/* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void __iomem *msm_wcnss_base; static LIST_HEAD(power_on_lock_list); static DEFINE_MUTEX(list_lock); static DEFINE_SEMAPHORE(wcnss_power_on_lock); static int auto_detect; #define RIVA_PMU_OFFSET 0x28 #define PRONTO_PMU_OFFSET 0x1004 #define RIVA_SPARE_OFFSET 0x0b4 #define PRONTO_SPARE_OFFSET 0x1088 #define NVBIN_DLND_BIT BIT(25) #define PRONTO_IRIS_REG_READ_OFFSET 0x1134 #define PRONTO_IRIS_REG_CHIP_ID 0x04 #define WCNSS_PMU_CFG_IRIS_XO_CFG BIT(3) #define WCNSS_PMU_CFG_IRIS_XO_EN BIT(4) #define WCNSS_PMU_CFG_GC_BUS_MUX_SEL_TOP BIT(5) #define WCNSS_PMU_CFG_IRIS_XO_CFG_STS BIT(6) /* 1: in progress, 0: done */ #define WCNSS_PMU_CFG_IRIS_XO_READ BIT(9) #define WCNSS_PMU_CFG_IRIS_XO_READ_STS BIT(10) #define WCNSS_PMU_CFG_IRIS_XO_MODE 0x6 #define WCNSS_PMU_CFG_IRIS_XO_MODE_48 (3 << 1) #define VREG_NULL_CONFIG 0x0000 #define VREG_GET_REGULATOR_MASK 0x0001 #define VREG_SET_VOLTAGE_MASK 0x0002 #define VREG_OPTIMUM_MODE_MASK 0x0004 #define VREG_ENABLE_MASK 0x0008 #define WCNSS_INVALID_IRIS_REG 0xbaadbaad struct vregs_info { const char * const name; int state; const int nominal_min; const int low_power_min; const int max_voltage; const int uA_load; struct regulator *regulator; }; /* IRIS regulators for Riva hardware */ static struct vregs_info iris_vregs_riva[] = { {"iris_vddxo", VREG_NULL_CONFIG, 1800000, 0, 1800000, 10000, NULL}, {"iris_vddrfa", VREG_NULL_CONFIG, 1300000, 0, 1300000, 100000, NULL}, {"iris_vddpa", VREG_NULL_CONFIG, 2900000, 0, 3000000, 515000, NULL}, {"iris_vdddig", VREG_NULL_CONFIG, 1200000, 0, 1225000, 10000, NULL}, }; /* WCNSS regulators for Riva hardware */ static struct vregs_info riva_vregs[] = { /* Riva */ {"riva_vddmx", VREG_NULL_CONFIG, 1050000, 0, 1150000, 0, NULL}, {"riva_vddcx", VREG_NULL_CONFIG, 1050000, 0, 1150000, 0, NULL}, {"riva_vddpx", VREG_NULL_CONFIG, 1800000, 0, 1800000, 0, NULL}, }; /* IRIS regulators for Pronto hardware */ static struct vregs_info iris_vregs_pronto[] = { {"qcom,iris-vddxo", VREG_NULL_CONFIG, 1800000, 0, 1800000, 10000, NULL}, {"qcom,iris-vddrfa", VREG_NULL_CONFIG, 1300000, 0, 1300000, 100000, NULL}, {"qcom,iris-vddpa", VREG_NULL_CONFIG, 2900000, 0, 3000000, 515000, NULL}, {"qcom,iris-vdddig", VREG_NULL_CONFIG, 1225000, 0, 1800000, 10000, NULL}, }; /* WCNSS regulators for Pronto hardware */ static struct vregs_info pronto_vregs[] = { {"qcom,pronto-vddmx", VREG_NULL_CONFIG, 950000, 0, 1150000, 0, NULL}, {"qcom,pronto-vddcx", VREG_NULL_CONFIG, RPM_REGULATOR_CORNER_NORMAL, RPM_REGULATOR_CORNER_NONE, RPM_REGULATOR_CORNER_SUPER_TURBO, 0, NULL}, {"qcom,pronto-vddpx", VREG_NULL_CONFIG, 1800000, 0, 1800000, 0, NULL}, }; struct host_driver { char name[20]; struct list_head list; }; enum { IRIS_3660, /* also 3660A and 3680 */ IRIS_3620 }; int xo_auto_detect(u32 reg) { reg >>= 30; switch (reg) { case IRIS_3660: return WCNSS_XO_48MHZ; case IRIS_3620: return WCNSS_XO_19MHZ; default: return WCNSS_XO_INVALID; } } static int configure_iris_xo(struct device *dev, struct wcnss_wlan_config *cfg, int on, int *iris_xo_set) { u32 reg = 0; u32 iris_reg = WCNSS_INVALID_IRIS_REG; int rc = 0; int pmu_offset = 0; int spare_offset = 0; void __iomem *pmu_conf_reg; void __iomem *spare_reg; void __iomem *iris_read_reg; struct clk *clk; struct clk *clk_rf = NULL; bool use_48mhz_xo; use_48mhz_xo = cfg->use_48mhz_xo; if (wcnss_hardware_type() == WCNSS_PRONTO_HW) { pmu_offset = PRONTO_PMU_OFFSET; spare_offset = PRONTO_SPARE_OFFSET; clk = clk_get(dev, "xo"); if (IS_ERR(clk)) { pr_err("Couldn't get xo clock\n"); return PTR_ERR(clk); } } else { pmu_offset = RIVA_PMU_OFFSET; spare_offset = RIVA_SPARE_OFFSET; clk = clk_get(dev, "cxo"); if (IS_ERR(clk)) { pr_err("Couldn't get cxo clock\n"); return PTR_ERR(clk); } } if (on) { msm_wcnss_base = cfg->msm_wcnss_base; if (!msm_wcnss_base) { pr_err("ioremap wcnss physical failed\n"); goto fail; } /* Enable IRIS XO */ rc = clk_prepare_enable(clk); if (rc) { pr_err("clk enable failed\n"); goto fail; } /* NV bit is set to indicate that platform driver is capable * of doing NV download. */ pr_debug("wcnss: Indicate NV bin download\n"); spare_reg = msm_wcnss_base + spare_offset; reg = readl_relaxed(spare_reg); reg |= NVBIN_DLND_BIT; writel_relaxed(reg, spare_reg); pmu_conf_reg = msm_wcnss_base + pmu_offset; writel_relaxed(0, pmu_conf_reg); reg = readl_relaxed(pmu_conf_reg); reg |= WCNSS_PMU_CFG_GC_BUS_MUX_SEL_TOP | WCNSS_PMU_CFG_IRIS_XO_EN; writel_relaxed(reg, pmu_conf_reg); if (wcnss_xo_auto_detect_enabled()) { iris_read_reg = msm_wcnss_base + PRONTO_IRIS_REG_READ_OFFSET; iris_reg = readl_relaxed(iris_read_reg); } if (iris_reg != WCNSS_INVALID_IRIS_REG) { iris_reg &= 0xffff; iris_reg |= PRONTO_IRIS_REG_CHIP_ID; writel_relaxed(iris_reg, iris_read_reg); /* Iris read */ reg = readl_relaxed(pmu_conf_reg); reg |= WCNSS_PMU_CFG_IRIS_XO_READ; writel_relaxed(reg, pmu_conf_reg); /* Wait for PMU_CFG.iris_reg_read_sts */ while (readl_relaxed(pmu_conf_reg) & WCNSS_PMU_CFG_IRIS_XO_READ_STS) cpu_relax(); iris_reg = readl_relaxed(iris_read_reg); auto_detect = xo_auto_detect(iris_reg); /* Reset iris read bit */ reg &= ~WCNSS_PMU_CFG_IRIS_XO_READ; } else if (wcnss_xo_auto_detect_enabled()) /* Default to 48 MHZ */ auto_detect = WCNSS_XO_48MHZ; else auto_detect = WCNSS_XO_INVALID; /* Clear XO_MODE[b2:b1] bits. Clear implies 19.2 MHz TCXO */ reg &= ~(WCNSS_PMU_CFG_IRIS_XO_MODE); if ((use_48mhz_xo && auto_detect == WCNSS_XO_INVALID) || auto_detect == WCNSS_XO_48MHZ) { reg |= WCNSS_PMU_CFG_IRIS_XO_MODE_48; if (iris_xo_set) *iris_xo_set = WCNSS_XO_48MHZ; } writel_relaxed(reg, pmu_conf_reg); /* Start IRIS XO configuration */ reg |= WCNSS_PMU_CFG_IRIS_XO_CFG; writel_relaxed(reg, pmu_conf_reg); /* Wait for XO configuration to finish */ while (readl_relaxed(pmu_conf_reg) & WCNSS_PMU_CFG_IRIS_XO_CFG_STS) cpu_relax(); /* Stop IRIS XO configuration */ reg &= ~(WCNSS_PMU_CFG_GC_BUS_MUX_SEL_TOP | WCNSS_PMU_CFG_IRIS_XO_CFG); writel_relaxed(reg, pmu_conf_reg); clk_disable_unprepare(clk); if ((!use_48mhz_xo && auto_detect == WCNSS_XO_INVALID) || auto_detect == WCNSS_XO_19MHZ) { clk_rf = clk_get(dev, "rf_clk"); if (IS_ERR(clk_rf)) { pr_err("Couldn't get rf_clk\n"); goto fail; } rc = clk_prepare_enable(clk_rf); if (rc) { pr_err("clk_rf enable failed\n"); goto fail; } if (iris_xo_set) *iris_xo_set = WCNSS_XO_19MHZ; } } else if ((!use_48mhz_xo && auto_detect == WCNSS_XO_INVALID) || auto_detect == WCNSS_XO_19MHZ) { clk_rf = clk_get(dev, "rf_clk"); if (IS_ERR(clk_rf)) { pr_err("Couldn't get rf_clk\n"); goto fail; } clk_disable_unprepare(clk_rf); } /* Add some delay for XO to settle */ msleep(20); fail: clk_put(clk); if (clk_rf != NULL) clk_put(clk_rf); return rc; } /* Helper routine to turn off all WCNSS & IRIS vregs */ static void wcnss_vregs_off(struct vregs_info regulators[], uint size) { int i, rc = 0; /* Regulators need to be turned off in the reverse order */ for (i = (size-1); i >= 0; i--) { if (regulators[i].state == VREG_NULL_CONFIG) continue; /* Remove PWM mode */ if (regulators[i].state & VREG_OPTIMUM_MODE_MASK) { rc = regulator_set_optimum_mode( regulators[i].regulator, 0); if (rc < 0) pr_err("regulator_set_optimum_mode(%s) failed (%d)\n", regulators[i].name, rc); } /* Set voltage to lowest level */ if (regulators[i].state & VREG_SET_VOLTAGE_MASK) { rc = regulator_set_voltage(regulators[i].regulator, regulators[i].low_power_min, regulators[i].max_voltage); if (rc) pr_err("regulator_set_voltage(%s) failed (%d)\n", regulators[i].name, rc); } /* Disable regulator */ if (regulators[i].state & VREG_ENABLE_MASK) { rc = regulator_disable(regulators[i].regulator); if (rc < 0) pr_err("vreg %s disable failed (%d)\n", regulators[i].name, rc); } /* Free the regulator source */ if (regulators[i].state & VREG_GET_REGULATOR_MASK) regulator_put(regulators[i].regulator); regulators[i].state = VREG_NULL_CONFIG; } } /* Common helper routine to turn on all WCNSS & IRIS vregs */ static int wcnss_vregs_on(struct device *dev, struct vregs_info regulators[], uint size) { int i, rc = 0, reg_cnt; for (i = 0; i < size; i++) { /* Get regulator source */ regulators[i].regulator = regulator_get(dev, regulators[i].name); if (IS_ERR(regulators[i].regulator)) { rc = PTR_ERR(regulators[i].regulator); pr_err("regulator get of %s failed (%d)\n", regulators[i].name, rc); goto fail; } regulators[i].state |= VREG_GET_REGULATOR_MASK; reg_cnt = regulator_count_voltages(regulators[i].regulator); /* Set voltage to nominal. Exclude swtiches e.g. LVS */ if ((regulators[i].nominal_min || regulators[i].max_voltage) && (reg_cnt > 0)) { rc = regulator_set_voltage(regulators[i].regulator, regulators[i].nominal_min, regulators[i].max_voltage); if (rc) { pr_err("regulator_set_voltage(%s) failed (%d)\n", regulators[i].name, rc); goto fail; } regulators[i].state |= VREG_SET_VOLTAGE_MASK; } /* Vote for PWM/PFM mode if needed */ if (regulators[i].uA_load && (reg_cnt > 0)) { rc = regulator_set_optimum_mode(regulators[i].regulator, regulators[i].uA_load); if (rc < 0) { pr_err("regulator_set_optimum_mode(%s) failed (%d)\n", regulators[i].name, rc); goto fail; } regulators[i].state |= VREG_OPTIMUM_MODE_MASK; } /* Enable the regulator */ rc = regulator_enable(regulators[i].regulator); if (rc) { pr_err("vreg %s enable failed (%d)\n", regulators[i].name, rc); goto fail; } regulators[i].state |= VREG_ENABLE_MASK; } return rc; fail: wcnss_vregs_off(regulators, size); return rc; } static void wcnss_iris_vregs_off(enum wcnss_hw_type hw_type) { switch (hw_type) { case WCNSS_RIVA_HW: wcnss_vregs_off(iris_vregs_riva, ARRAY_SIZE(iris_vregs_riva)); break; case WCNSS_PRONTO_HW: wcnss_vregs_off(iris_vregs_pronto, ARRAY_SIZE(iris_vregs_pronto)); break; default: pr_err("%s invalid hardware %d\n", __func__, hw_type); } } static int wcnss_iris_vregs_on(struct device *dev, enum wcnss_hw_type hw_type) { int ret = -1; switch (hw_type) { case WCNSS_RIVA_HW: ret = wcnss_vregs_on(dev, iris_vregs_riva, ARRAY_SIZE(iris_vregs_riva)); break; case WCNSS_PRONTO_HW: ret = wcnss_vregs_on(dev, iris_vregs_pronto, ARRAY_SIZE(iris_vregs_pronto)); break; default: pr_err("%s invalid hardware %d\n", __func__, hw_type); } return ret; } static void wcnss_core_vregs_off(enum wcnss_hw_type hw_type) { switch (hw_type) { case WCNSS_RIVA_HW: wcnss_vregs_off(riva_vregs, ARRAY_SIZE(riva_vregs)); break; case WCNSS_PRONTO_HW: wcnss_vregs_off(pronto_vregs, ARRAY_SIZE(pronto_vregs)); break; default: pr_err("%s invalid hardware %d\n", __func__, hw_type); } } static int wcnss_core_vregs_on(struct device *dev, enum wcnss_hw_type hw_type) { int ret = -1; switch (hw_type) { case WCNSS_RIVA_HW: ret = wcnss_vregs_on(dev, riva_vregs, ARRAY_SIZE(riva_vregs)); break; case WCNSS_PRONTO_HW: ret = wcnss_vregs_on(dev, pronto_vregs, ARRAY_SIZE(pronto_vregs)); break; default: pr_err("%s invalid hardware %d\n", __func__, hw_type); } return ret; } int wcnss_wlan_power(struct device *dev, struct wcnss_wlan_config *cfg, enum wcnss_opcode on, int *iris_xo_set) { int rc = 0; enum wcnss_hw_type hw_type = wcnss_hardware_type(); if (on) { down(&wcnss_power_on_lock); /* RIVA regulator settings */ rc = wcnss_core_vregs_on(dev, hw_type); if (rc) goto fail_wcnss_on; /* IRIS regulator settings */ rc = wcnss_iris_vregs_on(dev, hw_type); if (rc) goto fail_iris_on; /* Configure IRIS XO */ rc = configure_iris_xo(dev, cfg, WCNSS_WLAN_SWITCH_ON, iris_xo_set); if (rc) goto fail_iris_xo; up(&wcnss_power_on_lock); } else { configure_iris_xo(dev, cfg, WCNSS_WLAN_SWITCH_OFF, NULL); wcnss_iris_vregs_off(hw_type); wcnss_core_vregs_off(hw_type); } return rc; fail_iris_xo: wcnss_iris_vregs_off(hw_type); fail_iris_on: wcnss_core_vregs_off(hw_type); fail_wcnss_on: up(&wcnss_power_on_lock); return rc; } EXPORT_SYMBOL(wcnss_wlan_power); /* * During SSR WCNSS should not be 'powered on' until all the host drivers * finish their shutdown routines. Host drivers use below APIs to * synchronize power-on. WCNSS will not be 'powered on' until all the * requests(to lock power-on) are freed. */ int wcnss_req_power_on_lock(char *driver_name) { struct host_driver *node; if (!driver_name) goto err; node = kmalloc(sizeof(struct host_driver), GFP_KERNEL); if (!node) goto err; strlcpy(node->name, driver_name, sizeof(node->name)); mutex_lock(&list_lock); /* Lock when the first request is added */ if (list_empty(&power_on_lock_list)) down(&wcnss_power_on_lock); list_add(&node->list, &power_on_lock_list); mutex_unlock(&list_lock); return 0; err: return -EINVAL; } EXPORT_SYMBOL(wcnss_req_power_on_lock); int wcnss_free_power_on_lock(char *driver_name) { int ret = -1; struct host_driver *node; mutex_lock(&list_lock); list_for_each_entry(node, &power_on_lock_list, list) { if (!strncmp(node->name, driver_name, sizeof(node->name))) { list_del(&node->list); kfree(node); ret = 0; break; } } /* unlock when the last host driver frees the lock */ if (list_empty(&power_on_lock_list)) up(&wcnss_power_on_lock); mutex_unlock(&list_lock); return ret; } EXPORT_SYMBOL(wcnss_free_power_on_lock);