aboutsummaryrefslogtreecommitdiff
path: root/include/fpu/softfloat.h
blob: ec7dca09606db903f5363ab62451267dc7dfb431 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
/*
 * QEMU float support
 *
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
 */

/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.

===============================================================================
*/

/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

#ifndef SOFTFLOAT_H
#define SOFTFLOAT_H

/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point ordering relations
*----------------------------------------------------------------------------*/

typedef enum {
    float_relation_less      = -1,
    float_relation_equal     =  0,
    float_relation_greater   =  1,
    float_relation_unordered =  2
} FloatRelation;

#include "fpu/softfloat-types.h"
#include "fpu/softfloat-helpers.h"

/*----------------------------------------------------------------------------
| Routine to raise any or all of the software IEC/IEEE floating-point
| exception flags.
*----------------------------------------------------------------------------*/
static inline void float_raise(uint8_t flags, float_status *status)
{
    status->float_exception_flags |= flags;
}

/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status);
float32 float32_squash_input_denormal(float32 a, float_status *status);
float64 float64_squash_input_denormal(float64 a, float_status *status);
bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status);

/*----------------------------------------------------------------------------
| Options to indicate which negations to perform in float*_muladd()
| Using these differs from negating an input or output before calling
| the muladd function in that this means that a NaN doesn't have its
| sign bit inverted before it is propagated.
| We also support halving the result before rounding, as a special
| case to support the ARM fused-sqrt-step instruction FRSQRTS.
*----------------------------------------------------------------------------*/
enum {
    float_muladd_negate_c = 1,
    float_muladd_negate_product = 2,
    float_muladd_negate_result = 4,
    float_muladd_halve_result = 8,
};

/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/

float16 int16_to_float16_scalbn(int16_t a, int, float_status *status);
float16 int32_to_float16_scalbn(int32_t a, int, float_status *status);
float16 int64_to_float16_scalbn(int64_t a, int, float_status *status);
float16 uint16_to_float16_scalbn(uint16_t a, int, float_status *status);
float16 uint32_to_float16_scalbn(uint32_t a, int, float_status *status);
float16 uint64_to_float16_scalbn(uint64_t a, int, float_status *status);

float16 int8_to_float16(int8_t a, float_status *status);
float16 int16_to_float16(int16_t a, float_status *status);
float16 int32_to_float16(int32_t a, float_status *status);
float16 int64_to_float16(int64_t a, float_status *status);
float16 uint8_to_float16(uint8_t a, float_status *status);
float16 uint16_to_float16(uint16_t a, float_status *status);
float16 uint32_to_float16(uint32_t a, float_status *status);
float16 uint64_to_float16(uint64_t a, float_status *status);

float32 int16_to_float32_scalbn(int16_t, int, float_status *status);
float32 int32_to_float32_scalbn(int32_t, int, float_status *status);
float32 int64_to_float32_scalbn(int64_t, int, float_status *status);
float32 uint16_to_float32_scalbn(uint16_t, int, float_status *status);
float32 uint32_to_float32_scalbn(uint32_t, int, float_status *status);
float32 uint64_to_float32_scalbn(uint64_t, int, float_status *status);

float32 int16_to_float32(int16_t, float_status *status);
float32 int32_to_float32(int32_t, float_status *status);
float32 int64_to_float32(int64_t, float_status *status);
float32 uint16_to_float32(uint16_t, float_status *status);
float32 uint32_to_float32(uint32_t, float_status *status);
float32 uint64_to_float32(uint64_t, float_status *status);

float64 int16_to_float64_scalbn(int16_t, int, float_status *status);
float64 int32_to_float64_scalbn(int32_t, int, float_status *status);
float64 int64_to_float64_scalbn(int64_t, int, float_status *status);
float64 uint16_to_float64_scalbn(uint16_t, int, float_status *status);
float64 uint32_to_float64_scalbn(uint32_t, int, float_status *status);
float64 uint64_to_float64_scalbn(uint64_t, int, float_status *status);

float64 int16_to_float64(int16_t, float_status *status);
float64 int32_to_float64(int32_t, float_status *status);
float64 int64_to_float64(int64_t, float_status *status);
float64 uint16_to_float64(uint16_t, float_status *status);
float64 uint32_to_float64(uint32_t, float_status *status);
float64 uint64_to_float64(uint64_t, float_status *status);

floatx80 int32_to_floatx80(int32_t, float_status *status);
floatx80 int64_to_floatx80(int64_t, float_status *status);

float128 int32_to_float128(int32_t, float_status *status);
float128 int64_to_float128(int64_t, float_status *status);
float128 uint64_to_float128(uint64_t, float_status *status);

/*----------------------------------------------------------------------------
| Software half-precision conversion routines.
*----------------------------------------------------------------------------*/

float16 float32_to_float16(float32, bool ieee, float_status *status);
float32 float16_to_float32(float16, bool ieee, float_status *status);
float16 float64_to_float16(float64 a, bool ieee, float_status *status);
float64 float16_to_float64(float16 a, bool ieee, float_status *status);

int8_t  float16_to_int8_scalbn(float16, FloatRoundMode, int,
                               float_status *status);
int16_t float16_to_int16_scalbn(float16, FloatRoundMode, int, float_status *);
int32_t float16_to_int32_scalbn(float16, FloatRoundMode, int, float_status *);
int64_t float16_to_int64_scalbn(float16, FloatRoundMode, int, float_status *);

int8_t  float16_to_int8(float16, float_status *status);
int16_t float16_to_int16(float16, float_status *status);
int32_t float16_to_int32(float16, float_status *status);
int64_t float16_to_int64(float16, float_status *status);

int16_t float16_to_int16_round_to_zero(float16, float_status *status);
int32_t float16_to_int32_round_to_zero(float16, float_status *status);
int64_t float16_to_int64_round_to_zero(float16, float_status *status);

uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode,
                                int, float_status *status);
uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode,
                                  int, float_status *status);
uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode,
                                  int, float_status *status);
uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode,
                                  int, float_status *status);

uint8_t  float16_to_uint8(float16 a, float_status *status);
uint16_t float16_to_uint16(float16 a, float_status *status);
uint32_t float16_to_uint32(float16 a, float_status *status);
uint64_t float16_to_uint64(float16 a, float_status *status);

uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);

/*----------------------------------------------------------------------------
| Software half-precision operations.
*----------------------------------------------------------------------------*/

float16 float16_round_to_int(float16, float_status *status);
float16 float16_add(float16, float16, float_status *status);
float16 float16_sub(float16, float16, float_status *status);
float16 float16_mul(float16, float16, float_status *status);
float16 float16_muladd(float16, float16, float16, int, float_status *status);
float16 float16_div(float16, float16, float_status *status);
float16 float16_scalbn(float16, int, float_status *status);
float16 float16_min(float16, float16, float_status *status);
float16 float16_max(float16, float16, float_status *status);
float16 float16_minnum(float16, float16, float_status *status);
float16 float16_maxnum(float16, float16, float_status *status);
float16 float16_minnummag(float16, float16, float_status *status);
float16 float16_maxnummag(float16, float16, float_status *status);
float16 float16_sqrt(float16, float_status *status);
FloatRelation float16_compare(float16, float16, float_status *status);
FloatRelation float16_compare_quiet(float16, float16, float_status *status);

bool float16_is_quiet_nan(float16, float_status *status);
bool float16_is_signaling_nan(float16, float_status *status);
float16 float16_silence_nan(float16, float_status *status);

static inline bool float16_is_any_nan(float16 a)
{
    return ((float16_val(a) & ~0x8000) > 0x7c00);
}

static inline bool float16_is_neg(float16 a)
{
    return float16_val(a) >> 15;
}

static inline bool float16_is_infinity(float16 a)
{
    return (float16_val(a) & 0x7fff) == 0x7c00;
}

static inline bool float16_is_zero(float16 a)
{
    return (float16_val(a) & 0x7fff) == 0;
}

static inline bool float16_is_zero_or_denormal(float16 a)
{
    return (float16_val(a) & 0x7c00) == 0;
}

static inline bool float16_is_normal(float16 a)
{
    return (((float16_val(a) >> 10) + 1) & 0x1f) >= 2;
}

static inline float16 float16_abs(float16 a)
{
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float16(float16_val(a) & 0x7fff);
}

static inline float16 float16_chs(float16 a)
{
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float16(float16_val(a) ^ 0x8000);
}

static inline float16 float16_set_sign(float16 a, int sign)
{
    return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
}

static inline bool float16_eq(float16 a, float16 b, float_status *s)
{
    return float16_compare(a, b, s) == float_relation_equal;
}

static inline bool float16_le(float16 a, float16 b, float_status *s)
{
    return float16_compare(a, b, s) <= float_relation_equal;
}

static inline bool float16_lt(float16 a, float16 b, float_status *s)
{
    return float16_compare(a, b, s) < float_relation_equal;
}

static inline bool float16_unordered(float16 a, float16 b, float_status *s)
{
    return float16_compare(a, b, s) == float_relation_unordered;
}

static inline bool float16_eq_quiet(float16 a, float16 b, float_status *s)
{
    return float16_compare_quiet(a, b, s) == float_relation_equal;
}

static inline bool float16_le_quiet(float16 a, float16 b, float_status *s)
{
    return float16_compare_quiet(a, b, s) <= float_relation_equal;
}

static inline bool float16_lt_quiet(float16 a, float16 b, float_status *s)
{
    return float16_compare_quiet(a, b, s) < float_relation_equal;
}

static inline bool float16_unordered_quiet(float16 a, float16 b,
                                           float_status *s)
{
    return float16_compare_quiet(a, b, s) == float_relation_unordered;
}

#define float16_zero make_float16(0)
#define float16_half make_float16(0x3800)
#define float16_one make_float16(0x3c00)
#define float16_one_point_five make_float16(0x3e00)
#define float16_two make_float16(0x4000)
#define float16_three make_float16(0x4200)
#define float16_infinity make_float16(0x7c00)

/*----------------------------------------------------------------------------
| Software bfloat16 conversion routines.
*----------------------------------------------------------------------------*/

bfloat16 bfloat16_round_to_int(bfloat16, float_status *status);
bfloat16 float32_to_bfloat16(float32, float_status *status);
float32 bfloat16_to_float32(bfloat16, float_status *status);
bfloat16 float64_to_bfloat16(float64 a, float_status *status);
float64 bfloat16_to_float64(bfloat16 a, float_status *status);

int16_t bfloat16_to_int16_scalbn(bfloat16, FloatRoundMode,
                                 int, float_status *status);
int32_t bfloat16_to_int32_scalbn(bfloat16, FloatRoundMode,
                                 int, float_status *status);
int64_t bfloat16_to_int64_scalbn(bfloat16, FloatRoundMode,
                                 int, float_status *status);

int16_t bfloat16_to_int16(bfloat16, float_status *status);
int32_t bfloat16_to_int32(bfloat16, float_status *status);
int64_t bfloat16_to_int64(bfloat16, float_status *status);

int16_t bfloat16_to_int16_round_to_zero(bfloat16, float_status *status);
int32_t bfloat16_to_int32_round_to_zero(bfloat16, float_status *status);
int64_t bfloat16_to_int64_round_to_zero(bfloat16, float_status *status);

uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode,
                                   int, float_status *status);
uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode,
                                   int, float_status *status);
uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode,
                                   int, float_status *status);

uint16_t bfloat16_to_uint16(bfloat16 a, float_status *status);
uint32_t bfloat16_to_uint32(bfloat16 a, float_status *status);
uint64_t bfloat16_to_uint64(bfloat16 a, float_status *status);

uint16_t bfloat16_to_uint16_round_to_zero(bfloat16 a, float_status *status);
uint32_t bfloat16_to_uint32_round_to_zero(bfloat16 a, float_status *status);
uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *status);

bfloat16 int16_to_bfloat16_scalbn(int16_t a, int, float_status *status);
bfloat16 int32_to_bfloat16_scalbn(int32_t a, int, float_status *status);
bfloat16 int64_to_bfloat16_scalbn(int64_t a, int, float_status *status);
bfloat16 uint16_to_bfloat16_scalbn(uint16_t a, int, float_status *status);
bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int, float_status *status);
bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int, float_status *status);

bfloat16 int16_to_bfloat16(int16_t a, float_status *status);
bfloat16 int32_to_bfloat16(int32_t a, float_status *status);
bfloat16 int64_to_bfloat16(int64_t a, float_status *status);
bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status);
bfloat16 uint32_to_bfloat16(uint32_t a, float_status *status);
bfloat16 uint64_to_bfloat16(uint64_t a, float_status *status);

/*----------------------------------------------------------------------------
| Software bfloat16 operations.
*----------------------------------------------------------------------------*/

bfloat16 bfloat16_add(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_sub(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_mul(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_div(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_muladd(bfloat16, bfloat16, bfloat16, int,
                         float_status *status);
float16 bfloat16_scalbn(bfloat16, int, float_status *status);
bfloat16 bfloat16_min(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_max(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_minnum(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_maxnum(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_minnummag(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_maxnummag(bfloat16, bfloat16, float_status *status);
bfloat16 bfloat16_sqrt(bfloat16, float_status *status);
FloatRelation bfloat16_compare(bfloat16, bfloat16, float_status *status);
FloatRelation bfloat16_compare_quiet(bfloat16, bfloat16, float_status *status);

bool bfloat16_is_quiet_nan(bfloat16, float_status *status);
bool bfloat16_is_signaling_nan(bfloat16, float_status *status);
bfloat16 bfloat16_silence_nan(bfloat16, float_status *status);
bfloat16 bfloat16_default_nan(float_status *status);

static inline bool bfloat16_is_any_nan(bfloat16 a)
{
    return ((a & ~0x8000) > 0x7F80);
}

static inline bool bfloat16_is_neg(bfloat16 a)
{
    return a >> 15;
}

static inline bool bfloat16_is_infinity(bfloat16 a)
{
    return (a & 0x7fff) == 0x7F80;
}

static inline bool bfloat16_is_zero(bfloat16 a)
{
    return (a & 0x7fff) == 0;
}

static inline bool bfloat16_is_zero_or_denormal(bfloat16 a)
{
    return (a & 0x7F80) == 0;
}

static inline bool bfloat16_is_normal(bfloat16 a)
{
    return (((a >> 7) + 1) & 0xff) >= 2;
}

static inline bfloat16 bfloat16_abs(bfloat16 a)
{
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return a & 0x7fff;
}

static inline bfloat16 bfloat16_chs(bfloat16 a)
{
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return a ^ 0x8000;
}

static inline bfloat16 bfloat16_set_sign(bfloat16 a, int sign)
{
    return (a & 0x7fff) | (sign << 15);
}

static inline bool bfloat16_eq(bfloat16 a, bfloat16 b, float_status *s)
{
    return bfloat16_compare(a, b, s) == float_relation_equal;
}

static inline bool bfloat16_le(bfloat16 a, bfloat16 b, float_status *s)
{
    return bfloat16_compare(a, b, s) <= float_relation_equal;
}

static inline bool bfloat16_lt(bfloat16 a, bfloat16 b, float_status *s)
{
    return bfloat16_compare(a, b, s) < float_relation_equal;
}

static inline bool bfloat16_unordered(bfloat16 a, bfloat16 b, float_status *s)
{
    return bfloat16_compare(a, b, s) == float_relation_unordered;
}

static inline bool bfloat16_eq_quiet(bfloat16 a, bfloat16 b, float_status *s)
{
    return bfloat16_compare_quiet(a, b, s) == float_relation_equal;
}

static inline bool bfloat16_le_quiet(bfloat16 a, bfloat16 b, float_status *s)
{
    return bfloat16_compare_quiet(a, b, s) <= float_relation_equal;
}

static inline bool bfloat16_lt_quiet(bfloat16 a, bfloat16 b, float_status *s)
{
    return bfloat16_compare_quiet(a, b, s) < float_relation_equal;
}

static inline bool bfloat16_unordered_quiet(bfloat16 a, bfloat16 b,
                                           float_status *s)
{
    return bfloat16_compare_quiet(a, b, s) == float_relation_unordered;
}

#define bfloat16_zero 0
#define bfloat16_half 0x3f00
#define bfloat16_one 0x3f80
#define bfloat16_one_point_five 0x3fc0
#define bfloat16_two 0x4000
#define bfloat16_three 0x4040
#define bfloat16_infinity 0x7f80

/*----------------------------------------------------------------------------
| The pattern for a default generated half-precision NaN.
*----------------------------------------------------------------------------*/
float16 float16_default_nan(float_status *status);

/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/

int16_t float32_to_int16_scalbn(float32, FloatRoundMode, int, float_status *);
int32_t float32_to_int32_scalbn(float32, FloatRoundMode, int, float_status *);
int64_t float32_to_int64_scalbn(float32, FloatRoundMode, int, float_status *);

int16_t float32_to_int16(float32, float_status *status);
int32_t float32_to_int32(float32, float_status *status);
int64_t float32_to_int64(float32, float_status *status);

int16_t float32_to_int16_round_to_zero(float32, float_status *status);
int32_t float32_to_int32_round_to_zero(float32, float_status *status);
int64_t float32_to_int64_round_to_zero(float32, float_status *status);

uint16_t float32_to_uint16_scalbn(float32, FloatRoundMode, int, float_status *);
uint32_t float32_to_uint32_scalbn(float32, FloatRoundMode, int, float_status *);
uint64_t float32_to_uint64_scalbn(float32, FloatRoundMode, int, float_status *);

uint16_t float32_to_uint16(float32, float_status *status);
uint32_t float32_to_uint32(float32, float_status *status);
uint64_t float32_to_uint64(float32, float_status *status);

uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);

float64 float32_to_float64(float32, float_status *status);
floatx80 float32_to_floatx80(float32, float_status *status);
float128 float32_to_float128(float32, float_status *status);

/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int(float32, float_status *status);
float32 float32_add(float32, float32, float_status *status);
float32 float32_sub(float32, float32, float_status *status);
float32 float32_mul(float32, float32, float_status *status);
float32 float32_div(float32, float32, float_status *status);
float32 float32_rem(float32, float32, float_status *status);
float32 float32_muladd(float32, float32, float32, int, float_status *status);
float32 float32_sqrt(float32, float_status *status);
float32 float32_exp2(float32, float_status *status);
float32 float32_log2(float32, float_status *status);
FloatRelation float32_compare(float32, float32, float_status *status);
FloatRelation float32_compare_quiet(float32, float32, float_status *status);
float32 float32_min(float32, float32, float_status *status);
float32 float32_max(float32, float32, float_status *status);
float32 float32_minnum(float32, float32, float_status *status);
float32 float32_maxnum(float32, float32, float_status *status);
float32 float32_minnummag(float32, float32, float_status *status);
float32 float32_maxnummag(float32, float32, float_status *status);
bool float32_is_quiet_nan(float32, float_status *status);
bool float32_is_signaling_nan(float32, float_status *status);
float32 float32_silence_nan(float32, float_status *status);
float32 float32_scalbn(float32, int, float_status *status);

static inline float32 float32_abs(float32 a)
{
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float32(float32_val(a) & 0x7fffffff);
}

static inline float32 float32_chs(float32 a)
{
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float32(float32_val(a) ^ 0x80000000);
}

static inline bool float32_is_infinity(float32 a)
{
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
}

static inline bool float32_is_neg(float32 a)
{
    return float32_val(a) >> 31;
}

static inline bool float32_is_zero(float32 a)
{
    return (float32_val(a) & 0x7fffffff) == 0;
}

static inline bool float32_is_any_nan(float32 a)
{
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
}

static inline bool float32_is_zero_or_denormal(float32 a)
{
    return (float32_val(a) & 0x7f800000) == 0;
}

static inline bool float32_is_normal(float32 a)
{
    return (((float32_val(a) >> 23) + 1) & 0xff) >= 2;
}

static inline bool float32_is_denormal(float32 a)
{
    return float32_is_zero_or_denormal(a) && !float32_is_zero(a);
}

static inline bool float32_is_zero_or_normal(float32 a)
{
    return float32_is_normal(a) || float32_is_zero(a);
}

static inline float32 float32_set_sign(float32 a, int sign)
{
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
}

static inline bool float32_eq(float32 a, float32 b, float_status *s)
{
    return float32_compare(a, b, s) == float_relation_equal;
}

static inline bool float32_le(float32 a, float32 b, float_status *s)
{
    return float32_compare(a, b, s) <= float_relation_equal;
}

static inline bool float32_lt(float32 a, float32 b, float_status *s)
{
    return float32_compare(a, b, s) < float_relation_equal;
}

static inline bool float32_unordered(float32 a, float32 b, float_status *s)
{
    return float32_compare(a, b, s) == float_relation_unordered;
}

static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s)
{
    return float32_compare_quiet(a, b, s) == float_relation_equal;
}

static inline bool float32_le_quiet(float32 a, float32 b, float_status *s)
{
    return float32_compare_quiet(a, b, s) <= float_relation_equal;
}

static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s)
{
    return float32_compare_quiet(a, b, s) < float_relation_equal;
}

static inline bool float32_unordered_quiet(float32 a, float32 b,
                                           float_status *s)
{
    return float32_compare_quiet(a, b, s) == float_relation_unordered;
}

#define float32_zero make_float32(0)
#define float32_half make_float32(0x3f000000)
#define float32_one make_float32(0x3f800000)
#define float32_one_point_five make_float32(0x3fc00000)
#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_infinity make_float32(0x7f800000)

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| single-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

static inline float32 packFloat32(bool zSign, int zExp, uint32_t zSig)
{
    return make_float32(
          (((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig);
}

/*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/
float32 float32_default_nan(float_status *status);

/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/

int16_t float64_to_int16_scalbn(float64, FloatRoundMode, int, float_status *);
int32_t float64_to_int32_scalbn(float64, FloatRoundMode, int, float_status *);
int64_t float64_to_int64_scalbn(float64, FloatRoundMode, int, float_status *);

int16_t float64_to_int16(float64, float_status *status);
int32_t float64_to_int32(float64, float_status *status);
int64_t float64_to_int64(float64, float_status *status);

int16_t float64_to_int16_round_to_zero(float64, float_status *status);
int32_t float64_to_int32_round_to_zero(float64, float_status *status);
int64_t float64_to_int64_round_to_zero(float64, float_status *status);

uint16_t float64_to_uint16_scalbn(float64, FloatRoundMode, int, float_status *);
uint32_t float64_to_uint32_scalbn(float64, FloatRoundMode, int, float_status *);
uint64_t float64_to_uint64_scalbn(float64, FloatRoundMode, int, float_status *);

uint16_t float64_to_uint16(float64, float_status *status);
uint32_t float64_to_uint32(float64, float_status *status);
uint64_t float64_to_uint64(float64, float_status *status);

uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
uint64_t float64_to_uint64_round_to_zero(float64, float_status *status);

float32 float64_to_float32(float64, float_status *status);
floatx80 float64_to_floatx80(float64, float_status *status);
float128 float64_to_float128(float64, float_status *status);

/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
float64 float64_round_to_int(float64, float_status *status);
float64 float64_add(float64, float64, float_status *status);
float64 float64_sub(float64, float64, float_status *status);
float64 float64_mul(float64, float64, float_status *status);
float64 float64_div(float64, float64, float_status *status);
float64 float64_rem(float64, float64, float_status *status);
float64 float64_muladd(float64, float64, float64, int, float_status *status);
float64 float64_sqrt(float64, float_status *status);
float64 float64_log2(float64, float_status *status);
FloatRelation float64_compare(float64, float64, float_status *status);
FloatRelation float64_compare_quiet(float64, float64, float_status *status);
float64 float64_min(float64, float64, float_status *status);
float64 float64_max(float64, float64, float_status *status);
float64 float64_minnum(float64, float64, float_status *status);
float64 float64_maxnum(float64, float64, float_status *status);
float64 float64_minnummag(float64, float64, float_status *status);
float64 float64_maxnummag(float64, float64, float_status *status);
bool float64_is_quiet_nan(float64 a, float_status *status);
bool float64_is_signaling_nan(float64, float_status *status);
float64 float64_silence_nan(float64, float_status *status);
float64 float64_scalbn(float64, int, float_status *status);

static inline float64 float64_abs(float64 a)
{
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
}

static inline float64 float64_chs(float64 a)
{
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
}

static inline bool float64_is_infinity(float64 a)
{
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
}

static inline bool float64_is_neg(float64 a)
{
    return float64_val(a) >> 63;
}

static inline bool float64_is_zero(float64 a)
{
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
}

static inline bool float64_is_any_nan(float64 a)
{
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
}

static inline bool float64_is_zero_or_denormal(float64 a)
{
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
}

static inline bool float64_is_normal(float64 a)
{
    return (((float64_val(a) >> 52) + 1) & 0x7ff) >= 2;
}

static inline bool float64_is_denormal(float64 a)
{
    return float64_is_zero_or_denormal(a) && !float64_is_zero(a);
}

static inline bool float64_is_zero_or_normal(float64 a)
{
    return float64_is_normal(a) || float64_is_zero(a);
}

static inline float64 float64_set_sign(float64 a, int sign)
{
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
                        | ((int64_t)sign << 63));
}

static inline bool float64_eq(float64 a, float64 b, float_status *s)
{
    return float64_compare(a, b, s) == float_relation_equal;
}

static inline bool float64_le(float64 a, float64 b, float_status *s)
{
    return float64_compare(a, b, s) <= float_relation_equal;
}

static inline bool float64_lt(float64 a, float64 b, float_status *s)
{
    return float64_compare(a, b, s) < float_relation_equal;
}

static inline bool float64_unordered(float64 a, float64 b, float_status *s)
{
    return float64_compare(a, b, s) == float_relation_unordered;
}

static inline bool float64_eq_quiet(float64 a, float64 b, float_status *s)
{
    return float64_compare_quiet(a, b, s) == float_relation_equal;
}

static inline bool float64_le_quiet(float64 a, float64 b, float_status *s)
{
    return float64_compare_quiet(a, b, s) <= float_relation_equal;
}

static inline bool float64_lt_quiet(float64 a, float64 b, float_status *s)
{
    return float64_compare_quiet(a, b, s) < float_relation_equal;
}

static inline bool float64_unordered_quiet(float64 a, float64 b,
                                           float_status *s)
{
    return float64_compare_quiet(a, b, s) == float_relation_unordered;
}

#define float64_zero make_float64(0)
#define float64_half make_float64(0x3fe0000000000000LL)
#define float64_one make_float64(0x3ff0000000000000LL)
#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
#define float64_two make_float64(0x4000000000000000ULL)
#define float64_three make_float64(0x4008000000000000ULL)
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
#define float64_infinity make_float64(0x7ff0000000000000LL)

/*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/
float64 float64_default_nan(float_status *status);

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int32_t floatx80_to_int32(floatx80, float_status *status);
int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
int64_t floatx80_to_int64(floatx80, float_status *status);
int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
float32 floatx80_to_float32(floatx80, float_status *status);
float64 floatx80_to_float64(floatx80, float_status *status);
float128 floatx80_to_float128(floatx80, float_status *status);

/*----------------------------------------------------------------------------
| The pattern for an extended double-precision inf.
*----------------------------------------------------------------------------*/
extern const floatx80 floatx80_infinity;

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round(floatx80 a, float_status *status);
floatx80 floatx80_round_to_int(floatx80, float_status *status);
floatx80 floatx80_add(floatx80, floatx80, float_status *status);
floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
floatx80 floatx80_div(floatx80, floatx80, float_status *status);
floatx80 floatx80_modrem(floatx80, floatx80, bool, uint64_t *,
                         float_status *status);
floatx80 floatx80_mod(floatx80, floatx80, float_status *status);
floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
floatx80 floatx80_sqrt(floatx80, float_status *status);
FloatRelation floatx80_compare(floatx80, floatx80, float_status *status);
FloatRelation floatx80_compare_quiet(floatx80, floatx80, float_status *status);
int floatx80_is_quiet_nan(floatx80, float_status *status);
int floatx80_is_signaling_nan(floatx80, float_status *status);
floatx80 floatx80_silence_nan(floatx80, float_status *status);
floatx80 floatx80_scalbn(floatx80, int, float_status *status);

static inline floatx80 floatx80_abs(floatx80 a)
{
    a.high &= 0x7fff;
    return a;
}

static inline floatx80 floatx80_chs(floatx80 a)
{
    a.high ^= 0x8000;
    return a;
}

static inline bool floatx80_is_infinity(floatx80 a)
{
#if defined(TARGET_M68K)
    return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1);
#else
    return (a.high & 0x7fff) == floatx80_infinity.high &&
                       a.low == floatx80_infinity.low;
#endif
}

static inline bool floatx80_is_neg(floatx80 a)
{
    return a.high >> 15;
}

static inline bool floatx80_is_zero(floatx80 a)
{
    return (a.high & 0x7fff) == 0 && a.low == 0;
}

static inline bool floatx80_is_zero_or_denormal(floatx80 a)
{
    return (a.high & 0x7fff) == 0;
}

static inline bool floatx80_is_any_nan(floatx80 a)
{
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
}

static inline bool floatx80_eq(floatx80 a, floatx80 b, float_status *s)
{
    return floatx80_compare(a, b, s) == float_relation_equal;
}

static inline bool floatx80_le(floatx80 a, floatx80 b, float_status *s)
{
    return floatx80_compare(a, b, s) <= float_relation_equal;
}

static inline bool floatx80_lt(floatx80 a, floatx80 b, float_status *s)
{
    return floatx80_compare(a, b, s) < float_relation_equal;
}

static inline bool floatx80_unordered(floatx80 a, floatx80 b, float_status *s)
{
    return floatx80_compare(a, b, s) == float_relation_unordered;
}

static inline bool floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *s)
{
    return floatx80_compare_quiet(a, b, s) == float_relation_equal;
}

static inline bool floatx80_le_quiet(floatx80 a, floatx80 b, float_status *s)
{
    return floatx80_compare_quiet(a, b, s) <= float_relation_equal;
}

static inline bool floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *s)
{
    return floatx80_compare_quiet(a, b, s) < float_relation_equal;
}

static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b,
                                           float_status *s)
{
    return floatx80_compare_quiet(a, b, s) == float_relation_unordered;
}

/*----------------------------------------------------------------------------
| Return whether the given value is an invalid floatx80 encoding.
| Invalid floatx80 encodings arise when the integer bit is not set, but
| the exponent is not zero. The only times the integer bit is permitted to
| be zero is in subnormal numbers and the value zero.
| This includes what the Intel software developer's manual calls pseudo-NaNs,
| pseudo-infinities and un-normal numbers. It does not include
| pseudo-denormals, which must still be correctly handled as inputs even
| if they are never generated as outputs.
*----------------------------------------------------------------------------*/
static inline bool floatx80_invalid_encoding(floatx80 a)
{
#if defined(TARGET_M68K)
    /*-------------------------------------------------------------------------
    | With m68k, the explicit integer bit can be zero in the case of:
    | - zeros                (exp == 0, mantissa == 0)
    | - denormalized numbers (exp == 0, mantissa != 0)
    | - unnormalized numbers (exp != 0, exp < 0x7FFF)
    | - infinities           (exp == 0x7FFF, mantissa == 0)
    | - not-a-numbers        (exp == 0x7FFF, mantissa != 0)
    |
    | For infinities and NaNs, the explicit integer bit can be either one or
    | zero.
    |
    | The IEEE 754 standard does not define a zero integer bit. Such a number
    | is an unnormalized number. Hardware does not directly support
    | denormalized and unnormalized numbers, but implicitly supports them by
    | trapping them as unimplemented data types, allowing efficient conversion
    | in software.
    |
    | See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL",
    |     "1.6 FLOATING-POINT DATA TYPES"
    *------------------------------------------------------------------------*/
    return false;
#else
    return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
#endif
}

#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
#define floatx80_zero_init make_floatx80_init(0x0000, 0x0000000000000000LL)
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)

/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloatx80Frac(floatx80 a)
{
    return a.low;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

static inline int32_t extractFloatx80Exp(floatx80 a)
{
    return a.high & 0x7FFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

static inline bool extractFloatx80Sign(floatx80 a)
{
    return a.high >> 15;
}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

static inline floatx80 packFloatx80(bool zSign, int32_t zExp, uint64_t zSig)
{
    floatx80 z;

    z.low = zSig;
    z.high = (((uint16_t)zSign) << 15) + zExp;
    return z;
}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr);

/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status);

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 roundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status);

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

floatx80 normalizeRoundAndPackFloatx80(FloatX80RoundPrec roundingPrecision,
                                       bool zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status);

/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN.
*----------------------------------------------------------------------------*/
floatx80 floatx80_default_nan(float_status *status);

/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision conversion routines.
*----------------------------------------------------------------------------*/
int32_t float128_to_int32(float128, float_status *status);
int32_t float128_to_int32_round_to_zero(float128, float_status *status);
int64_t float128_to_int64(float128, float_status *status);
int64_t float128_to_int64_round_to_zero(float128, float_status *status);
uint64_t float128_to_uint64(float128, float_status *status);
uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
uint32_t float128_to_uint32(float128, float_status *status);
uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
float32 float128_to_float32(float128, float_status *status);
float64 float128_to_float64(float128, float_status *status);
floatx80 float128_to_floatx80(float128, float_status *status);

/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision operations.
*----------------------------------------------------------------------------*/
float128 float128_round_to_int(float128, float_status *status);
float128 float128_add(float128, float128, float_status *status);
float128 float128_sub(float128, float128, float_status *status);
float128 float128_mul(float128, float128, float_status *status);
float128 float128_muladd(float128, float128, float128, int,
                         float_status *status);
float128 float128_div(float128, float128, float_status *status);
float128 float128_rem(float128, float128, float_status *status);
float128 float128_sqrt(float128, float_status *status);
FloatRelation float128_compare(float128, float128, float_status *status);
FloatRelation float128_compare_quiet(float128, float128, float_status *status);
float128 float128_min(float128, float128, float_status *status);
float128 float128_max(float128, float128, float_status *status);
float128 float128_minnum(float128, float128, float_status *status);
float128 float128_maxnum(float128, float128, float_status *status);
float128 float128_minnummag(float128, float128, float_status *status);
float128 float128_maxnummag(float128, float128, float_status *status);
bool float128_is_quiet_nan(float128, float_status *status);
bool float128_is_signaling_nan(float128, float_status *status);
float128 float128_silence_nan(float128, float_status *status);
float128 float128_scalbn(float128, int, float_status *status);

static inline float128 float128_abs(float128 a)
{
    a.high &= 0x7fffffffffffffffLL;
    return a;
}

static inline float128 float128_chs(float128 a)
{
    a.high ^= 0x8000000000000000LL;
    return a;
}

static inline bool float128_is_infinity(float128 a)
{
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
}

static inline bool float128_is_neg(float128 a)
{
    return a.high >> 63;
}

static inline bool float128_is_zero(float128 a)
{
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
}

static inline bool float128_is_zero_or_denormal(float128 a)
{
    return (a.high & 0x7fff000000000000LL) == 0;
}

static inline bool float128_is_normal(float128 a)
{
    return (((a.high >> 48) + 1) & 0x7fff) >= 2;
}

static inline bool float128_is_denormal(float128 a)
{
    return float128_is_zero_or_denormal(a) && !float128_is_zero(a);
}

static inline bool float128_is_any_nan(float128 a)
{
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
}

static inline bool float128_eq(float128 a, float128 b, float_status *s)
{
    return float128_compare(a, b, s) == float_relation_equal;
}

static inline bool float128_le(float128 a, float128 b, float_status *s)
{
    return float128_compare(a, b, s) <= float_relation_equal;
}

static inline bool float128_lt(float128 a, float128 b, float_status *s)
{
    return float128_compare(a, b, s) < float_relation_equal;
}

static inline bool float128_unordered(float128 a, float128 b, float_status *s)
{
    return float128_compare(a, b, s) == float_relation_unordered;
}

static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s)
{
    return float128_compare_quiet(a, b, s) == float_relation_equal;
}

static inline bool float128_le_quiet(float128 a, float128 b, float_status *s)
{
    return float128_compare_quiet(a, b, s) <= float_relation_equal;
}

static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s)
{
    return float128_compare_quiet(a, b, s) < float_relation_equal;
}

static inline bool float128_unordered_quiet(float128 a, float128 b,
                                           float_status *s)
{
    return float128_compare_quiet(a, b, s) == float_relation_unordered;
}

#define float128_zero make_float128(0, 0)

/*----------------------------------------------------------------------------
| The pattern for a default generated quadruple-precision NaN.
*----------------------------------------------------------------------------*/
float128 float128_default_nan(float_status *status);

#endif /* SOFTFLOAT_H */