; ; jimmxfst.asm - fast integer IDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_idct_ifast_mmx) EXTN(jconst_idct_ifast_mmx): PW_F1414 times 4 dw F_1_414 << CONST_SHIFT PW_F1847 times 4 dw F_1_847 << CONST_SHIFT PW_MF1613 times 4 dw -F_1_613 << CONST_SHIFT PW_F1082 times 4 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_mmx (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; jpeg_component_info * compptr %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0)-DCTSIZE2*SIZEOF_JCOEF ; JCOEF workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_ifast_mmx) EXTN(jsimd_idct_ifast_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; JCOEF * wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm1,mm0 packsswb mm1,mm1 movd eax,mm1 test eax,eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm2,mm0 ; mm0=in0=(00 01 02 03) punpcklwd mm0,mm0 ; mm0=(00 00 01 01) punpckhwd mm2,mm2 ; mm2=(02 02 03 03) movq mm1,mm0 punpckldq mm0,mm0 ; mm0=(00 00 00 00) punpckhdq mm1,mm1 ; mm1=(01 01 01 01) movq mm3,mm2 punpckldq mm2,mm2 ; mm2=(02 02 02 02) punpckhdq mm3,mm3 ; mm3=(03 03 03 03) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3 jmp near .nextcolumn alignx 16,7 %endif .columnDCT: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm4,mm0 movq mm5,mm1 psubw mm0,mm2 ; mm0=tmp11 psubw mm1,mm3 paddw mm4,mm2 ; mm4=tmp10 paddw mm5,mm3 ; mm5=tmp13 psllw mm1,PRE_MULTIPLY_SCALE_BITS pmulhw mm1,[GOTOFF(ebx,PW_F1414)] psubw mm1,mm5 ; mm1=tmp12 movq mm6,mm4 movq mm7,mm0 psubw mm4,mm5 ; mm4=tmp3 psubw mm0,mm1 ; mm0=tmp2 paddw mm6,mm5 ; mm6=tmp0 paddw mm7,mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm4,mm2 movq mm0,mm5 psubw mm2,mm1 ; mm2=z12 psubw mm5,mm3 ; mm5=z10 paddw mm4,mm1 ; mm4=z11 paddw mm0,mm3 ; mm0=z13 movq mm1,mm5 ; mm1=z10(unscaled) psllw mm2,PRE_MULTIPLY_SCALE_BITS psllw mm5,PRE_MULTIPLY_SCALE_BITS movq mm3,mm4 psubw mm4,mm0 paddw mm3,mm0 ; mm3=tmp7 psllw mm4,PRE_MULTIPLY_SCALE_BITS pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movq mm0,mm5 paddw mm5,mm2 pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5 pmulhw mm0,[GOTOFF(ebx,PW_MF1613)] pmulhw mm2,[GOTOFF(ebx,PW_F1082)] psubw mm0,mm1 psubw mm2,mm5 ; mm2=tmp10 paddw mm0,mm5 ; mm0=tmp12 ; -- Final output stage psubw mm0,mm3 ; mm0=tmp6 movq mm1,mm6 movq mm5,mm7 paddw mm6,mm3 ; mm6=data0=(00 01 02 03) paddw mm7,mm0 ; mm7=data1=(10 11 12 13) psubw mm1,mm3 ; mm1=data7=(70 71 72 73) psubw mm5,mm0 ; mm5=data6=(60 61 62 63) psubw mm4,mm0 ; mm4=tmp5 movq mm3,mm6 ; transpose coefficients(phase 1) punpcklwd mm6,mm7 ; mm6=(00 10 01 11) punpckhwd mm3,mm7 ; mm3=(02 12 03 13) movq mm0,mm5 ; transpose coefficients(phase 1) punpcklwd mm5,mm1 ; mm5=(60 70 61 71) punpckhwd mm0,mm1 ; mm0=(62 72 63 73) movq mm7, MMWORD [wk(0)] ; mm7=tmp2 movq mm1, MMWORD [wk(1)] ; mm1=tmp3 movq MMWORD [wk(0)], mm5 ; wk(0)=(60 70 61 71) movq MMWORD [wk(1)], mm0 ; wk(1)=(62 72 63 73) paddw mm2,mm4 ; mm2=tmp4 movq mm5,mm7 movq mm0,mm1 paddw mm7,mm4 ; mm7=data2=(20 21 22 23) paddw mm1,mm2 ; mm1=data4=(40 41 42 43) psubw mm5,mm4 ; mm5=data5=(50 51 52 53) psubw mm0,mm2 ; mm0=data3=(30 31 32 33) movq mm4,mm7 ; transpose coefficients(phase 1) punpcklwd mm7,mm0 ; mm7=(20 30 21 31) punpckhwd mm4,mm0 ; mm4=(22 32 23 33) movq mm2,mm1 ; transpose coefficients(phase 1) punpcklwd mm1,mm5 ; mm1=(40 50 41 51) punpckhwd mm2,mm5 ; mm2=(42 52 43 53) movq mm0,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm7 ; mm6=(00 10 20 30) punpckhdq mm0,mm7 ; mm0=(01 11 21 31) movq mm5,mm3 ; transpose coefficients(phase 2) punpckldq mm3,mm4 ; mm3=(02 12 22 32) punpckhdq mm5,mm4 ; mm5=(03 13 23 33) movq mm7, MMWORD [wk(0)] ; mm7=(60 70 61 71) movq mm4, MMWORD [wk(1)] ; mm4=(62 72 63 73) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5 movq mm6,mm1 ; transpose coefficients(phase 2) punpckldq mm1,mm7 ; mm1=(40 50 60 70) punpckhdq mm6,mm7 ; mm6=(41 51 61 71) movq mm0,mm2 ; transpose coefficients(phase 2) punpckldq mm2,mm4 ; mm2=(42 52 62 72) punpckhdq mm0,mm4 ; mm0=(43 53 63 73) movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_IFAST_MULT_TYPE ; quantptr add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr dec ecx ; ctr jnz near .columnloop ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; JCOEF * wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .rowloop: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] movq mm4,mm0 movq mm5,mm1 psubw mm0,mm2 ; mm0=tmp11 psubw mm1,mm3 paddw mm4,mm2 ; mm4=tmp10 paddw mm5,mm3 ; mm5=tmp13 psllw mm1,PRE_MULTIPLY_SCALE_BITS pmulhw mm1,[GOTOFF(ebx,PW_F1414)] psubw mm1,mm5 ; mm1=tmp12 movq mm6,mm4 movq mm7,mm0 psubw mm4,mm5 ; mm4=tmp3 psubw mm0,mm1 ; mm0=tmp2 paddw mm6,mm5 ; mm6=tmp0 paddw mm7,mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] movq mm4,mm2 movq mm0,mm5 psubw mm2,mm1 ; mm2=z12 psubw mm5,mm3 ; mm5=z10 paddw mm4,mm1 ; mm4=z11 paddw mm0,mm3 ; mm0=z13 movq mm1,mm5 ; mm1=z10(unscaled) psllw mm2,PRE_MULTIPLY_SCALE_BITS psllw mm5,PRE_MULTIPLY_SCALE_BITS movq mm3,mm4 psubw mm4,mm0 paddw mm3,mm0 ; mm3=tmp7 psllw mm4,PRE_MULTIPLY_SCALE_BITS pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movq mm0,mm5 paddw mm5,mm2 pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5 pmulhw mm0,[GOTOFF(ebx,PW_MF1613)] pmulhw mm2,[GOTOFF(ebx,PW_F1082)] psubw mm0,mm1 psubw mm2,mm5 ; mm2=tmp10 paddw mm0,mm5 ; mm0=tmp12 ; -- Final output stage psubw mm0,mm3 ; mm0=tmp6 movq mm1,mm6 movq mm5,mm7 paddw mm6,mm3 ; mm6=data0=(00 10 20 30) paddw mm7,mm0 ; mm7=data1=(01 11 21 31) psraw mm6,(PASS1_BITS+3) ; descale psraw mm7,(PASS1_BITS+3) ; descale psubw mm1,mm3 ; mm1=data7=(07 17 27 37) psubw mm5,mm0 ; mm5=data6=(06 16 26 36) psraw mm1,(PASS1_BITS+3) ; descale psraw mm5,(PASS1_BITS+3) ; descale psubw mm4,mm0 ; mm4=tmp5 packsswb mm6,mm5 ; mm6=(00 10 20 30 06 16 26 36) packsswb mm7,mm1 ; mm7=(01 11 21 31 07 17 27 37) movq mm3, MMWORD [wk(0)] ; mm3=tmp2 movq mm0, MMWORD [wk(1)] ; mm0=tmp3 paddw mm2,mm4 ; mm2=tmp4 movq mm5,mm3 movq mm1,mm0 paddw mm3,mm4 ; mm3=data2=(02 12 22 32) paddw mm0,mm2 ; mm0=data4=(04 14 24 34) psraw mm3,(PASS1_BITS+3) ; descale psraw mm0,(PASS1_BITS+3) ; descale psubw mm5,mm4 ; mm5=data5=(05 15 25 35) psubw mm1,mm2 ; mm1=data3=(03 13 23 33) psraw mm5,(PASS1_BITS+3) ; descale psraw mm1,(PASS1_BITS+3) ; descale movq mm4,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm4=[PB_CENTERJSAMP] packsswb mm3,mm0 ; mm3=(02 12 22 32 04 14 24 34) packsswb mm1,mm5 ; mm1=(03 13 23 33 05 15 25 35) paddb mm6,mm4 paddb mm7,mm4 paddb mm3,mm4 paddb mm1,mm4 movq mm2,mm6 ; transpose coefficients(phase 1) punpcklbw mm6,mm7 ; mm6=(00 01 10 11 20 21 30 31) punpckhbw mm2,mm7 ; mm2=(06 07 16 17 26 27 36 37) movq mm0,mm3 ; transpose coefficients(phase 1) punpcklbw mm3,mm1 ; mm3=(02 03 12 13 22 23 32 33) punpckhbw mm0,mm1 ; mm0=(04 05 14 15 24 25 34 35) movq mm5,mm6 ; transpose coefficients(phase 2) punpcklwd mm6,mm3 ; mm6=(00 01 02 03 10 11 12 13) punpckhwd mm5,mm3 ; mm5=(20 21 22 23 30 31 32 33) movq mm4,mm0 ; transpose coefficients(phase 2) punpcklwd mm0,mm2 ; mm0=(04 05 06 07 14 15 16 17) punpckhwd mm4,mm2 ; mm4=(24 25 26 27 34 35 36 37) movq mm7,mm6 ; transpose coefficients(phase 3) punpckldq mm6,mm0 ; mm6=(00 01 02 03 04 05 06 07) punpckhdq mm7,mm0 ; mm7=(10 11 12 13 14 15 16 17) movq mm1,mm5 ; transpose coefficients(phase 3) punpckldq mm5,mm4 ; mm5=(20 21 22 23 24 25 26 27) punpckhdq mm1,mm4 ; mm1=(30 31 32 33 34 35 36 37) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_JCOEF ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16