/* * ASPEED Hash and Crypto Engine * * Copyright (C) 2021 IBM Corp. * * Joel Stanley * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "hw/misc/aspeed_hace.h" #include "qapi/error.h" #include "migration/vmstate.h" #include "crypto/hash.h" #include "hw/qdev-properties.h" #include "hw/irq.h" #define R_CRYPT_CMD (0x10 / 4) #define R_STATUS (0x1c / 4) #define HASH_IRQ BIT(9) #define CRYPT_IRQ BIT(12) #define TAG_IRQ BIT(15) #define R_HASH_SRC (0x20 / 4) #define R_HASH_DEST (0x24 / 4) #define R_HASH_KEY_BUFF (0x28 / 4) #define R_HASH_SRC_LEN (0x2c / 4) #define R_HASH_CMD (0x30 / 4) /* Hash algorithm selection */ #define HASH_ALGO_MASK (BIT(4) | BIT(5) | BIT(6)) #define HASH_ALGO_MD5 0 #define HASH_ALGO_SHA1 BIT(5) #define HASH_ALGO_SHA224 BIT(6) #define HASH_ALGO_SHA256 (BIT(4) | BIT(6)) #define HASH_ALGO_SHA512_SERIES (BIT(5) | BIT(6)) /* SHA512 algorithm selection */ #define SHA512_HASH_ALGO_MASK (BIT(10) | BIT(11) | BIT(12)) #define HASH_ALGO_SHA512_SHA512 0 #define HASH_ALGO_SHA512_SHA384 BIT(10) #define HASH_ALGO_SHA512_SHA256 BIT(11) #define HASH_ALGO_SHA512_SHA224 (BIT(10) | BIT(11)) /* HMAC modes */ #define HASH_HMAC_MASK (BIT(7) | BIT(8)) #define HASH_DIGEST 0 #define HASH_DIGEST_HMAC BIT(7) #define HASH_DIGEST_ACCUM BIT(8) #define HASH_HMAC_KEY (BIT(7) | BIT(8)) /* Cascaded operation modes */ #define HASH_ONLY 0 #define HASH_ONLY2 BIT(0) #define HASH_CRYPT_THEN_HASH BIT(1) #define HASH_HASH_THEN_CRYPT (BIT(0) | BIT(1)) /* Other cmd bits */ #define HASH_IRQ_EN BIT(9) #define HASH_SG_EN BIT(18) /* Scatter-gather data list */ #define SG_LIST_LEN_SIZE 4 #define SG_LIST_LEN_MASK 0x0FFFFFFF #define SG_LIST_LEN_LAST BIT(31) #define SG_LIST_ADDR_SIZE 4 #define SG_LIST_ADDR_MASK 0x7FFFFFFF #define SG_LIST_ENTRY_SIZE (SG_LIST_LEN_SIZE + SG_LIST_ADDR_SIZE) static const struct { uint32_t mask; QCryptoHashAlgorithm algo; } hash_algo_map[] = { { HASH_ALGO_MD5, QCRYPTO_HASH_ALG_MD5 }, { HASH_ALGO_SHA1, QCRYPTO_HASH_ALG_SHA1 }, { HASH_ALGO_SHA224, QCRYPTO_HASH_ALG_SHA224 }, { HASH_ALGO_SHA256, QCRYPTO_HASH_ALG_SHA256 }, { HASH_ALGO_SHA512_SERIES | HASH_ALGO_SHA512_SHA512, QCRYPTO_HASH_ALG_SHA512 }, { HASH_ALGO_SHA512_SERIES | HASH_ALGO_SHA512_SHA384, QCRYPTO_HASH_ALG_SHA384 }, { HASH_ALGO_SHA512_SERIES | HASH_ALGO_SHA512_SHA256, QCRYPTO_HASH_ALG_SHA256 }, }; static int hash_algo_lookup(uint32_t reg) { int i; reg &= HASH_ALGO_MASK | SHA512_HASH_ALGO_MASK; for (i = 0; i < ARRAY_SIZE(hash_algo_map); i++) { if (reg == hash_algo_map[i].mask) { return hash_algo_map[i].algo; } } return -1; } /** * Check whether the request contains padding message. * * @param s aspeed hace state object * @param iov iov of current request * @param req_len length of the current request * @param total_msg_len length of all acc_mode requests(excluding padding msg) * @param pad_offset start offset of padding message */ static bool has_padding(AspeedHACEState *s, struct iovec *iov, hwaddr req_len, uint32_t *total_msg_len, uint32_t *pad_offset) { *total_msg_len = (uint32_t)(ldq_be_p(iov->iov_base + req_len - 8) / 8); /* * SG_LIST_LEN_LAST asserted in the request length doesn't mean it is the * last request. The last request should contain padding message. * We check whether message contains padding by * 1. Get total message length. If the current message contains * padding, the last 8 bytes are total message length. * 2. Check whether the total message length is valid. * If it is valid, the value should less than or equal to * total_req_len. * 3. Current request len - padding_size to get padding offset. * The padding message's first byte should be 0x80 */ if (*total_msg_len <= s->total_req_len) { uint32_t padding_size = s->total_req_len - *total_msg_len; uint8_t *padding = iov->iov_base; *pad_offset = req_len - padding_size; if (padding[*pad_offset] == 0x80) { return true; } } return false; } static int reconstruct_iov(AspeedHACEState *s, struct iovec *iov, int id, uint32_t *pad_offset) { int i, iov_count; if (*pad_offset != 0) { s->iov_cache[s->iov_count].iov_base = iov[id].iov_base; s->iov_cache[s->iov_count].iov_len = *pad_offset; ++s->iov_count; } for (i = 0; i < s->iov_count; i++) { iov[i].iov_base = s->iov_cache[i].iov_base; iov[i].iov_len = s->iov_cache[i].iov_len; } iov_count = s->iov_count; s->iov_count = 0; s->total_req_len = 0; return iov_count; } /** * Generate iov for accumulative mode. * * @param s aspeed hace state object * @param iov iov of the current request * @param id index of the current iov * @param req_len length of the current request * * @return count of iov */ static int gen_acc_mode_iov(AspeedHACEState *s, struct iovec *iov, int id, hwaddr *req_len) { uint32_t pad_offset; uint32_t total_msg_len; s->total_req_len += *req_len; if (has_padding(s, &iov[id], *req_len, &total_msg_len, &pad_offset)) { if (s->iov_count) { return reconstruct_iov(s, iov, id, &pad_offset); } *req_len -= s->total_req_len - total_msg_len; s->total_req_len = 0; iov[id].iov_len = *req_len; } else { s->iov_cache[s->iov_count].iov_base = iov->iov_base; s->iov_cache[s->iov_count].iov_len = *req_len; ++s->iov_count; } return id + 1; } static void do_hash_operation(AspeedHACEState *s, int algo, bool sg_mode, bool acc_mode) { struct iovec iov[ASPEED_HACE_MAX_SG]; g_autofree uint8_t *digest_buf = NULL; size_t digest_len = 0; int niov = 0; int i; void *haddr; if (sg_mode) { uint32_t len = 0; for (i = 0; !(len & SG_LIST_LEN_LAST); i++) { uint32_t addr, src; hwaddr plen; if (i == ASPEED_HACE_MAX_SG) { qemu_log_mask(LOG_GUEST_ERROR, "aspeed_hace: guest failed to set end of sg list marker\n"); break; } src = s->regs[R_HASH_SRC] + (i * SG_LIST_ENTRY_SIZE); len = address_space_ldl_le(&s->dram_as, src, MEMTXATTRS_UNSPECIFIED, NULL); addr = address_space_ldl_le(&s->dram_as, src + SG_LIST_LEN_SIZE, MEMTXATTRS_UNSPECIFIED, NULL); addr &= SG_LIST_ADDR_MASK; plen = len & SG_LIST_LEN_MASK; haddr = address_space_map(&s->dram_as, addr, &plen, false, MEMTXATTRS_UNSPECIFIED); if (haddr == NULL) { qemu_log_mask(LOG_GUEST_ERROR, "%s: qcrypto failed\n", __func__); return; } iov[i].iov_base = haddr; if (acc_mode) { niov = gen_acc_mode_iov(s, iov, i, &plen); } else { iov[i].iov_len = plen; } } } else { hwaddr len = s->regs[R_HASH_SRC_LEN]; haddr = address_space_map(&s->dram_as, s->regs[R_HASH_SRC], &len, false, MEMTXATTRS_UNSPECIFIED); if (haddr == NULL) { qemu_log_mask(LOG_GUEST_ERROR, "%s: qcrypto failed\n", __func__); return; } iov[0].iov_base = haddr; iov[0].iov_len = len; i = 1; if (s->iov_count) { /* * In aspeed sdk kernel driver, sg_mode is disabled in hash_final(). * Thus if we received a request with sg_mode disabled, it is * required to check whether cache is empty. If no, we should * combine cached iov and the current iov. */ uint32_t total_msg_len; uint32_t pad_offset; s->total_req_len += len; if (has_padding(s, iov, len, &total_msg_len, &pad_offset)) { niov = reconstruct_iov(s, iov, 0, &pad_offset); } } } if (niov) { i = niov; } if (qcrypto_hash_bytesv(algo, iov, i, &digest_buf, &digest_len, NULL) < 0) { qemu_log_mask(LOG_GUEST_ERROR, "%s: qcrypto failed\n", __func__); return; } if (address_space_write(&s->dram_as, s->regs[R_HASH_DEST], MEMTXATTRS_UNSPECIFIED, digest_buf, digest_len)) { qemu_log_mask(LOG_GUEST_ERROR, "aspeed_hace: address space write failed\n"); } for (; i > 0; i--) { address_space_unmap(&s->dram_as, iov[i - 1].iov_base, iov[i - 1].iov_len, false, iov[i - 1].iov_len); } /* * Set status bits to indicate completion. Testing shows hardware sets * these irrespective of HASH_IRQ_EN. */ s->regs[R_STATUS] |= HASH_IRQ; } static uint64_t aspeed_hace_read(void *opaque, hwaddr addr, unsigned int size) { AspeedHACEState *s = ASPEED_HACE(opaque); addr >>= 2; if (addr >= ASPEED_HACE_NR_REGS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Out-of-bounds read at offset 0x%" HWADDR_PRIx "\n", __func__, addr << 2); return 0; } return s->regs[addr]; } static void aspeed_hace_write(void *opaque, hwaddr addr, uint64_t data, unsigned int size) { AspeedHACEState *s = ASPEED_HACE(opaque); AspeedHACEClass *ahc = ASPEED_HACE_GET_CLASS(s); addr >>= 2; if (addr >= ASPEED_HACE_NR_REGS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Out-of-bounds write at offset 0x%" HWADDR_PRIx "\n", __func__, addr << 2); return; } switch (addr) { case R_STATUS: if (data & HASH_IRQ) { data &= ~HASH_IRQ; if (s->regs[addr] & HASH_IRQ) { qemu_irq_lower(s->irq); } } break; case R_HASH_SRC: data &= ahc->src_mask; break; case R_HASH_DEST: data &= ahc->dest_mask; break; case R_HASH_KEY_BUFF: data &= ahc->key_mask; break; case R_HASH_SRC_LEN: data &= 0x0FFFFFFF; break; case R_HASH_CMD: { int algo; data &= ahc->hash_mask; if ((data & HASH_DIGEST_HMAC)) { qemu_log_mask(LOG_UNIMP, "%s: HMAC mode not implemented\n", __func__); } if (data & BIT(1)) { qemu_log_mask(LOG_UNIMP, "%s: Cascaded mode not implemented\n", __func__); } algo = hash_algo_lookup(data); if (algo < 0) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid hash algorithm selection 0x%"PRIx64"\n", __func__, data & ahc->hash_mask); break; } do_hash_operation(s, algo, data & HASH_SG_EN, ((data & HASH_HMAC_MASK) == HASH_DIGEST_ACCUM)); if (data & HASH_IRQ_EN) { qemu_irq_raise(s->irq); } break; } case R_CRYPT_CMD: qemu_log_mask(LOG_UNIMP, "%s: Crypt commands not implemented\n", __func__); break; default: break; } s->regs[addr] = data; } static const MemoryRegionOps aspeed_hace_ops = { .read = aspeed_hace_read, .write = aspeed_hace_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4, }, }; static void aspeed_hace_reset(DeviceState *dev) { struct AspeedHACEState *s = ASPEED_HACE(dev); memset(s->regs, 0, sizeof(s->regs)); s->iov_count = 0; s->total_req_len = 0; } static void aspeed_hace_realize(DeviceState *dev, Error **errp) { AspeedHACEState *s = ASPEED_HACE(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); sysbus_init_irq(sbd, &s->irq); memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_hace_ops, s, TYPE_ASPEED_HACE, 0x1000); if (!s->dram_mr) { error_setg(errp, TYPE_ASPEED_HACE ": 'dram' link not set"); return; } address_space_init(&s->dram_as, s->dram_mr, "dram"); sysbus_init_mmio(sbd, &s->iomem); } static Property aspeed_hace_properties[] = { DEFINE_PROP_LINK("dram", AspeedHACEState, dram_mr, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vmstate_aspeed_hace = { .name = TYPE_ASPEED_HACE, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, AspeedHACEState, ASPEED_HACE_NR_REGS), VMSTATE_UINT32(total_req_len, AspeedHACEState), VMSTATE_UINT32(iov_count, AspeedHACEState), VMSTATE_END_OF_LIST(), } }; static void aspeed_hace_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = aspeed_hace_realize; dc->reset = aspeed_hace_reset; device_class_set_props(dc, aspeed_hace_properties); dc->vmsd = &vmstate_aspeed_hace; } static const TypeInfo aspeed_hace_info = { .name = TYPE_ASPEED_HACE, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(AspeedHACEState), .class_init = aspeed_hace_class_init, .class_size = sizeof(AspeedHACEClass) }; static void aspeed_ast2400_hace_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass); dc->desc = "AST2400 Hash and Crypto Engine"; ahc->src_mask = 0x0FFFFFFF; ahc->dest_mask = 0x0FFFFFF8; ahc->key_mask = 0x0FFFFFC0; ahc->hash_mask = 0x000003ff; /* No SG or SHA512 modes */ } static const TypeInfo aspeed_ast2400_hace_info = { .name = TYPE_ASPEED_AST2400_HACE, .parent = TYPE_ASPEED_HACE, .class_init = aspeed_ast2400_hace_class_init, }; static void aspeed_ast2500_hace_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass); dc->desc = "AST2500 Hash and Crypto Engine"; ahc->src_mask = 0x3fffffff; ahc->dest_mask = 0x3ffffff8; ahc->key_mask = 0x3FFFFFC0; ahc->hash_mask = 0x000003ff; /* No SG or SHA512 modes */ } static const TypeInfo aspeed_ast2500_hace_info = { .name = TYPE_ASPEED_AST2500_HACE, .parent = TYPE_ASPEED_HACE, .class_init = aspeed_ast2500_hace_class_init, }; static void aspeed_ast2600_hace_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass); dc->desc = "AST2600 Hash and Crypto Engine"; ahc->src_mask = 0x7FFFFFFF; ahc->dest_mask = 0x7FFFFFF8; ahc->key_mask = 0x7FFFFFF8; ahc->hash_mask = 0x00147FFF; } static const TypeInfo aspeed_ast2600_hace_info = { .name = TYPE_ASPEED_AST2600_HACE, .parent = TYPE_ASPEED_HACE, .class_init = aspeed_ast2600_hace_class_init, }; static void aspeed_ast1030_hace_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass); dc->desc = "AST1030 Hash and Crypto Engine"; ahc->src_mask = 0x7FFFFFFF; ahc->dest_mask = 0x7FFFFFF8; ahc->key_mask = 0x7FFFFFF8; ahc->hash_mask = 0x00147FFF; } static const TypeInfo aspeed_ast1030_hace_info = { .name = TYPE_ASPEED_AST1030_HACE, .parent = TYPE_ASPEED_HACE, .class_init = aspeed_ast1030_hace_class_init, }; static void aspeed_hace_register_types(void) { type_register_static(&aspeed_ast2400_hace_info); type_register_static(&aspeed_ast2500_hace_info); type_register_static(&aspeed_ast2600_hace_info); type_register_static(&aspeed_ast1030_hace_info); type_register_static(&aspeed_hace_info); } type_init(aspeed_hace_register_types);