entry = find_uid_entry_rcu(uid);
	if (!uid_entry) {
		rcu_read_unlock();
		return 0;
	}

	for (i = 0; i < uid_entry->max_state; ++i) {
		u64 time = nsec_to_clock_t(uid_entry->time_in_state[i]);
		seq_write(m, &time, sizeof(time));
	}

	rcu_read_unlock();

	return 0;
}

static void *uid_seq_start(struct seq_file *seq, loff_t *pos)
{
	if (*pos >= HASH_SIZE(uid_hash_table))
		return NULL;

	return &uid_hash_table[*pos];
}

static void *uid_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	do {
		(*pos)++;

		if (*pos >= HASH_SIZE(uid_hash_table))
			return NULL;
	} while (hlist_empty(&uid_hash_table[*pos]));

	return &uid_hash_table[*pos];
}

static void uid_seq_stop(struct seq_file *seq, void *v) { }

static int uid_time_in_state_seq_show(struct seq_file *m, void *v)
{
	struct uid_entry *uid_entry;
	struct cpu_freqs *freqs, *last_freqs = NULL;
	int i, cpu;

	if (v == uid_hash_table) {
		seq_puts(m, "uid:");
		for_each_possible_cpu(cpu) {
			freqs = all_freqs[cpu];
			if (!freqs || freqs == last_freqs)
				continue;
			last_freqs = freqs;
			for (i = 0; i < freqs->max_state; i++) {
				seq_put_decimal_ull(m, " ",
						    freqs->freq_table[i]);
			}
		}
		seq_putc(m, '\n');
	}

	rcu_read_lock();

	hlist_for_each_entry_rcu(uid_entry, (struct hlist_head *)v, hash) {
		if (uid_entry->max_state) {
			seq_put_decimal_ull(m, "", uid_entry->uid);
			seq_putc(m, ':');
		}
		for (i = 0; i < uid_entry->max_state; ++i) {
			u64 time = nsec_to_clock_t(uid_entry->time_in_state[i]);
			seq_put_decimal_ull(m, " ", time);
		}
		if (uid_entry->max_state)
			seq_putc(m, '\n');
	}

	rcu_read_unlock();
	return 0;
}

static int concurrent_time_seq_show(struct seq_file *m, void *v,
	atomic64_t *(*get_times)(struct concurrent_times *))
{
	struct uid_entry *uid_entry;
	int i, num_possible_cpus = num_possible_cpus();

	rcu_read_lock();

	hlist_for_each_entry_rcu(uid_entry, (struct hlist_head *)v, hash) {
		atomic64_t *times = get_times(uid_entry->concurrent_times);

		seq_put_decimal_ull(m, "", (u64)uid_entry->uid);
		seq_putc(m, ':');

		for (i = 0; i < num_possible_cpus; ++i) {
			u64 time = nsec_to_clock_t(atomic64_read(&times[i]));

			seq_put_decimal_ull(m, " ", time);
		}
		seq_putc(m, '\n');
	}

	rcu_read_unlock();

	return 0;
}

static inline atomic64_t *get_active_times(struct concurrent_times *times)
{
	return times->active;
}

static int concurrent_active_time_seq_show(struct seq_file *m, void *v)
{
	if (v == uid_hash_table) {
		seq_put_decimal_ull(m, "cpus: ", num_possible_cpus());
		seq_putc(m, '\n');
	}

	return concurrent_time_seq_show(m, v, get_active_times);
}

static inline atomic64_t *get_policy_times(struct concurrent_times *times)
{
	return times->policy;
}

static int concurrent_policy_time_seq_show(struct seq_file *m, void *v)
{
	int i;
	struct cpu_freqs *freqs, *last_freqs = NULL;

	if (v == uid_hash_table) {
		int cnt = 0;

		for_each_possible_cpu(i) {
			freqs = all_freqs[i];
			if (!freqs)
				continue;
			if (freqs != last_freqs) {
				if (last_freqs) {
					seq_put_decimal_ull(m, ": ", cnt);
					seq_putc(m, ' ');
					cnt = 0;
				}
				seq_put_decimal_ull(m, "policy", i);

				last_freqs = freqs;
			}
			cnt++;
		}
		if (last_freqs) {
			seq_put_decimal_ull(m, ": ", cnt);
			seq_putc(m, '\n');
		}
	}

	return concurrent_time_seq_show(m, v, get_policy_times);
}

void cpufreq_task_times_init(struct task_struct *p)
{
	unsigned long flags;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	p->time_in_state = NULL;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	p->max_state = 0;
}

void cpufreq_task_times_alloc(struct task_struct *p)
{
	void *temp;
	unsigned long flags;
	unsigned int max_state = READ_ONCE(next_offset);

	/* We use one array to avoid multiple allocs per task */
	temp = kcalloc(max_state, sizeof(p->time_in_state[0]), GFP_ATOMIC);
	if (!temp)
		return;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	p->time_in_state = temp;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	p->max_state = max_state;
}

/* Caller must hold task_time_in_state_lock */
static int cpufreq_task_times_realloc_locked(struct task_struct *p)
{
	void *temp;
	unsigned int max_state = READ_ONCE(next_offset);

	temp = krealloc(p->time_in_state, max_state * sizeof(u64), GFP_ATOMIC);
	if (!temp)
		return -ENOMEM;
	p->time_in_state = temp;
	memset(p->time_in_state + p->max_state, 0,
	       (max_state - p->max_state) * sizeof(u64));
	p->max_state = max_state;
	return 0;
}

void cpufreq_task_times_exit(struct task_struct *p)
{
	unsigned long flags;
	void *temp;

	if (!p->time_in_state)
		return;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	temp = p->time_in_state;
	p->time_in_state = NULL;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	kfree(temp);
}

int proc_time_in_state_show(struct seq_file *m, struct pid_namespace *ns,
	struct pid *pid, struct task_struct *p)
{
	unsigned int cpu, i;
	u64 cputime;
	unsigned long flags;
	struct cpu_freqs *freqs;
	struct cpu_freqs *last_freqs = NULL;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	for_each_possible_cpu(cpu) {
		freqs = all_freqs[cpu];
		if (!freqs || freqs == last_freqs)
			continue;
		last_freqs = freqs;

		seq_printf(m, "cpu%u\n", cpu);
		for (i = 0; i < freqs->max_state; i++) {
			cputime = 0;
			if (freqs->offset + i < p->max_state &&
			    p->time_in_state)
				cputime = p->time_in_state[freqs->offset + i];
			seq_printf(m, "%u %lu\n", freqs->freq_table[i],
				   (unsigned long)nsec_to_clock_t(cputime));
		}
	}
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	return 0;
}

void cpufreq_acct_update_power(struct task_struct *p, u64 cputime)
{
	unsigned long flags;
	unsigned int state;
	unsigned int active_cpu_cnt = 0;
	unsigned int policy_cpu_cnt = 0;
	unsigned int policy_first_cpu;
	struct uid_entry *uid_entry;
	struct cpu_freqs *freqs = all_freqs[task_cpu(p)];
	struct cpufreq_policy *policy;
	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
	int cpu = 0;

	if (!freqs || is_idle_task(p) || p->flags & PF_EXITING)
		return;

	state = freqs->offset + READ_ONCE(freqs->last_index);

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	if ((state < p->max_state || !cpufreq_task_times_realloc_locked(p)) &&
	    p->time_in_state)
		p->time_in_state[state] += cputime;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);

	spin_lock_irqsave(&uid_lock, flags);
	uid_entry = find_or_register_uid_locked(uid);
	if (uid_entry && state < uid_entry->max_state)
		uid_entry->time_in_state[state] += cputime;
	spin_unlock_irqrestore(&uid_lock, flags);

	rcu_read_lock();
	uid_entry = find_uid_entry_rcu(uid);
	if (!uid_entry) {
		rcu_read_unlock();
		return;
	}

	for_each_possible_cpu(cpu)
		if (!idle_cpu(cpu))
			++active_cpu_cnt;

	atomic64_add(cputime,
		     &uid_entry->concurrent_times->active[active_cpu_cnt - 1]);

	policy = cpufreq_cpu_get(task_cpu(p));
	if (!policy) {
		/*
		 * This CPU may have just come up and not have a cpufreq policy
		 * yet.
		 */
		rcu_read_unlock();
		return;
	}

	for_each_cpu(cpu, policy->related_cpus)
		if (!idle_cpu(cpu))
			++policy_cpu_cnt;

	policy_first_cpu = cpumask_first(policy->related_cpus);
	cpufreq_cpu_put(policy);

	atomic64_add(cputime,
		     &uid_entry->concurrent_times->policy[policy_first_cpu +
							  policy_cpu_cnt - 1]);
	rcu_read_unlock();
}

static int cpufreq_times_get_index(struct cpu_freqs *freqs, unsigned int freq)
{
	int index;
        for (index = 0; index < freqs->max_state; ++index) {
		if (freqs->freq_table[index] == freq)
			return index;
        }
	return -1;
}

void cpufreq_times_create_policy(struct cpufreq_policy *policy)
{
	int cpu, index = 0;
	unsigned int count = 0;
	struct cpufreq_frequency_table *pos, *table;
	struct cpu_freqs *freqs;
	void *tmp;

	if (all_freqs[policy->cpu])
		return;

	table = policy->freq_table;
	if (!table)
		return;

	cpufreq_for_each_valid_entry(pos, table)
		count++;

	tmp =  kzalloc(sizeof(*freqs) + sizeof(freqs->freq_table[0]) * count,
		       GFP_KERNEL);
	if (!tmp)
		return;

	freqs = tmp;
	freqs->max_state = count;

	cpufreq_for_each_valid_entry(pos, table)
		freqs->freq_table[index++] = pos->frequency;

	index = cpufreq_times_get_index(freqs, policy->cur);
	if (index >= 0)
		WRITE_ONCE(freqs->last_index, index);

	freqs->offset = next_offset;
	WRITE_ONCE(next_offset, freqs->offset + count);
	for_each_cpu(cpu, policy->related_cpus)
		all_freqs[cpu] = freqs;
}

static void uid_entry_reclaim(struct rcu_head *rcu)
{
	struct uid_entry *uid_entry = container_of(rcu, struct uid_entry, rcu);

	kfree(uid_entry->concurrent_times);
	kfree(uid_entry);
}

void cpufreq_task_times_remove_uids(uid_t uid_start, uid_t uid_end)
{
	struct uid_entry *uid_entry;
	struct hlist_node *tmp;
	unsigned long flags;

	spin_lock_irqsave(&uid_lock, flags);

	for (; uid_start <= uid_end; uid_start++) {
		hash_for_each_possible_safe(uid_hash_table, uid_entry, tmp,
			hash, uid_start) {
			if (uid_start == uid_entry->uid) {
				hash_del_rcu(&uid_entry->hash);
				call_rcu(&uid_entry->rcu, uid_entry_reclaim);
			}
		}
	}

	spin_unlock_irqrestore(&uid_lock, flags);
}

void cpufreq_times_record_transition(struct cpufreq_policy *policy,
	unsigned int new_freq)
{
	int index;
	struct cpu_freqs *freqs = all_freqs[policy->cpu];
	if (!freqs)
		return;

	index = cpufreq_times_get_index(freqs, new_freq);
	if (index >= 0)
		WRITE_ONCE(freqs->last_index, index);
}

static const struct seq_operations uid_time_in_state_seq_ops = {
	.start = uid_seq_start,
	.next = uid_seq_next,
	.stop = uid_seq_stop,
	.show = uid_time_in_state_seq_show,
};

static int uid_time_in_state_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &uid_time_in_state_seq_ops);
}

int single_uid_time_in_state_open(struct inode *inode, struct file *file)
{
	return single_open(file, single_uid_time_in_state_show,
			&(inode->i_uid));
}

static const struct file_operations uid_time_in_state_fops = {
	.open		= uid_time_in_state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static const struct seq_operations concurrent_active_time_seq_ops = {
	.start = uid_seq_start,
	.next = uid_seq_next,
	.stop = uid_seq_stop,
	.show = concurrent_active_time_seq_show,
};

static int concurrent_active_time_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &concurrent_active_time_seq_ops);
}

static const struct file_operations concurrent_active_time_fops = {
	.open		= concurrent_active_time_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static const struct seq_operations concurrent_policy_time_seq_ops = {
	.start = uid_seq_start,
	.next = uid_seq_next,
	.stop = uid_seq_stop,
	.show = concurrent_policy_time_seq_show,
};

static int concurrent_policy_time_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &concurrent_policy_time_seq_ops);
}

static const struct file_operations concurrent_policy_time_fops = {
	.open		= concurrent_policy_time_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init cpufreq_times_init(void)
{
	proc_create_data("uid_time_in_state", 0444, NULL,
			 &uid_time_in_state_fops, NULL);

	proc_create_data("uid_concurrent_active_time", 0444, NULL,
			 &concurrent_active_time_fops, NULL);

	proc_create_data("uid_concurrent_policy_time", 0444, NULL,
			 &concurrent_policy_time_fops, NULL);

	return 0;
}

early_initcall(cpufreq_times_init);