/* * Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/NoticeExplan/ * */ /* $Id: symbol.c,v 1.4 2002/05/28 16:26:16 robbiew Exp $ */ /* * Generic Symbol Table * * This is intended to look a lot like ndbm, except that all information * is kept in memory, and a multi-key, hierarchical access mode is provided. * This is largely patterned after the Berkeley "DB" package. * * Requirements * * - "key" is ASCII (a C string, in fact) * * Symbol Table Structure * * Two data structures: * Symbol Table Header * Symbol Table Node * * A symbol table header consists of a magic number, a pointer to * the first node in the symbol table, and a cursor that is used * when sequentialy stepping thru the entire list. * * Symbol table nodes contain a pointer to a key, a pointer to this * key's data, and a pointer to the next node in the chain. * Note that to create a hierarchical symbol table, a node is created * whose data points to a symbol table header. */ #include #include #include #include #include #include "symbol.h" #include "splitstr.h" #define SYM_MAGIC 0xbadc0de /* * Some functions can report an error message by assigning it to this * string. */ static char *sym_error = NULL; /* * Memory Allocators * * newsym() allocates a new symbol table header node * mknode(...) allocates a new symbol table entry */ SYM newsym(void) { SYM h; if ((h = malloc(sizeof(struct symh))) == NULL) { sym_error = "sym header malloc failed!"; return (NULL); } h->magic = SYM_MAGIC; h->sym = NULL; h->cursor = NULL; return (h); } static struct sym *mknode(struct sym *next, char *key, void *data) { struct sym *n; if ((n = malloc(sizeof(struct sym))) == NULL) { sym_error = "sym node malloc failed!"; return (NULL); } n->next = next; n->key = strdup(key); n->data = data; if (n->key == NULL) { sym_error = "sym node strdup(key) failed!"; free(n); return (NULL); } return (n); } /* * Search for a key in a single-level symbol table hierarchy. */ static struct sym *find_key1(struct sym *sym, char *key) { while (sym != NULL) if (strcmp(sym->key, key) == 0) return (sym); else sym = sym->next; return (NULL); } /* * Create a new key node, add it to the *end* of this list */ static int add_key(SYM sym, char *key, void *data) { register struct sym *sn; if (sym->sym == NULL) { sym->sym = mknode(NULL, key, data); if (sym->sym == NULL) { return (-1); } } else { for (sn = sym->sym; sn != NULL && sn->next != NULL; sn = sn->next) ; sn->next = mknode(NULL, key, data); assert(sn->next != NULL); if (sn->next == NULL) return (-1); } return (0); } /* * Create a new symbol table */ SYM sym_open(int flags, int mode, int openinfo) { return (newsym()); } /* * Add (key, data) to an existing symbol table * * If the key does not exist, a new key is added to the end of the list. * If the key exists and the PUT_REPLACE flag is not supplied, return EEXIST. * If a symbol table entry in a multi-part key is not a symbol table (i.e. * element two of a three or more element key), return ENOTDIR. * * "data" is not duplicated and must not point to a static area that could * go away before the element is deleted (such as a local string in a * function) * * "key" is duplicated as needed, and is not modified. * * Code: * chop up key on commas * * search until a key element isn't found in the key tree, the key list is * exhausted, or a key's data element is not a sub-tree * * if the key list is exhausted, return a "duplicate entry" error * * if the last found key's data element is not a sub-tree, return * something like "ENOTDIR". * * add new keys for sub-trees until key list is exhausted; * last node gets 'data'. * */ int sym_put(SYM sym, char *key, void *data, int flags) { const char **keys; /* key split into a 2d string array */ char **kk; char *nkey; /* copy of 'key' -- before split */ SYM csym, ncsym; /* search: current symbol table */ struct sym *nsym = NULL; /* search: found symbol entry */ if (sym == NULL) return (EINVAL); nkey = strdup(key); keys = splitstr(key, ",", NULL); if (keys == NULL) { free(nkey); return (EINVAL); } for (kk = (char **)keys, csym = sym; *kk != NULL && (nsym = find_key1(csym->sym, *kk)) != NULL; csym = nsym->data) { if (*++kk == NULL) break; if (nsym->data == NULL) { /* fatal error */ free(nkey); splitstr_free(keys); return (ENOTDIR); } if (((SYM) (nsym->data))->magic != SYM_MAGIC) { free(nkey); splitstr_free(keys); return (ENOTDIR); } } if (*kk == NULL) { /* found a complete match */ free(nkey); splitstr_free(keys); if (flags == PUT_REPLACE) { nsym->data = data; return (0); } else { return (EEXIST); } } /* csym is a ptr to a list */ for (; *kk != NULL; kk++) { if (*(kk + 1) != NULL) { add_key(csym, *kk, (void *)(ncsym = newsym())); csym = ncsym; } else { add_key(csym, *kk, data); /* last key */ } } free(nkey); splitstr_free(keys); return (0); } /* * Retrieve a Symbol's Contents * * "key" is not modified. * If the key cannot be found, NULL is returned */ void *sym_get(SYM sym, char *key) { char *nkey; const char **keys; /* key split into a 2d string array */ char **kk; SYM csym; /* search: current symbol table */ struct sym *nsym = NULL; /* search: found symbol entry */ if (sym == NULL) return (NULL); nkey = strdup(key); keys = splitstr(nkey, ",", NULL); if (keys == NULL) return (NULL); for (kk = (char **)keys, csym = sym; *kk != NULL && (nsym = find_key1(csym->sym, *kk)) != NULL; csym = nsym->data) { if (*++kk == NULL) break; if (nsym->data == NULL) { /* fatal error */ free(nkey); splitstr_free(keys); return (NULL); } if (((SYM) (nsym->data))->magic != SYM_MAGIC) { free(nkey); splitstr_free(keys); return (NULL); } } if (*kk == NULL) { /* found a complete match */ splitstr_free(keys); free(nkey); return (nsym->data); } else { splitstr_free(keys); free(nkey); return (NULL); } } /* * Step thru a symbol table list * * The cursor must be set by R_CURSOR, R_FIRST before using R_NEXT. * NULL is returned when no more items are available. */ int sym_seq(SYM sym, DBT * key, DBT * data, int flags) { SYM csym; switch (flags) { /* * A number of ways to do this: * specificly: sym_seq( .., "key,key") sets to Nth element of the 2nd * level symbol table * sym_seq(.., "key,key,") sets to the first element of the 3rd * level symbol table * * sym_seq(.., "key,key") where both must be complete keys, sets * cursor to the first element of the 3rd level symbol table; * if there is no 3rd level, return an error. */ case R_CURSOR: csym = (SYM) sym_get(sym, (char *)key->data); if (csym == NULL || csym->magic != SYM_MAGIC) { return (2); } sym->cursor = csym->sym; if (sym->cursor == NULL) return (1); key->data = sym->cursor->key; data->data = sym->cursor->data; return (0); case R_FIRST: sym->cursor = sym->sym; if (sym->cursor == NULL) return (1); key->data = sym->cursor->key; data->data = sym->cursor->data; return (0); case R_NEXT: if (sym->cursor == NULL) return (1); sym->cursor = sym->cursor->next; if (sym->cursor == NULL) return (1); key->data = sym->cursor->key; data->data = sym->cursor->data; return (0); case R_LAST: case R_PREV: default: return (-1); } } /* * Dump a symbol table's keys. * Handles hierarchies, using a double quote to indicate depth, one * double quote for each level. */ int sym_dump(SYM sym, int depth) { register struct sym *se; /* symbol entry */ register int d; if (sym == NULL || sym->magic != SYM_MAGIC) return -1; for (se = sym->sym; se != NULL; se = se->next) { for (d = 0; d < depth; d++) { putchar('"'); putchar(' '); } printf("%s\n", se->key); sym_dump((SYM) se->data, depth + 1); } return 0; } /* * sym dump, but data is _always_ a string (print it) */ int sym_dump_s(SYM sym, int depth) { register struct sym *se; /* symbol entry */ register int d; if (sym == NULL) return 0; if (sym->magic != SYM_MAGIC) { for (d = 0; d < depth; d++) { putchar('"'); putchar(' '); } printf(" = %s\n", (char *)sym); return 0; } for (se = sym->sym; se != NULL; se = se->next) { for (d = 0; d < depth; d++) { putchar('"'); putchar(' '); } printf("%s", se->key); if (((SYM) se->data)->magic == SYM_MAGIC) { putchar('\n'); sym_dump_s((SYM) se->data, depth + 1); } else { printf("(%p) = %s (%p)\n", se->key, (char *)se->data, se->data); } } return 0; } /* * Remove an entire symbol table (done bottom up) */ int sym_rm(SYM sym, int flags) { register struct sym *se, *nse; /* symbol entry */ if (sym == NULL) return 0; if (sym->magic != SYM_MAGIC) { if (!(flags & RM_DATA)) free(sym); return 0; } for (se = sym->sym; se != NULL;) { sym_rm((SYM) se->data, flags); nse = se->next; if (flags & RM_KEY) free(se->key); if (flags & RM_DATA) free(se->data); free(se); se = nse; } if (!(flags & RM_DATA)) free(sym); return 0; }