aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJeff Law <law@cygnus.com>1997-08-06 19:57:47 +0000
committerJeff Law <law@cygnus.com>1997-08-06 19:57:47 +0000
commit5728e172278366c33316e3de7204bc3ccb293042 (patch)
tree4e65c90d8b4fc2c32b8b1f4b2cae3ee1d494b0c1
parent52f3353dcefbc7b1932aa23f13a0acf26a50628e (diff)
Initial revision
git-svn-id: https://gcc.gnu.org/svn/gcc/trunk@14676 138bc75d-0d04-0410-961f-82ee72b054a4
-rw-r--r--gcc/rtl.texi2840
1 files changed, 2840 insertions, 0 deletions
diff --git a/gcc/rtl.texi b/gcc/rtl.texi
new file mode 100644
index 00000000000..0fd89b27268
--- /dev/null
+++ b/gcc/rtl.texi
@@ -0,0 +1,2840 @@
+@c Copyright (C) 1988, 1989, 1992, 1994, 1997 Free Software Foundation, Inc.
+@c This is part of the GCC manual.
+@c For copying conditions, see the file gcc.texi.
+
+@node RTL
+@chapter RTL Representation
+@cindex RTL representation
+@cindex representation of RTL
+@cindex Register Transfer Language (RTL)
+
+Most of the work of the compiler is done on an intermediate representation
+called register transfer language. In this language, the instructions to be
+output are described, pretty much one by one, in an algebraic form that
+describes what the instruction does.
+
+RTL is inspired by Lisp lists. It has both an internal form, made up of
+structures that point at other structures, and a textual form that is used
+in the machine description and in printed debugging dumps. The textual
+form uses nested parentheses to indicate the pointers in the internal form.
+
+@menu
+* RTL Objects:: Expressions vs vectors vs strings vs integers.
+* Accessors:: Macros to access expression operands or vector elts.
+* Flags:: Other flags in an RTL expression.
+* Machine Modes:: Describing the size and format of a datum.
+* Constants:: Expressions with constant values.
+* Regs and Memory:: Expressions representing register contents or memory.
+* Arithmetic:: Expressions representing arithmetic on other expressions.
+* Comparisons:: Expressions representing comparison of expressions.
+* Bit Fields:: Expressions representing bitfields in memory or reg.
+* Conversions:: Extending, truncating, floating or fixing.
+* RTL Declarations:: Declaring volatility, constancy, etc.
+* Side Effects:: Expressions for storing in registers, etc.
+* Incdec:: Embedded side-effects for autoincrement addressing.
+* Assembler:: Representing @code{asm} with operands.
+* Insns:: Expression types for entire insns.
+* Calls:: RTL representation of function call insns.
+* Sharing:: Some expressions are unique; others *must* be copied.
+* Reading RTL:: Reading textual RTL from a file.
+@end menu
+
+@node RTL Objects, Accessors, RTL, RTL
+@section RTL Object Types
+@cindex RTL object types
+
+@cindex RTL integers
+@cindex RTL strings
+@cindex RTL vectors
+@cindex RTL expression
+@cindex RTX (See RTL)
+RTL uses five kinds of objects: expressions, integers, wide integers,
+strings and vectors. Expressions are the most important ones. An RTL
+expression (``RTX'', for short) is a C structure, but it is usually
+referred to with a pointer; a type that is given the typedef name
+@code{rtx}.
+
+An integer is simply an @code{int}; their written form uses decimal digits.
+A wide integer is an integral object whose type is @code{HOST_WIDE_INT}
+(@pxref{Config}); their written form uses decimal digits.
+
+A string is a sequence of characters. In core it is represented as a
+@code{char *} in usual C fashion, and it is written in C syntax as well.
+However, strings in RTL may never be null. If you write an empty string in
+a machine description, it is represented in core as a null pointer rather
+than as a pointer to a null character. In certain contexts, these null
+pointers instead of strings are valid. Within RTL code, strings are most
+commonly found inside @code{symbol_ref} expressions, but they appear in
+other contexts in the RTL expressions that make up machine descriptions.
+
+A vector contains an arbitrary number of pointers to expressions. The
+number of elements in the vector is explicitly present in the vector.
+The written form of a vector consists of square brackets
+(@samp{[@dots{}]}) surrounding the elements, in sequence and with
+whitespace separating them. Vectors of length zero are not created;
+null pointers are used instead.
+
+@cindex expression codes
+@cindex codes, RTL expression
+@findex GET_CODE
+@findex PUT_CODE
+Expressions are classified by @dfn{expression codes} (also called RTX
+codes). The expression code is a name defined in @file{rtl.def}, which is
+also (in upper case) a C enumeration constant. The possible expression
+codes and their meanings are machine-independent. The code of an RTX can
+be extracted with the macro @code{GET_CODE (@var{x})} and altered with
+@code{PUT_CODE (@var{x}, @var{newcode})}.
+
+The expression code determines how many operands the expression contains,
+and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell
+by looking at an operand what kind of object it is. Instead, you must know
+from its context---from the expression code of the containing expression.
+For example, in an expression of code @code{subreg}, the first operand is
+to be regarded as an expression and the second operand as an integer. In
+an expression of code @code{plus}, there are two operands, both of which
+are to be regarded as expressions. In a @code{symbol_ref} expression,
+there is one operand, which is to be regarded as a string.
+
+Expressions are written as parentheses containing the name of the
+expression type, its flags and machine mode if any, and then the operands
+of the expression (separated by spaces).
+
+Expression code names in the @samp{md} file are written in lower case,
+but when they appear in C code they are written in upper case. In this
+manual, they are shown as follows: @code{const_int}.
+
+@cindex (nil)
+@cindex nil
+In a few contexts a null pointer is valid where an expression is normally
+wanted. The written form of this is @code{(nil)}.
+
+@node Accessors, Flags, RTL Objects, RTL
+@section Access to Operands
+@cindex accessors
+@cindex access to operands
+@cindex operand access
+
+@cindex RTL format
+For each expression type @file{rtl.def} specifies the number of
+contained objects and their kinds, with four possibilities: @samp{e} for
+expression (actually a pointer to an expression), @samp{i} for integer,
+@samp{w} for wide integer, @samp{s} for string, and @samp{E} for vector
+of expressions. The sequence of letters for an expression code is
+called its @dfn{format}. Thus, the format of @code{subreg} is
+@samp{ei}.@refill
+
+@cindex RTL format characters
+A few other format characters are used occasionally:
+
+@table @code
+@item u
+@samp{u} is equivalent to @samp{e} except that it is printed differently
+in debugging dumps. It is used for pointers to insns.
+
+@item n
+@samp{n} is equivalent to @samp{i} except that it is printed differently
+in debugging dumps. It is used for the line number or code number of a
+@code{note} insn.
+
+@item S
+@samp{S} indicates a string which is optional. In the RTL objects in
+core, @samp{S} is equivalent to @samp{s}, but when the object is read,
+from an @samp{md} file, the string value of this operand may be omitted.
+An omitted string is taken to be the null string.
+
+@item V
+@samp{V} indicates a vector which is optional. In the RTL objects in
+core, @samp{V} is equivalent to @samp{E}, but when the object is read
+from an @samp{md} file, the vector value of this operand may be omitted.
+An omitted vector is effectively the same as a vector of no elements.
+
+@item 0
+@samp{0} means a slot whose contents do not fit any normal category.
+@samp{0} slots are not printed at all in dumps, and are often used in
+special ways by small parts of the compiler.
+@end table
+
+There are macros to get the number of operands, the format, and the
+class of an expression code:
+
+@table @code
+@findex GET_RTX_LENGTH
+@item GET_RTX_LENGTH (@var{code})
+Number of operands of an RTX of code @var{code}.
+
+@findex GET_RTX_FORMAT
+@item GET_RTX_FORMAT (@var{code})
+The format of an RTX of code @var{code}, as a C string.
+
+@findex GET_RTX_CLASS
+@cindex classes of RTX codes
+@item GET_RTX_CLASS (@var{code})
+A single character representing the type of RTX operation that code
+@var{code} performs.
+
+The following classes are defined:
+
+@table @code
+@item o
+An RTX code that represents an actual object, such as @code{reg} or
+@code{mem}. @code{subreg} is not in this class.
+
+@item <
+An RTX code for a comparison. The codes in this class are
+@code{NE}, @code{EQ}, @code{LE}, @code{LT}, @code{GE}, @code{GT},
+@code{LEU}, @code{LTU}, @code{GEU}, @code{GTU}.@refill
+
+@item 1
+An RTX code for a unary arithmetic operation, such as @code{neg}.
+
+@item c
+An RTX code for a commutative binary operation, other than @code{NE}
+and @code{EQ} (which have class @samp{<}).
+
+@item 2
+An RTX code for a noncommutative binary operation, such as @code{MINUS}.
+
+@item b
+An RTX code for a bitfield operation, either @code{ZERO_EXTRACT} or
+@code{SIGN_EXTRACT}.
+
+@item 3
+An RTX code for other three input operations, such as @code{IF_THEN_ELSE}.
+
+@item i
+An RTX code for a machine insn (@code{INSN}, @code{JUMP_INSN}, and
+@code{CALL_INSN}).@refill
+
+@item m
+An RTX code for something that matches in insns, such as @code{MATCH_DUP}.
+
+@item x
+All other RTX codes.
+@end table
+@end table
+
+@findex XEXP
+@findex XINT
+@findex XWINT
+@findex XSTR
+Operands of expressions are accessed using the macros @code{XEXP},
+@code{XINT}, @code{XWINT} and @code{XSTR}. Each of these macros takes
+two arguments: an expression-pointer (RTX) and an operand number
+(counting from zero). Thus,@refill
+
+@example
+XEXP (@var{x}, 2)
+@end example
+
+@noindent
+accesses operand 2 of expression @var{x}, as an expression.
+
+@example
+XINT (@var{x}, 2)
+@end example
+
+@noindent
+accesses the same operand as an integer. @code{XSTR}, used in the same
+fashion, would access it as a string.
+
+Any operand can be accessed as an integer, as an expression or as a string.
+You must choose the correct method of access for the kind of value actually
+stored in the operand. You would do this based on the expression code of
+the containing expression. That is also how you would know how many
+operands there are.
+
+For example, if @var{x} is a @code{subreg} expression, you know that it has
+two operands which can be correctly accessed as @code{XEXP (@var{x}, 0)}
+and @code{XINT (@var{x}, 1)}. If you did @code{XINT (@var{x}, 0)}, you
+would get the address of the expression operand but cast as an integer;
+that might occasionally be useful, but it would be cleaner to write
+@code{(int) XEXP (@var{x}, 0)}. @code{XEXP (@var{x}, 1)} would also
+compile without error, and would return the second, integer operand cast as
+an expression pointer, which would probably result in a crash when
+accessed. Nothing stops you from writing @code{XEXP (@var{x}, 28)} either,
+but this will access memory past the end of the expression with
+unpredictable results.@refill
+
+Access to operands which are vectors is more complicated. You can use the
+macro @code{XVEC} to get the vector-pointer itself, or the macros
+@code{XVECEXP} and @code{XVECLEN} to access the elements and length of a
+vector.
+
+@table @code
+@findex XVEC
+@item XVEC (@var{exp}, @var{idx})
+Access the vector-pointer which is operand number @var{idx} in @var{exp}.
+
+@findex XVECLEN
+@item XVECLEN (@var{exp}, @var{idx})
+Access the length (number of elements) in the vector which is
+in operand number @var{idx} in @var{exp}. This value is an @code{int}.
+
+@findex XVECEXP
+@item XVECEXP (@var{exp}, @var{idx}, @var{eltnum})
+Access element number @var{eltnum} in the vector which is
+in operand number @var{idx} in @var{exp}. This value is an RTX.
+
+It is up to you to make sure that @var{eltnum} is not negative
+and is less than @code{XVECLEN (@var{exp}, @var{idx})}.
+@end table
+
+All the macros defined in this section expand into lvalues and therefore
+can be used to assign the operands, lengths and vector elements as well as
+to access them.
+
+@node Flags, Machine Modes, Accessors, RTL
+@section Flags in an RTL Expression
+@cindex flags in RTL expression
+
+RTL expressions contain several flags (one-bit bitfields) that are used
+in certain types of expression. Most often they are accessed with the
+following macros:
+
+@table @code
+@findex MEM_VOLATILE_P
+@cindex @code{mem} and @samp{/v}
+@cindex @code{volatil}, in @code{mem}
+@cindex @samp{/v} in RTL dump
+@item MEM_VOLATILE_P (@var{x})
+In @code{mem} expressions, nonzero for volatile memory references.
+Stored in the @code{volatil} field and printed as @samp{/v}.
+
+@findex MEM_IN_STRUCT_P
+@cindex @code{mem} and @samp{/s}
+@cindex @code{in_struct}, in @code{mem}
+@cindex @samp{/s} in RTL dump
+@item MEM_IN_STRUCT_P (@var{x})
+In @code{mem} expressions, nonzero for reference to an entire
+structure, union or array, or to a component of one. Zero for
+references to a scalar variable or through a pointer to a scalar.
+Stored in the @code{in_struct} field and printed as @samp{/s}.
+
+@findex REG_LOOP_TEST_P
+@cindex @code{reg} and @samp{/s}
+@cindex @code{in_struct}, in @code{reg}
+@item REG_LOOP_TEST_P
+In @code{reg} expressions, nonzero if this register's entire life is
+contained in the exit test code for some loop. Stored in the
+@code{in_struct} field and printed as @samp{/s}.
+
+@findex REG_USERVAR_P
+@cindex @code{reg} and @samp{/v}
+@cindex @code{volatil}, in @code{reg}
+@item REG_USERVAR_P (@var{x})
+In a @code{reg}, nonzero if it corresponds to a variable present in
+the user's source code. Zero for temporaries generated internally by
+the compiler. Stored in the @code{volatil} field and printed as
+@samp{/v}.
+
+@cindex @samp{/i} in RTL dump
+@findex REG_FUNCTION_VALUE_P
+@cindex @code{reg} and @samp{/i}
+@cindex @code{integrated}, in @code{reg}
+@item REG_FUNCTION_VALUE_P (@var{x})
+Nonzero in a @code{reg} if it is the place in which this function's
+value is going to be returned. (This happens only in a hard
+register.) Stored in the @code{integrated} field and printed as
+@samp{/i}.
+
+The same hard register may be used also for collecting the values of
+functions called by this one, but @code{REG_FUNCTION_VALUE_P} is zero
+in this kind of use.
+
+@findex SUBREG_PROMOTED_VAR_P
+@cindex @code{subreg} and @samp{/s}
+@cindex @code{in_struct}, in @code{subreg}
+@item SUBREG_PROMOTED_VAR_P
+Nonzero in a @code{subreg} if it was made when accessing an object that
+was promoted to a wider mode in accord with the @code{PROMOTED_MODE} machine
+description macro (@pxref{Storage Layout}). In this case, the mode of
+the @code{subreg} is the declared mode of the object and the mode of
+@code{SUBREG_REG} is the mode of the register that holds the object.
+Promoted variables are always either sign- or zero-extended to the wider
+mode on every assignment. Stored in the @code{in_struct} field and
+printed as @samp{/s}.
+
+@findex SUBREG_PROMOTED_UNSIGNED_P
+@cindex @code{subreg} and @samp{/u}
+@cindex @code{unchanging}, in @code{subreg}
+@item SUBREG_PROMOTED_UNSIGNED_P
+Nonzero in a @code{subreg} that has @code{SUBREG_PROMOTED_VAR_P} nonzero
+if the object being referenced is kept zero-extended and zero if it
+is kept sign-extended. Stored in the @code{unchanging} field and
+printed as @samp{/u}.
+
+@findex RTX_UNCHANGING_P
+@cindex @code{reg} and @samp{/u}
+@cindex @code{mem} and @samp{/u}
+@cindex @code{unchanging}, in @code{reg} and @code{mem}
+@cindex @samp{/u} in RTL dump
+@item RTX_UNCHANGING_P (@var{x})
+Nonzero in a @code{reg} or @code{mem} if the value is not changed.
+(This flag is not set for memory references via pointers to constants.
+Such pointers only guarantee that the object will not be changed
+explicitly by the current function. The object might be changed by
+other functions or by aliasing.) Stored in the
+@code{unchanging} field and printed as @samp{/u}.
+
+@findex RTX_INTEGRATED_P
+@cindex @code{integrated}, in @code{insn}
+@item RTX_INTEGRATED_P (@var{insn})
+Nonzero in an insn if it resulted from an in-line function call.
+Stored in the @code{integrated} field and printed as @samp{/i}. This
+may be deleted; nothing currently depends on it.
+
+@findex SYMBOL_REF_USED
+@cindex @code{used}, in @code{symbol_ref}
+@item SYMBOL_REF_USED (@var{x})
+In a @code{symbol_ref}, indicates that @var{x} has been used. This is
+normally only used to ensure that @var{x} is only declared external
+once. Stored in the @code{used} field.
+
+@findex SYMBOL_REF_FLAG
+@cindex @code{symbol_ref} and @samp{/v}
+@cindex @code{volatil}, in @code{symbol_ref}
+@item SYMBOL_REF_FLAG (@var{x})
+In a @code{symbol_ref}, this is used as a flag for machine-specific purposes.
+Stored in the @code{volatil} field and printed as @samp{/v}.
+
+@findex LABEL_OUTSIDE_LOOP_P
+@cindex @code{label_ref} and @samp{/s}
+@cindex @code{in_struct}, in @code{label_ref}
+@item LABEL_OUTSIDE_LOOP_P
+In @code{label_ref} expressions, nonzero if this is a reference to a
+label that is outside the innermost loop containing the reference to the
+label. Stored in the @code{in_struct} field and printed as @samp{/s}.
+
+@findex INSN_DELETED_P
+@cindex @code{volatil}, in @code{insn}
+@item INSN_DELETED_P (@var{insn})
+In an insn, nonzero if the insn has been deleted. Stored in the
+@code{volatil} field and printed as @samp{/v}.
+
+@findex INSN_ANNULLED_BRANCH_P
+@cindex @code{insn} and @samp{/u}
+@cindex @code{unchanging}, in @code{insn}
+@item INSN_ANNULLED_BRANCH_P (@var{insn})
+In an @code{insn} in the delay slot of a branch insn, indicates that an
+annulling branch should be used. See the discussion under
+@code{sequence} below. Stored in the @code{unchanging} field and printed
+as @samp{/u}.
+
+@findex INSN_FROM_TARGET_P
+@cindex @code{insn} and @samp{/s}
+@cindex @code{in_struct}, in @code{insn}
+@cindex @samp{/s} in RTL dump
+@item INSN_FROM_TARGET_P (@var{insn})
+In an @code{insn} in a delay slot of a branch, indicates that the insn
+is from the target of the branch. If the branch insn has
+@code{INSN_ANNULLED_BRANCH_P} set, this insn should only be executed if
+the branch is taken. For annulled branches with this bit clear, the
+insn should be executed only if the branch is not taken. Stored in the
+@code{in_struct} field and printed as @samp{/s}.
+
+@findex CONSTANT_POOL_ADDRESS_P
+@cindex @code{symbol_ref} and @samp{/u}
+@cindex @code{unchanging}, in @code{symbol_ref}
+@item CONSTANT_POOL_ADDRESS_P (@var{x})
+Nonzero in a @code{symbol_ref} if it refers to part of the current
+function's ``constants pool''. These are addresses close to the
+beginning of the function, and GNU CC assumes they can be addressed
+directly (perhaps with the help of base registers). Stored in the
+@code{unchanging} field and printed as @samp{/u}.
+
+@findex CONST_CALL_P
+@cindex @code{call_insn} and @samp{/u}
+@cindex @code{unchanging}, in @code{call_insn}
+@item CONST_CALL_P (@var{x})
+In a @code{call_insn}, indicates that the insn represents a call to a const
+function. Stored in the @code{unchanging} field and printed as @samp{/u}.
+
+@findex LABEL_PRESERVE_P
+@cindex @code{code_label} and @samp{/i}
+@cindex @code{in_struct}, in @code{code_label}
+@item LABEL_PRESERVE_P (@var{x})
+In a @code{code_label}, indicates that the label can never be deleted.
+Labels referenced by a non-local goto will have this bit set. Stored
+in the @code{in_struct} field and printed as @samp{/s}.
+
+@findex SCHED_GROUP_P
+@cindex @code{insn} and @samp{/i}
+@cindex @code{in_struct}, in @code{insn}
+@item SCHED_GROUP_P (@var{insn})
+During instruction scheduling, in an insn, indicates that the previous insn
+must be scheduled together with this insn. This is used to ensure that
+certain groups of instructions will not be split up by the instruction
+scheduling pass, for example, @code{use} insns before a @code{call_insn} may
+not be separated from the @code{call_insn}. Stored in the @code{in_struct}
+field and printed as @samp{/s}.
+@end table
+
+These are the fields which the above macros refer to:
+
+@table @code
+@findex used
+@item used
+Normally, this flag is used only momentarily, at the end of RTL
+generation for a function, to count the number of times an expression
+appears in insns. Expressions that appear more than once are copied,
+according to the rules for shared structure (@pxref{Sharing}).
+
+In a @code{symbol_ref}, it indicates that an external declaration for
+the symbol has already been written.
+
+In a @code{reg}, it is used by the leaf register renumbering code to ensure
+that each register is only renumbered once.
+
+@findex volatil
+@item volatil
+This flag is used in @code{mem}, @code{symbol_ref} and @code{reg}
+expressions and in insns. In RTL dump files, it is printed as
+@samp{/v}.
+
+@cindex volatile memory references
+In a @code{mem} expression, it is 1 if the memory reference is volatile.
+Volatile memory references may not be deleted, reordered or combined.
+
+In a @code{symbol_ref} expression, it is used for machine-specific
+purposes.
+
+In a @code{reg} expression, it is 1 if the value is a user-level variable.
+0 indicates an internal compiler temporary.
+
+In an insn, 1 means the insn has been deleted.
+
+@findex in_struct
+@item in_struct
+In @code{mem} expressions, it is 1 if the memory datum referred to is
+all or part of a structure or array; 0 if it is (or might be) a scalar
+variable. A reference through a C pointer has 0 because the pointer
+might point to a scalar variable. This information allows the compiler
+to determine something about possible cases of aliasing.
+
+In an insn in the delay slot of a branch, 1 means that this insn is from
+the target of the branch.
+
+During instruction scheduling, in an insn, 1 means that this insn must be
+scheduled as part of a group together with the previous insn.
+
+In @code{reg} expressions, it is 1 if the register has its entire life
+contained within the test expression of some loop.
+
+In @code{subreg} expressions, 1 means that the @code{subreg} is accessing
+an object that has had its mode promoted from a wider mode.
+
+In @code{label_ref} expressions, 1 means that the referenced label is
+outside the innermost loop containing the insn in which the @code{label_ref}
+was found.
+
+In @code{code_label} expressions, it is 1 if the label may never be deleted.
+This is used for labels which are the target of non-local gotos.
+
+In an RTL dump, this flag is represented as @samp{/s}.
+
+@findex unchanging
+@item unchanging
+In @code{reg} and @code{mem} expressions, 1 means
+that the value of the expression never changes.
+
+In @code{subreg} expressions, it is 1 if the @code{subreg} references an
+unsigned object whose mode has been promoted to a wider mode.
+
+In an insn, 1 means that this is an annulling branch.
+
+In a @code{symbol_ref} expression, 1 means that this symbol addresses
+something in the per-function constants pool.
+
+In a @code{call_insn}, 1 means that this instruction is a call to a
+const function.
+
+In an RTL dump, this flag is represented as @samp{/u}.
+
+@findex integrated
+@item integrated
+In some kinds of expressions, including insns, this flag means the
+rtl was produced by procedure integration.
+
+In a @code{reg} expression, this flag indicates the register
+containing the value to be returned by the current function. On
+machines that pass parameters in registers, the same register number
+may be used for parameters as well, but this flag is not set on such
+uses.
+@end table
+
+@node Machine Modes, Constants, Flags, RTL
+@section Machine Modes
+@cindex machine modes
+
+@findex enum machine_mode
+A machine mode describes a size of data object and the representation used
+for it. In the C code, machine modes are represented by an enumeration
+type, @code{enum machine_mode}, defined in @file{machmode.def}. Each RTL
+expression has room for a machine mode and so do certain kinds of tree
+expressions (declarations and types, to be precise).
+
+In debugging dumps and machine descriptions, the machine mode of an RTL
+expression is written after the expression code with a colon to separate
+them. The letters @samp{mode} which appear at the end of each machine mode
+name are omitted. For example, @code{(reg:SI 38)} is a @code{reg}
+expression with machine mode @code{SImode}. If the mode is
+@code{VOIDmode}, it is not written at all.
+
+Here is a table of machine modes. The term ``byte'' below refers to an
+object of @code{BITS_PER_UNIT} bits (@pxref{Storage Layout}).
+
+@table @code
+@findex QImode
+@item QImode
+``Quarter-Integer'' mode represents a single byte treated as an integer.
+
+@findex HImode
+@item HImode
+``Half-Integer'' mode represents a two-byte integer.
+
+@findex PSImode
+@item PSImode
+``Partial Single Integer'' mode represents an integer which occupies
+four bytes but which doesn't really use all four. On some machines,
+this is the right mode to use for pointers.
+
+@findex SImode
+@item SImode
+``Single Integer'' mode represents a four-byte integer.
+
+@findex PDImode
+@item PDImode
+``Partial Double Integer'' mode represents an integer which occupies
+eight bytes but which doesn't really use all eight. On some machines,
+this is the right mode to use for certain pointers.
+
+@findex DImode
+@item DImode
+``Double Integer'' mode represents an eight-byte integer.
+
+@findex TImode
+@item TImode
+``Tetra Integer'' (?) mode represents a sixteen-byte integer.
+
+@findex SFmode
+@item SFmode
+``Single Floating'' mode represents a single-precision (four byte) floating
+point number.
+
+@findex DFmode
+@item DFmode
+``Double Floating'' mode represents a double-precision (eight byte) floating
+point number.
+
+@findex XFmode
+@item XFmode
+``Extended Floating'' mode represents a triple-precision (twelve byte)
+floating point number. This mode is used for IEEE extended floating
+point. On some systems not all bits within these bytes will actually
+be used.
+
+@findex TFmode
+@item TFmode
+``Tetra Floating'' mode represents a quadruple-precision (sixteen byte)
+floating point number.
+
+@findex CCmode
+@item CCmode
+``Condition Code'' mode represents the value of a condition code, which
+is a machine-specific set of bits used to represent the result of a
+comparison operation. Other machine-specific modes may also be used for
+the condition code. These modes are not used on machines that use
+@code{cc0} (see @pxref{Condition Code}).
+
+@findex BLKmode
+@item BLKmode
+``Block'' mode represents values that are aggregates to which none of
+the other modes apply. In RTL, only memory references can have this mode,
+and only if they appear in string-move or vector instructions. On machines
+which have no such instructions, @code{BLKmode} will not appear in RTL.
+
+@findex VOIDmode
+@item VOIDmode
+Void mode means the absence of a mode or an unspecified mode.
+For example, RTL expressions of code @code{const_int} have mode
+@code{VOIDmode} because they can be taken to have whatever mode the context
+requires. In debugging dumps of RTL, @code{VOIDmode} is expressed by
+the absence of any mode.
+
+@findex SCmode
+@findex DCmode
+@findex XCmode
+@findex TCmode
+@item SCmode, DCmode, XCmode, TCmode
+These modes stand for a complex number represented as a pair of floating
+point values. The floating point values are in @code{SFmode},
+@code{DFmode}, @code{XFmode}, and @code{TFmode}, respectively.
+
+@findex CQImode
+@findex CHImode
+@findex CSImode
+@findex CDImode
+@findex CTImode
+@findex COImode
+@item CQImode, CHImode, CSImode, CDImode, CTImode, COImode
+These modes stand for a complex number represented as a pair of integer
+values. The integer values are in @code{QImode}, @code{HImode},
+@code{SImode}, @code{DImode}, @code{TImode}, and @code{OImode},
+respectively.
+@end table
+
+The machine description defines @code{Pmode} as a C macro which expands
+into the machine mode used for addresses. Normally this is the mode
+whose size is @code{BITS_PER_WORD}, @code{SImode} on 32-bit machines.
+
+The only modes which a machine description @i{must} support are
+@code{QImode}, and the modes corresponding to @code{BITS_PER_WORD},
+@code{FLOAT_TYPE_SIZE} and @code{DOUBLE_TYPE_SIZE}.
+The compiler will attempt to use @code{DImode} for 8-byte structures and
+unions, but this can be prevented by overriding the definition of
+@code{MAX_FIXED_MODE_SIZE}. Alternatively, you can have the compiler
+use @code{TImode} for 16-byte structures and unions. Likewise, you can
+arrange for the C type @code{short int} to avoid using @code{HImode}.
+
+@cindex mode classes
+Very few explicit references to machine modes remain in the compiler and
+these few references will soon be removed. Instead, the machine modes
+are divided into mode classes. These are represented by the enumeration
+type @code{enum mode_class} defined in @file{machmode.h}. The possible
+mode classes are:
+
+@table @code
+@findex MODE_INT
+@item MODE_INT
+Integer modes. By default these are @code{QImode}, @code{HImode},
+@code{SImode}, @code{DImode}, and @code{TImode}.
+
+@findex MODE_PARTIAL_INT
+@item MODE_PARTIAL_INT
+The ``partial integer'' modes, @code{PSImode} and @code{PDImode}.
+
+@findex MODE_FLOAT
+@item MODE_FLOAT
+floating point modes. By default these are @code{SFmode}, @code{DFmode},
+@code{XFmode} and @code{TFmode}.
+
+@findex MODE_COMPLEX_INT
+@item MODE_COMPLEX_INT
+Complex integer modes. (These are not currently implemented).
+
+@findex MODE_COMPLEX_FLOAT
+@item MODE_COMPLEX_FLOAT
+Complex floating point modes. By default these are @code{SCmode},
+@code{DCmode}, @code{XCmode}, and @code{TCmode}.
+
+@findex MODE_FUNCTION
+@item MODE_FUNCTION
+Algol or Pascal function variables including a static chain.
+(These are not currently implemented).
+
+@findex MODE_CC
+@item MODE_CC
+Modes representing condition code values. These are @code{CCmode} plus
+any modes listed in the @code{EXTRA_CC_MODES} macro. @xref{Jump Patterns},
+also see @ref{Condition Code}.
+
+@findex MODE_RANDOM
+@item MODE_RANDOM
+This is a catchall mode class for modes which don't fit into the above
+classes. Currently @code{VOIDmode} and @code{BLKmode} are in
+@code{MODE_RANDOM}.
+@end table
+
+Here are some C macros that relate to machine modes:
+
+@table @code
+@findex GET_MODE
+@item GET_MODE (@var{x})
+Returns the machine mode of the RTX @var{x}.
+
+@findex PUT_MODE
+@item PUT_MODE (@var{x}, @var{newmode})
+Alters the machine mode of the RTX @var{x} to be @var{newmode}.
+
+@findex NUM_MACHINE_MODES
+@item NUM_MACHINE_MODES
+Stands for the number of machine modes available on the target
+machine. This is one greater than the largest numeric value of any
+machine mode.
+
+@findex GET_MODE_NAME
+@item GET_MODE_NAME (@var{m})
+Returns the name of mode @var{m} as a string.
+
+@findex GET_MODE_CLASS
+@item GET_MODE_CLASS (@var{m})
+Returns the mode class of mode @var{m}.
+
+@findex GET_MODE_WIDER_MODE
+@item GET_MODE_WIDER_MODE (@var{m})
+Returns the next wider natural mode. For example, the expression
+@code{GET_MODE_WIDER_MODE (QImode)} returns @code{HImode}.
+
+@findex GET_MODE_SIZE
+@item GET_MODE_SIZE (@var{m})
+Returns the size in bytes of a datum of mode @var{m}.
+
+@findex GET_MODE_BITSIZE
+@item GET_MODE_BITSIZE (@var{m})
+Returns the size in bits of a datum of mode @var{m}.
+
+@findex GET_MODE_MASK
+@item GET_MODE_MASK (@var{m})
+Returns a bitmask containing 1 for all bits in a word that fit within
+mode @var{m}. This macro can only be used for modes whose bitsize is
+less than or equal to @code{HOST_BITS_PER_INT}.
+
+@findex GET_MODE_ALIGNMENT
+@item GET_MODE_ALIGNMENT (@var{m)})
+Return the required alignment, in bits, for an object of mode @var{m}.
+
+@findex GET_MODE_UNIT_SIZE
+@item GET_MODE_UNIT_SIZE (@var{m})
+Returns the size in bytes of the subunits of a datum of mode @var{m}.
+This is the same as @code{GET_MODE_SIZE} except in the case of complex
+modes. For them, the unit size is the size of the real or imaginary
+part.
+
+@findex GET_MODE_NUNITS
+@item GET_MODE_NUNITS (@var{m})
+Returns the number of units contained in a mode, i.e.,
+@code{GET_MODE_SIZE} divided by @code{GET_MODE_UNIT_SIZE}.
+
+@findex GET_CLASS_NARROWEST_MODE
+@item GET_CLASS_NARROWEST_MODE (@var{c})
+Returns the narrowest mode in mode class @var{c}.
+@end table
+
+@findex byte_mode
+@findex word_mode
+The global variables @code{byte_mode} and @code{word_mode} contain modes
+whose classes are @code{MODE_INT} and whose bitsizes are either
+@code{BITS_PER_UNIT} or @code{BITS_PER_WORD}, respectively. On 32-bit
+machines, these are @code{QImode} and @code{SImode}, respectively.
+
+@node Constants, Regs and Memory, Machine Modes, RTL
+@section Constant Expression Types
+@cindex RTL constants
+@cindex RTL constant expression types
+
+The simplest RTL expressions are those that represent constant values.
+
+@table @code
+@findex const_int
+@item (const_int @var{i})
+This type of expression represents the integer value @var{i}. @var{i}
+is customarily accessed with the macro @code{INTVAL} as in
+@code{INTVAL (@var{exp})}, which is equivalent to @code{XWINT (@var{exp}, 0)}.
+
+@findex const0_rtx
+@findex const1_rtx
+@findex const2_rtx
+@findex constm1_rtx
+There is only one expression object for the integer value zero; it is
+the value of the variable @code{const0_rtx}. Likewise, the only
+expression for integer value one is found in @code{const1_rtx}, the only
+expression for integer value two is found in @code{const2_rtx}, and the
+only expression for integer value negative one is found in
+@code{constm1_rtx}. Any attempt to create an expression of code
+@code{const_int} and value zero, one, two or negative one will return
+@code{const0_rtx}, @code{const1_rtx}, @code{const2_rtx} or
+@code{constm1_rtx} as appropriate.@refill
+
+@findex const_true_rtx
+Similarly, there is only one object for the integer whose value is
+@code{STORE_FLAG_VALUE}. It is found in @code{const_true_rtx}. If
+@code{STORE_FLAG_VALUE} is one, @code{const_true_rtx} and
+@code{const1_rtx} will point to the same object. If
+@code{STORE_FLAG_VALUE} is -1, @code{const_true_rtx} and
+@code{constm1_rtx} will point to the same object.@refill
+
+@findex const_double
+@item (const_double:@var{m} @var{addr} @var{i0} @var{i1} @dots{})
+Represents either a floating-point constant of mode @var{m} or an
+integer constant too large to fit into @code{HOST_BITS_PER_WIDE_INT}
+bits but small enough to fit within twice that number of bits (GNU CC
+does not provide a mechanism to represent even larger constants). In
+the latter case, @var{m} will be @code{VOIDmode}.
+
+@findex CONST_DOUBLE_MEM
+@findex CONST_DOUBLE_CHAIN
+@var{addr} is used to contain the @code{mem} expression that corresponds
+to the location in memory that at which the constant can be found. If
+it has not been allocated a memory location, but is on the chain of all
+@code{const_double} expressions in this compilation (maintained using an
+undisplayed field), @var{addr} contains @code{const0_rtx}. If it is not
+on the chain, @var{addr} contains @code{cc0_rtx}. @var{addr} is
+customarily accessed with the macro @code{CONST_DOUBLE_MEM} and the
+chain field via @code{CONST_DOUBLE_CHAIN}.@refill
+
+@findex CONST_DOUBLE_LOW
+If @var{m} is @code{VOIDmode}, the bits of the value are stored in
+@var{i0} and @var{i1}. @var{i0} is customarily accessed with the macro
+@code{CONST_DOUBLE_LOW} and @var{i1} with @code{CONST_DOUBLE_HIGH}.
+
+If the constant is floating point (regardless of its precision), then
+the number of integers used to store the value depends on the size of
+@code{REAL_VALUE_TYPE} (@pxref{Cross-compilation}). The integers
+represent a floating point number, but not precisely in the target
+machine's or host machine's floating point format. To convert them to
+the precise bit pattern used by the target machine, use the macro
+@code{REAL_VALUE_TO_TARGET_DOUBLE} and friends (@pxref{Data Output}).
+
+@findex CONST0_RTX
+@findex CONST1_RTX
+@findex CONST2_RTX
+The macro @code{CONST0_RTX (@var{mode})} refers to an expression with
+value 0 in mode @var{mode}. If mode @var{mode} is of mode class
+@code{MODE_INT}, it returns @code{const0_rtx}. Otherwise, it returns a
+@code{CONST_DOUBLE} expression in mode @var{mode}. Similarly, the macro
+@code{CONST1_RTX (@var{mode})} refers to an expression with value 1 in
+mode @var{mode} and similarly for @code{CONST2_RTX}.
+
+@findex const_string
+@item (const_string @var{str})
+Represents a constant string with value @var{str}. Currently this is
+used only for insn attributes (@pxref{Insn Attributes}) since constant
+strings in C are placed in memory.
+
+@findex symbol_ref
+@item (symbol_ref:@var{mode} @var{symbol})
+Represents the value of an assembler label for data. @var{symbol} is
+a string that describes the name of the assembler label. If it starts
+with a @samp{*}, the label is the rest of @var{symbol} not including
+the @samp{*}. Otherwise, the label is @var{symbol}, usually prefixed
+with @samp{_}.
+
+The @code{symbol_ref} contains a mode, which is usually @code{Pmode}.
+Usually that is the only mode for which a symbol is directly valid.
+
+@findex label_ref
+@item (label_ref @var{label})
+Represents the value of an assembler label for code. It contains one
+operand, an expression, which must be a @code{code_label} that appears
+in the instruction sequence to identify the place where the label
+should go.
+
+The reason for using a distinct expression type for code label
+references is so that jump optimization can distinguish them.
+
+@item (const:@var{m} @var{exp})
+Represents a constant that is the result of an assembly-time
+arithmetic computation. The operand, @var{exp}, is an expression that
+contains only constants (@code{const_int}, @code{symbol_ref} and
+@code{label_ref} expressions) combined with @code{plus} and
+@code{minus}. However, not all combinations are valid, since the
+assembler cannot do arbitrary arithmetic on relocatable symbols.
+
+@var{m} should be @code{Pmode}.
+
+@findex high
+@item (high:@var{m} @var{exp})
+Represents the high-order bits of @var{exp}, usually a
+@code{symbol_ref}. The number of bits is machine-dependent and is
+normally the number of bits specified in an instruction that initializes
+the high order bits of a register. It is used with @code{lo_sum} to
+represent the typical two-instruction sequence used in RISC machines to
+reference a global memory location.
+
+@var{m} should be @code{Pmode}.
+@end table
+
+@node Regs and Memory, Arithmetic, Constants, RTL
+@section Registers and Memory
+@cindex RTL register expressions
+@cindex RTL memory expressions
+
+Here are the RTL expression types for describing access to machine
+registers and to main memory.
+
+@table @code
+@findex reg
+@cindex hard registers
+@cindex pseudo registers
+@item (reg:@var{m} @var{n})
+For small values of the integer @var{n} (those that are less than
+@code{FIRST_PSEUDO_REGISTER}), this stands for a reference to machine
+register number @var{n}: a @dfn{hard register}. For larger values of
+@var{n}, it stands for a temporary value or @dfn{pseudo register}.
+The compiler's strategy is to generate code assuming an unlimited
+number of such pseudo registers, and later convert them into hard
+registers or into memory references.
+
+@var{m} is the machine mode of the reference. It is necessary because
+machines can generally refer to each register in more than one mode.
+For example, a register may contain a full word but there may be
+instructions to refer to it as a half word or as a single byte, as
+well as instructions to refer to it as a floating point number of
+various precisions.
+
+Even for a register that the machine can access in only one mode,
+the mode must always be specified.
+
+The symbol @code{FIRST_PSEUDO_REGISTER} is defined by the machine
+description, since the number of hard registers on the machine is an
+invariant characteristic of the machine. Note, however, that not
+all of the machine registers must be general registers. All the
+machine registers that can be used for storage of data are given
+hard register numbers, even those that can be used only in certain
+instructions or can hold only certain types of data.
+
+A hard register may be accessed in various modes throughout one
+function, but each pseudo register is given a natural mode
+and is accessed only in that mode. When it is necessary to describe
+an access to a pseudo register using a nonnatural mode, a @code{subreg}
+expression is used.
+
+A @code{reg} expression with a machine mode that specifies more than
+one word of data may actually stand for several consecutive registers.
+If in addition the register number specifies a hardware register, then
+it actually represents several consecutive hardware registers starting
+with the specified one.
+
+Each pseudo register number used in a function's RTL code is
+represented by a unique @code{reg} expression.
+
+@findex FIRST_VIRTUAL_REGISTER
+@findex LAST_VIRTUAL_REGISTER
+Some pseudo register numbers, those within the range of
+@code{FIRST_VIRTUAL_REGISTER} to @code{LAST_VIRTUAL_REGISTER} only
+appear during the RTL generation phase and are eliminated before the
+optimization phases. These represent locations in the stack frame that
+cannot be determined until RTL generation for the function has been
+completed. The following virtual register numbers are defined:
+
+@table @code
+@findex VIRTUAL_INCOMING_ARGS_REGNUM
+@item VIRTUAL_INCOMING_ARGS_REGNUM
+This points to the first word of the incoming arguments passed on the
+stack. Normally these arguments are placed there by the caller, but the
+callee may have pushed some arguments that were previously passed in
+registers.
+
+@cindex @code{FIRST_PARM_OFFSET} and virtual registers
+@cindex @code{ARG_POINTER_REGNUM} and virtual registers
+When RTL generation is complete, this virtual register is replaced
+by the sum of the register given by @code{ARG_POINTER_REGNUM} and the
+value of @code{FIRST_PARM_OFFSET}.
+
+@findex VIRTUAL_STACK_VARS_REGNUM
+@cindex @code{FRAME_GROWS_DOWNWARD} and virtual registers
+@item VIRTUAL_STACK_VARS_REGNUM
+If @code{FRAME_GROWS_DOWNWARD} is defined, this points to immediately
+above the first variable on the stack. Otherwise, it points to the
+first variable on the stack.
+
+@cindex @code{STARTING_FRAME_OFFSET} and virtual registers
+@cindex @code{FRAME_POINTER_REGNUM} and virtual registers
+@code{VIRTUAL_STACK_VARS_REGNUM} is replaced with the sum of the
+register given by @code{FRAME_POINTER_REGNUM} and the value
+@code{STARTING_FRAME_OFFSET}.
+
+@findex VIRTUAL_STACK_DYNAMIC_REGNUM
+@item VIRTUAL_STACK_DYNAMIC_REGNUM
+This points to the location of dynamically allocated memory on the stack
+immediately after the stack pointer has been adjusted by the amount of
+memory desired.
+
+@cindex @code{STACK_DYNAMIC_OFFSET} and virtual registers
+@cindex @code{STACK_POINTER_REGNUM} and virtual registers
+This virtual register is replaced by the sum of the register given by
+@code{STACK_POINTER_REGNUM} and the value @code{STACK_DYNAMIC_OFFSET}.
+
+@findex VIRTUAL_OUTGOING_ARGS_REGNUM
+@item VIRTUAL_OUTGOING_ARGS_REGNUM
+This points to the location in the stack at which outgoing arguments
+should be written when the stack is pre-pushed (arguments pushed using
+push insns should always use @code{STACK_POINTER_REGNUM}).
+
+@cindex @code{STACK_POINTER_OFFSET} and virtual registers
+This virtual register is replaced by the sum of the register given by
+@code{STACK_POINTER_REGNUM} and the value @code{STACK_POINTER_OFFSET}.
+@end table
+
+@findex subreg
+@item (subreg:@var{m} @var{reg} @var{wordnum})
+@code{subreg} expressions are used to refer to a register in a machine
+mode other than its natural one, or to refer to one register of
+a multi-word @code{reg} that actually refers to several registers.
+
+Each pseudo-register has a natural mode. If it is necessary to
+operate on it in a different mode---for example, to perform a fullword
+move instruction on a pseudo-register that contains a single
+byte---the pseudo-register must be enclosed in a @code{subreg}. In
+such a case, @var{wordnum} is zero.
+
+Usually @var{m} is at least as narrow as the mode of @var{reg}, in which
+case it is restricting consideration to only the bits of @var{reg} that
+are in @var{m}.
+
+Sometimes @var{m} is wider than the mode of @var{reg}. These
+@code{subreg} expressions are often called @dfn{paradoxical}. They are
+used in cases where we want to refer to an object in a wider mode but do
+not care what value the additional bits have. The reload pass ensures
+that paradoxical references are only made to hard registers.
+
+The other use of @code{subreg} is to extract the individual registers of
+a multi-register value. Machine modes such as @code{DImode} and
+@code{TImode} can indicate values longer than a word, values which
+usually require two or more consecutive registers. To access one of the
+registers, use a @code{subreg} with mode @code{SImode} and a
+@var{wordnum} that says which register.
+
+Storing in a non-paradoxical @code{subreg} has undefined results for
+bits belonging to the same word as the @code{subreg}. This laxity makes
+it easier to generate efficient code for such instructions. To
+represent an instruction that preserves all the bits outside of those in
+the @code{subreg}, use @code{strict_low_part} around the @code{subreg}.
+
+@cindex @code{WORDS_BIG_ENDIAN}, effect on @code{subreg}
+The compilation parameter @code{WORDS_BIG_ENDIAN}, if set to 1, says
+that word number zero is the most significant part; otherwise, it is
+the least significant part.
+
+@cindex combiner pass
+@cindex reload pass
+@cindex @code{subreg}, special reload handling
+Between the combiner pass and the reload pass, it is possible to have a
+paradoxical @code{subreg} which contains a @code{mem} instead of a
+@code{reg} as its first operand. After the reload pass, it is also
+possible to have a non-paradoxical @code{subreg} which contains a
+@code{mem}; this usually occurs when the @code{mem} is a stack slot
+which replaced a pseudo register.
+
+Note that it is not valid to access a @code{DFmode} value in @code{SFmode}
+using a @code{subreg}. On some machines the most significant part of a
+@code{DFmode} value does not have the same format as a single-precision
+floating value.
+
+It is also not valid to access a single word of a multi-word value in a
+hard register when less registers can hold the value than would be
+expected from its size. For example, some 32-bit machines have
+floating-point registers that can hold an entire @code{DFmode} value.
+If register 10 were such a register @code{(subreg:SI (reg:DF 10) 1)}
+would be invalid because there is no way to convert that reference to
+a single machine register. The reload pass prevents @code{subreg}
+expressions such as these from being formed.
+
+@findex SUBREG_REG
+@findex SUBREG_WORD
+The first operand of a @code{subreg} expression is customarily accessed
+with the @code{SUBREG_REG} macro and the second operand is customarily
+accessed with the @code{SUBREG_WORD} macro.
+
+@findex scratch
+@cindex scratch operands
+@item (scratch:@var{m})
+This represents a scratch register that will be required for the
+execution of a single instruction and not used subsequently. It is
+converted into a @code{reg} by either the local register allocator or
+the reload pass.
+
+@code{scratch} is usually present inside a @code{clobber} operation
+(@pxref{Side Effects}).
+
+@findex cc0
+@cindex condition code register
+@item (cc0)
+This refers to the machine's condition code register. It has no
+operands and may not have a machine mode. There are two ways to use it:
+
+@itemize @bullet
+@item
+To stand for a complete set of condition code flags. This is best on
+most machines, where each comparison sets the entire series of flags.
+
+With this technique, @code{(cc0)} may be validly used in only two
+contexts: as the destination of an assignment (in test and compare
+instructions) and in comparison operators comparing against zero
+(@code{const_int} with value zero; that is to say, @code{const0_rtx}).
+
+@item
+To stand for a single flag that is the result of a single condition.
+This is useful on machines that have only a single flag bit, and in
+which comparison instructions must specify the condition to test.
+
+With this technique, @code{(cc0)} may be validly used in only two
+contexts: as the destination of an assignment (in test and compare
+instructions) where the source is a comparison operator, and as the
+first operand of @code{if_then_else} (in a conditional branch).
+@end itemize
+
+@findex cc0_rtx
+There is only one expression object of code @code{cc0}; it is the
+value of the variable @code{cc0_rtx}. Any attempt to create an
+expression of code @code{cc0} will return @code{cc0_rtx}.
+
+Instructions can set the condition code implicitly. On many machines,
+nearly all instructions set the condition code based on the value that
+they compute or store. It is not necessary to record these actions
+explicitly in the RTL because the machine description includes a
+prescription for recognizing the instructions that do so (by means of
+the macro @code{NOTICE_UPDATE_CC}). @xref{Condition Code}. Only
+instructions whose sole purpose is to set the condition code, and
+instructions that use the condition code, need mention @code{(cc0)}.
+
+On some machines, the condition code register is given a register number
+and a @code{reg} is used instead of @code{(cc0)}. This is usually the
+preferable approach if only a small subset of instructions modify the
+condition code. Other machines store condition codes in general
+registers; in such cases a pseudo register should be used.
+
+Some machines, such as the Sparc and RS/6000, have two sets of
+arithmetic instructions, one that sets and one that does not set the
+condition code. This is best handled by normally generating the
+instruction that does not set the condition code, and making a pattern
+that both performs the arithmetic and sets the condition code register
+(which would not be @code{(cc0)} in this case). For examples, search
+for @samp{addcc} and @samp{andcc} in @file{sparc.md}.
+
+@findex pc
+@item (pc)
+@cindex program counter
+This represents the machine's program counter. It has no operands and
+may not have a machine mode. @code{(pc)} may be validly used only in
+certain specific contexts in jump instructions.
+
+@findex pc_rtx
+There is only one expression object of code @code{pc}; it is the value
+of the variable @code{pc_rtx}. Any attempt to create an expression of
+code @code{pc} will return @code{pc_rtx}.
+
+All instructions that do not jump alter the program counter implicitly
+by incrementing it, but there is no need to mention this in the RTL.
+
+@findex mem
+@item (mem:@var{m} @var{addr})
+This RTX represents a reference to main memory at an address
+represented by the expression @var{addr}. @var{m} specifies how large
+a unit of memory is accessed.
+@end table
+
+@node Arithmetic, Comparisons, Regs and Memory, RTL
+@section RTL Expressions for Arithmetic
+@cindex arithmetic, in RTL
+@cindex math, in RTL
+@cindex RTL expressions for arithmetic
+
+Unless otherwise specified, all the operands of arithmetic expressions
+must be valid for mode @var{m}. An operand is valid for mode @var{m}
+if it has mode @var{m}, or if it is a @code{const_int} or
+@code{const_double} and @var{m} is a mode of class @code{MODE_INT}.
+
+For commutative binary operations, constants should be placed in the
+second operand.
+
+@table @code
+@findex plus
+@cindex RTL addition
+@cindex RTL sum
+@item (plus:@var{m} @var{x} @var{y})
+Represents the sum of the values represented by @var{x} and @var{y}
+carried out in machine mode @var{m}.
+
+@findex lo_sum
+@item (lo_sum:@var{m} @var{x} @var{y})
+Like @code{plus}, except that it represents that sum of @var{x} and the
+low-order bits of @var{y}. The number of low order bits is
+machine-dependent but is normally the number of bits in a @code{Pmode}
+item minus the number of bits set by the @code{high} code
+(@pxref{Constants}).
+
+@var{m} should be @code{Pmode}.
+
+@findex minus
+@cindex RTL subtraction
+@cindex RTL difference
+@item (minus:@var{m} @var{x} @var{y})
+Like @code{plus} but represents subtraction.
+
+@findex compare
+@cindex RTL comparison
+@item (compare:@var{m} @var{x} @var{y})
+Represents the result of subtracting @var{y} from @var{x} for purposes
+of comparison. The result is computed without overflow, as if with
+infinite precision.
+
+Of course, machines can't really subtract with infinite precision.
+However, they can pretend to do so when only the sign of the
+result will be used, which is the case when the result is stored
+in the condition code. And that is the only way this kind of expression
+may validly be used: as a value to be stored in the condition codes.
+
+The mode @var{m} is not related to the modes of @var{x} and @var{y},
+but instead is the mode of the condition code value. If @code{(cc0)}
+is used, it is @code{VOIDmode}. Otherwise it is some mode in class
+@code{MODE_CC}, often @code{CCmode}. @xref{Condition Code}.
+
+Normally, @var{x} and @var{y} must have the same mode. Otherwise,
+@code{compare} is valid only if the mode of @var{x} is in class
+@code{MODE_INT} and @var{y} is a @code{const_int} or
+@code{const_double} with mode @code{VOIDmode}. The mode of @var{x}
+determines what mode the comparison is to be done in; thus it must not
+be @code{VOIDmode}.
+
+If one of the operands is a constant, it should be placed in the
+second operand and the comparison code adjusted as appropriate.
+
+A @code{compare} specifying two @code{VOIDmode} constants is not valid
+since there is no way to know in what mode the comparison is to be
+performed; the comparison must either be folded during the compilation
+or the first operand must be loaded into a register while its mode is
+still known.
+
+@findex neg
+@item (neg:@var{m} @var{x})
+Represents the negation (subtraction from zero) of the value represented
+by @var{x}, carried out in mode @var{m}.
+
+@findex mult
+@cindex multiplication
+@cindex product
+@item (mult:@var{m} @var{x} @var{y})
+Represents the signed product of the values represented by @var{x} and
+@var{y} carried out in machine mode @var{m}.
+
+Some machines support a multiplication that generates a product wider
+than the operands. Write the pattern for this as
+
+@example
+(mult:@var{m} (sign_extend:@var{m} @var{x}) (sign_extend:@var{m} @var{y}))
+@end example
+
+where @var{m} is wider than the modes of @var{x} and @var{y}, which need
+not be the same.
+
+Write patterns for unsigned widening multiplication similarly using
+@code{zero_extend}.
+
+@findex div
+@cindex division
+@cindex signed division
+@cindex quotient
+@item (div:@var{m} @var{x} @var{y})
+Represents the quotient in signed division of @var{x} by @var{y},
+carried out in machine mode @var{m}. If @var{m} is a floating point
+mode, it represents the exact quotient; otherwise, the integerized
+quotient.
+
+Some machines have division instructions in which the operands and
+quotient widths are not all the same; you should represent
+such instructions using @code{truncate} and @code{sign_extend} as in,
+
+@example
+(truncate:@var{m1} (div:@var{m2} @var{x} (sign_extend:@var{m2} @var{y})))
+@end example
+
+@findex udiv
+@cindex unsigned division
+@cindex division
+@item (udiv:@var{m} @var{x} @var{y})
+Like @code{div} but represents unsigned division.
+
+@findex mod
+@findex umod
+@cindex remainder
+@cindex division
+@item (mod:@var{m} @var{x} @var{y})
+@itemx (umod:@var{m} @var{x} @var{y})
+Like @code{div} and @code{udiv} but represent the remainder instead of
+the quotient.
+
+@findex smin
+@findex smax
+@cindex signed minimum
+@cindex signed maximum
+@item (smin:@var{m} @var{x} @var{y})
+@itemx (smax:@var{m} @var{x} @var{y})
+Represents the smaller (for @code{smin}) or larger (for @code{smax}) of
+@var{x} and @var{y}, interpreted as signed integers in mode @var{m}.
+
+@findex umin
+@findex umax
+@cindex unsigned minimum and maximum
+@item (umin:@var{m} @var{x} @var{y})
+@itemx (umax:@var{m} @var{x} @var{y})
+Like @code{smin} and @code{smax}, but the values are interpreted as unsigned
+integers.
+
+@findex not
+@cindex complement, bitwise
+@cindex bitwise complement
+@item (not:@var{m} @var{x})
+Represents the bitwise complement of the value represented by @var{x},
+carried out in mode @var{m}, which must be a fixed-point machine mode.
+
+@findex and
+@cindex logical-and, bitwise
+@cindex bitwise logical-and
+@item (and:@var{m} @var{x} @var{y})
+Represents the bitwise logical-and of the values represented by
+@var{x} and @var{y}, carried out in machine mode @var{m}, which must be
+a fixed-point machine mode.
+
+@findex ior
+@cindex inclusive-or, bitwise
+@cindex bitwise inclusive-or
+@item (ior:@var{m} @var{x} @var{y})
+Represents the bitwise inclusive-or of the values represented by @var{x}
+and @var{y}, carried out in machine mode @var{m}, which must be a
+fixed-point mode.
+
+@findex xor
+@cindex exclusive-or, bitwise
+@cindex bitwise exclusive-or
+@item (xor:@var{m} @var{x} @var{y})
+Represents the bitwise exclusive-or of the values represented by @var{x}
+and @var{y}, carried out in machine mode @var{m}, which must be a
+fixed-point mode.
+
+@findex ashift
+@cindex left shift
+@cindex shift
+@cindex arithmetic shift
+@item (ashift:@var{m} @var{x} @var{c})
+Represents the result of arithmetically shifting @var{x} left by @var{c}
+places. @var{x} have mode @var{m}, a fixed-point machine mode. @var{c}
+be a fixed-point mode or be a constant with mode @code{VOIDmode}; which
+mode is determined by the mode called for in the machine description
+entry for the left-shift instruction. For example, on the Vax, the mode
+of @var{c} is @code{QImode} regardless of @var{m}.
+
+@findex lshiftrt
+@cindex right shift
+@findex ashiftrt
+@item (lshiftrt:@var{m} @var{x} @var{c})
+@itemx (ashiftrt:@var{m} @var{x} @var{c})
+Like @code{ashift} but for right shift. Unlike the case for left shift,
+these two operations are distinct.
+
+@findex rotate
+@cindex rotate
+@cindex left rotate
+@findex rotatert
+@cindex right rotate
+@item (rotate:@var{m} @var{x} @var{c})
+@itemx (rotatert:@var{m} @var{x} @var{c})
+Similar but represent left and right rotate. If @var{c} is a constant,
+use @code{rotate}.
+
+@findex abs
+@cindex absolute value
+@item (abs:@var{m} @var{x})
+Represents the absolute value of @var{x}, computed in mode @var{m}.
+
+@findex sqrt
+@cindex square root
+@item (sqrt:@var{m} @var{x})
+Represents the square root of @var{x}, computed in mode @var{m}.
+Most often @var{m} will be a floating point mode.
+
+@findex ffs
+@item (ffs:@var{m} @var{x})
+Represents one plus the index of the least significant 1-bit in
+@var{x}, represented as an integer of mode @var{m}. (The value is
+zero if @var{x} is zero.) The mode of @var{x} need not be @var{m};
+depending on the target machine, various mode combinations may be
+valid.
+@end table
+
+@node Comparisons, Bit Fields, Arithmetic, RTL
+@section Comparison Operations
+@cindex RTL comparison operations
+
+Comparison operators test a relation on two operands and are considered
+to represent a machine-dependent nonzero value described by, but not
+necessarily equal to, @code{STORE_FLAG_VALUE} (@pxref{Misc})
+if the relation holds, or zero if it does not. The mode of the
+comparison operation is independent of the mode of the data being
+compared. If the comparison operation is being tested (e.g., the first
+operand of an @code{if_then_else}), the mode must be @code{VOIDmode}.
+If the comparison operation is producing data to be stored in some
+variable, the mode must be in class @code{MODE_INT}. All comparison
+operations producing data must use the same mode, which is
+machine-specific.
+
+@cindex condition codes
+There are two ways that comparison operations may be used. The
+comparison operators may be used to compare the condition codes
+@code{(cc0)} against zero, as in @code{(eq (cc0) (const_int 0))}. Such
+a construct actually refers to the result of the preceding instruction
+in which the condition codes were set. The instructing setting the
+condition code must be adjacent to the instruction using the condition
+code; only @code{note} insns may separate them.
+
+Alternatively, a comparison operation may directly compare two data
+objects. The mode of the comparison is determined by the operands; they
+must both be valid for a common machine mode. A comparison with both
+operands constant would be invalid as the machine mode could not be
+deduced from it, but such a comparison should never exist in RTL due to
+constant folding.
+
+In the example above, if @code{(cc0)} were last set to
+@code{(compare @var{x} @var{y})}, the comparison operation is
+identical to @code{(eq @var{x} @var{y})}. Usually only one style
+of comparisons is supported on a particular machine, but the combine
+pass will try to merge the operations to produce the @code{eq} shown
+in case it exists in the context of the particular insn involved.
+
+Inequality comparisons come in two flavors, signed and unsigned. Thus,
+there are distinct expression codes @code{gt} and @code{gtu} for signed and
+unsigned greater-than. These can produce different results for the same
+pair of integer values: for example, 1 is signed greater-than -1 but not
+unsigned greater-than, because -1 when regarded as unsigned is actually
+@code{0xffffffff} which is greater than 1.
+
+The signed comparisons are also used for floating point values. Floating
+point comparisons are distinguished by the machine modes of the operands.
+
+@table @code
+@findex eq
+@cindex equal
+@item (eq:@var{m} @var{x} @var{y})
+1 if the values represented by @var{x} and @var{y} are equal,
+otherwise 0.
+
+@findex ne
+@cindex not equal
+@item (ne:@var{m} @var{x} @var{y})
+1 if the values represented by @var{x} and @var{y} are not equal,
+otherwise 0.
+
+@findex gt
+@cindex greater than
+@item (gt:@var{m} @var{x} @var{y})
+1 if the @var{x} is greater than @var{y}. If they are fixed-point,
+the comparison is done in a signed sense.
+
+@findex gtu
+@cindex greater than
+@cindex unsigned greater than
+@item (gtu:@var{m} @var{x} @var{y})
+Like @code{gt} but does unsigned comparison, on fixed-point numbers only.
+
+@findex lt
+@cindex less than
+@findex ltu
+@cindex unsigned less than
+@item (lt:@var{m} @var{x} @var{y})
+@itemx (ltu:@var{m} @var{x} @var{y})
+Like @code{gt} and @code{gtu} but test for ``less than''.
+
+@findex ge
+@cindex greater than
+@findex geu
+@cindex unsigned greater than
+@item (ge:@var{m} @var{x} @var{y})
+@itemx (geu:@var{m} @var{x} @var{y})
+Like @code{gt} and @code{gtu} but test for ``greater than or equal''.
+
+@findex le
+@cindex less than or equal
+@findex leu
+@cindex unsigned less than
+@item (le:@var{m} @var{x} @var{y})
+@itemx (leu:@var{m} @var{x} @var{y})
+Like @code{gt} and @code{gtu} but test for ``less than or equal''.
+
+@findex if_then_else
+@item (if_then_else @var{cond} @var{then} @var{else})
+This is not a comparison operation but is listed here because it is
+always used in conjunction with a comparison operation. To be
+precise, @var{cond} is a comparison expression. This expression
+represents a choice, according to @var{cond}, between the value
+represented by @var{then} and the one represented by @var{else}.
+
+On most machines, @code{if_then_else} expressions are valid only
+to express conditional jumps.
+
+@findex cond
+@item (cond [@var{test1} @var{value1} @var{test2} @var{value2} @dots{}] @var{default})
+Similar to @code{if_then_else}, but more general. Each of @var{test1},
+@var{test2}, @dots{} is performed in turn. The result of this expression is
+the @var{value} corresponding to the first non-zero test, or @var{default} if
+none of the tests are non-zero expressions.
+
+This is currently not valid for instruction patterns and is supported only
+for insn attributes. @xref{Insn Attributes}.
+@end table
+
+@node Bit Fields, Conversions, Comparisons, RTL
+@section Bit Fields
+@cindex bit fields
+
+Special expression codes exist to represent bitfield instructions.
+These types of expressions are lvalues in RTL; they may appear
+on the left side of an assignment, indicating insertion of a value
+into the specified bit field.
+
+@table @code
+@findex sign_extract
+@cindex @code{BITS_BIG_ENDIAN}, effect on @code{sign_extract}
+@item (sign_extract:@var{m} @var{loc} @var{size} @var{pos})
+This represents a reference to a sign-extended bit field contained or
+starting in @var{loc} (a memory or register reference). The bit field
+is @var{size} bits wide and starts at bit @var{pos}. The compilation
+option @code{BITS_BIG_ENDIAN} says which end of the memory unit
+@var{pos} counts from.
+
+If @var{loc} is in memory, its mode must be a single-byte integer mode.
+If @var{loc} is in a register, the mode to use is specified by the
+operand of the @code{insv} or @code{extv} pattern
+(@pxref{Standard Names}) and is usually a full-word integer mode,
+which is the default if none is specified.
+
+The mode of @var{pos} is machine-specific and is also specified
+in the @code{insv} or @code{extv} pattern.
+
+The mode @var{m} is the same as the mode that would be used for
+@var{loc} if it were a register.
+
+@findex zero_extract
+@item (zero_extract:@var{m} @var{loc} @var{size} @var{pos})
+Like @code{sign_extract} but refers to an unsigned or zero-extended
+bit field. The same sequence of bits are extracted, but they
+are filled to an entire word with zeros instead of by sign-extension.
+@end table
+
+@node Conversions, RTL Declarations, Bit Fields, RTL
+@section Conversions
+@cindex conversions
+@cindex machine mode conversions
+
+All conversions between machine modes must be represented by
+explicit conversion operations. For example, an expression
+which is the sum of a byte and a full word cannot be written as
+@code{(plus:SI (reg:QI 34) (reg:SI 80))} because the @code{plus}
+operation requires two operands of the same machine mode.
+Therefore, the byte-sized operand is enclosed in a conversion
+operation, as in
+
+@example
+(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
+@end example
+
+The conversion operation is not a mere placeholder, because there
+may be more than one way of converting from a given starting mode
+to the desired final mode. The conversion operation code says how
+to do it.
+
+For all conversion operations, @var{x} must not be @code{VOIDmode}
+because the mode in which to do the conversion would not be known.
+The conversion must either be done at compile-time or @var{x}
+must be placed into a register.
+
+@table @code
+@findex sign_extend
+@item (sign_extend:@var{m} @var{x})
+Represents the result of sign-extending the value @var{x}
+to machine mode @var{m}. @var{m} must be a fixed-point mode
+and @var{x} a fixed-point value of a mode narrower than @var{m}.
+
+@findex zero_extend
+@item (zero_extend:@var{m} @var{x})
+Represents the result of zero-extending the value @var{x}
+to machine mode @var{m}. @var{m} must be a fixed-point mode
+and @var{x} a fixed-point value of a mode narrower than @var{m}.
+
+@findex float_extend
+@item (float_extend:@var{m} @var{x})
+Represents the result of extending the value @var{x}
+to machine mode @var{m}. @var{m} must be a floating point mode
+and @var{x} a floating point value of a mode narrower than @var{m}.
+
+@findex truncate
+@item (truncate:@var{m} @var{x})
+Represents the result of truncating the value @var{x}
+to machine mode @var{m}. @var{m} must be a fixed-point mode
+and @var{x} a fixed-point value of a mode wider than @var{m}.
+
+@findex float_truncate
+@item (float_truncate:@var{m} @var{x})
+Represents the result of truncating the value @var{x}
+to machine mode @var{m}. @var{m} must be a floating point mode
+and @var{x} a floating point value of a mode wider than @var{m}.
+
+@findex float
+@item (float:@var{m} @var{x})
+Represents the result of converting fixed point value @var{x},
+regarded as signed, to floating point mode @var{m}.
+
+@findex unsigned_float
+@item (unsigned_float:@var{m} @var{x})
+Represents the result of converting fixed point value @var{x},
+regarded as unsigned, to floating point mode @var{m}.
+
+@findex fix
+@item (fix:@var{m} @var{x})
+When @var{m} is a fixed point mode, represents the result of
+converting floating point value @var{x} to mode @var{m}, regarded as
+signed. How rounding is done is not specified, so this operation may
+be used validly in compiling C code only for integer-valued operands.
+
+@findex unsigned_fix
+@item (unsigned_fix:@var{m} @var{x})
+Represents the result of converting floating point value @var{x} to
+fixed point mode @var{m}, regarded as unsigned. How rounding is done
+is not specified.
+
+@findex fix
+@item (fix:@var{m} @var{x})
+When @var{m} is a floating point mode, represents the result of
+converting floating point value @var{x} (valid for mode @var{m}) to an
+integer, still represented in floating point mode @var{m}, by rounding
+towards zero.
+@end table
+
+@node RTL Declarations, Side Effects, Conversions, RTL
+@section Declarations
+@cindex RTL declarations
+@cindex declarations, RTL
+
+Declaration expression codes do not represent arithmetic operations
+but rather state assertions about their operands.
+
+@table @code
+@findex strict_low_part
+@cindex @code{subreg}, in @code{strict_low_part}
+@item (strict_low_part (subreg:@var{m} (reg:@var{n} @var{r}) 0))
+This expression code is used in only one context: as the destination operand of a
+@code{set} expression. In addition, the operand of this expression
+must be a non-paradoxical @code{subreg} expression.
+
+The presence of @code{strict_low_part} says that the part of the
+register which is meaningful in mode @var{n}, but is not part of
+mode @var{m}, is not to be altered. Normally, an assignment to such
+a subreg is allowed to have undefined effects on the rest of the
+register when @var{m} is less than a word.
+@end table
+
+@node Side Effects, Incdec, RTL Declarations, RTL
+@section Side Effect Expressions
+@cindex RTL side effect expressions
+
+The expression codes described so far represent values, not actions.
+But machine instructions never produce values; they are meaningful
+only for their side effects on the state of the machine. Special
+expression codes are used to represent side effects.
+
+The body of an instruction is always one of these side effect codes;
+the codes described above, which represent values, appear only as
+the operands of these.
+
+@table @code
+@findex set
+@item (set @var{lval} @var{x})
+Represents the action of storing the value of @var{x} into the place
+represented by @var{lval}. @var{lval} must be an expression
+representing a place that can be stored in: @code{reg} (or
+@code{subreg} or @code{strict_low_part}), @code{mem}, @code{pc} or
+@code{cc0}.@refill
+
+If @var{lval} is a @code{reg}, @code{subreg} or @code{mem}, it has a
+machine mode; then @var{x} must be valid for that mode.@refill
+
+If @var{lval} is a @code{reg} whose machine mode is less than the full
+width of the register, then it means that the part of the register
+specified by the machine mode is given the specified value and the
+rest of the register receives an undefined value. Likewise, if
+@var{lval} is a @code{subreg} whose machine mode is narrower than
+the mode of the register, the rest of the register can be changed in
+an undefined way.
+
+If @var{lval} is a @code{strict_low_part} of a @code{subreg}, then the
+part of the register specified by the machine mode of the
+@code{subreg} is given the value @var{x} and the rest of the register
+is not changed.@refill
+
+If @var{lval} is @code{(cc0)}, it has no machine mode, and @var{x} may
+be either a @code{compare} expression or a value that may have any mode.
+The latter case represents a ``test'' instruction. The expression
+@code{(set (cc0) (reg:@var{m} @var{n}))} is equivalent to
+@code{(set (cc0) (compare (reg:@var{m} @var{n}) (const_int 0)))}.
+Use the former expression to save space during the compilation.
+
+@cindex jump instructions and @code{set}
+@cindex @code{if_then_else} usage
+If @var{lval} is @code{(pc)}, we have a jump instruction, and the
+possibilities for @var{x} are very limited. It may be a
+@code{label_ref} expression (unconditional jump). It may be an
+@code{if_then_else} (conditional jump), in which case either the
+second or the third operand must be @code{(pc)} (for the case which
+does not jump) and the other of the two must be a @code{label_ref}
+(for the case which does jump). @var{x} may also be a @code{mem} or
+@code{(plus:SI (pc) @var{y})}, where @var{y} may be a @code{reg} or a
+@code{mem}; these unusual patterns are used to represent jumps through
+branch tables.@refill
+
+If @var{lval} is neither @code{(cc0)} nor @code{(pc)}, the mode of
+@var{lval} must not be @code{VOIDmode} and the mode of @var{x} must be
+valid for the mode of @var{lval}.
+
+@findex SET_DEST
+@findex SET_SRC
+@var{lval} is customarily accessed with the @code{SET_DEST} macro and
+@var{x} with the @code{SET_SRC} macro.
+
+@findex return
+@item (return)
+As the sole expression in a pattern, represents a return from the
+current function, on machines where this can be done with one
+instruction, such as Vaxes. On machines where a multi-instruction
+``epilogue'' must be executed in order to return from the function,
+returning is done by jumping to a label which precedes the epilogue, and
+the @code{return} expression code is never used.
+
+Inside an @code{if_then_else} expression, represents the value to be
+placed in @code{pc} to return to the caller.
+
+Note that an insn pattern of @code{(return)} is logically equivalent to
+@code{(set (pc) (return))}, but the latter form is never used.
+
+@findex call
+@item (call @var{function} @var{nargs})
+Represents a function call. @var{function} is a @code{mem} expression
+whose address is the address of the function to be called.
+@var{nargs} is an expression which can be used for two purposes: on
+some machines it represents the number of bytes of stack argument; on
+others, it represents the number of argument registers.
+
+Each machine has a standard machine mode which @var{function} must
+have. The machine description defines macro @code{FUNCTION_MODE} to
+expand into the requisite mode name. The purpose of this mode is to
+specify what kind of addressing is allowed, on machines where the
+allowed kinds of addressing depend on the machine mode being
+addressed.
+
+@findex clobber
+@item (clobber @var{x})
+Represents the storing or possible storing of an unpredictable,
+undescribed value into @var{x}, which must be a @code{reg},
+@code{scratch} or @code{mem} expression.
+
+One place this is used is in string instructions that store standard
+values into particular hard registers. It may not be worth the
+trouble to describe the values that are stored, but it is essential to
+inform the compiler that the registers will be altered, lest it
+attempt to keep data in them across the string instruction.
+
+If @var{x} is @code{(mem:BLK (const_int 0))}, it means that all memory
+locations must be presumed clobbered.
+
+Note that the machine description classifies certain hard registers as
+``call-clobbered''. All function call instructions are assumed by
+default to clobber these registers, so there is no need to use
+@code{clobber} expressions to indicate this fact. Also, each function
+call is assumed to have the potential to alter any memory location,
+unless the function is declared @code{const}.
+
+If the last group of expressions in a @code{parallel} are each a
+@code{clobber} expression whose arguments are @code{reg} or
+@code{match_scratch} (@pxref{RTL Template}) expressions, the combiner
+phase can add the appropriate @code{clobber} expressions to an insn it
+has constructed when doing so will cause a pattern to be matched.
+
+This feature can be used, for example, on a machine that whose multiply
+and add instructions don't use an MQ register but which has an
+add-accumulate instruction that does clobber the MQ register. Similarly,
+a combined instruction might require a temporary register while the
+constituent instructions might not.
+
+When a @code{clobber} expression for a register appears inside a
+@code{parallel} with other side effects, the register allocator
+guarantees that the register is unoccupied both before and after that
+insn. However, the reload phase may allocate a register used for one of
+the inputs unless the @samp{&} constraint is specified for the selected
+alternative (@pxref{Modifiers}). You can clobber either a specific hard
+register, a pseudo register, or a @code{scratch} expression; in the
+latter two cases, GNU CC will allocate a hard register that is available
+there for use as a temporary.
+
+For instructions that require a temporary register, you should use
+@code{scratch} instead of a pseudo-register because this will allow the
+combiner phase to add the @code{clobber} when required. You do this by
+coding (@code{clobber} (@code{match_scratch} @dots{})). If you do
+clobber a pseudo register, use one which appears nowhere else---generate
+a new one each time. Otherwise, you may confuse CSE.
+
+There is one other known use for clobbering a pseudo register in a
+@code{parallel}: when one of the input operands of the insn is also
+clobbered by the insn. In this case, using the same pseudo register in
+the clobber and elsewhere in the insn produces the expected results.
+
+@findex use
+@item (use @var{x})
+Represents the use of the value of @var{x}. It indicates that the
+value in @var{x} at this point in the program is needed, even though
+it may not be apparent why this is so. Therefore, the compiler will
+not attempt to delete previous instructions whose only effect is to
+store a value in @var{x}. @var{x} must be a @code{reg} expression.
+
+During the delayed branch scheduling phase, @var{x} may be an insn.
+This indicates that @var{x} previously was located at this place in the
+code and its data dependencies need to be taken into account. These
+@code{use} insns will be deleted before the delayed branch scheduling
+phase exits.
+
+@findex parallel
+@item (parallel [@var{x0} @var{x1} @dots{}])
+Represents several side effects performed in parallel. The square
+brackets stand for a vector; the operand of @code{parallel} is a
+vector of expressions. @var{x0}, @var{x1} and so on are individual
+side effect expressions---expressions of code @code{set}, @code{call},
+@code{return}, @code{clobber} or @code{use}.@refill
+
+``In parallel'' means that first all the values used in the individual
+side-effects are computed, and second all the actual side-effects are
+performed. For example,
+
+@example
+(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
+ (set (mem:SI (reg:SI 1)) (reg:SI 1))])
+@end example
+
+@noindent
+says unambiguously that the values of hard register 1 and the memory
+location addressed by it are interchanged. In both places where
+@code{(reg:SI 1)} appears as a memory address it refers to the value
+in register 1 @emph{before} the execution of the insn.
+
+It follows that it is @emph{incorrect} to use @code{parallel} and
+expect the result of one @code{set} to be available for the next one.
+For example, people sometimes attempt to represent a jump-if-zero
+instruction this way:
+
+@example
+(parallel [(set (cc0) (reg:SI 34))
+ (set (pc) (if_then_else
+ (eq (cc0) (const_int 0))
+ (label_ref @dots{})
+ (pc)))])
+@end example
+
+@noindent
+But this is incorrect, because it says that the jump condition depends
+on the condition code value @emph{before} this instruction, not on the
+new value that is set by this instruction.
+
+@cindex peephole optimization, RTL representation
+Peephole optimization, which takes place together with final assembly
+code output, can produce insns whose patterns consist of a @code{parallel}
+whose elements are the operands needed to output the resulting
+assembler code---often @code{reg}, @code{mem} or constant expressions.
+This would not be well-formed RTL at any other stage in compilation,
+but it is ok then because no further optimization remains to be done.
+However, the definition of the macro @code{NOTICE_UPDATE_CC}, if
+any, must deal with such insns if you define any peephole optimizations.
+
+@findex sequence
+@item (sequence [@var{insns} @dots{}])
+Represents a sequence of insns. Each of the @var{insns} that appears
+in the vector is suitable for appearing in the chain of insns, so it
+must be an @code{insn}, @code{jump_insn}, @code{call_insn},
+@code{code_label}, @code{barrier} or @code{note}.
+
+A @code{sequence} RTX is never placed in an actual insn during RTL
+generation. It represents the sequence of insns that result from a
+@code{define_expand} @emph{before} those insns are passed to
+@code{emit_insn} to insert them in the chain of insns. When actually
+inserted, the individual sub-insns are separated out and the
+@code{sequence} is forgotten.
+
+After delay-slot scheduling is completed, an insn and all the insns that
+reside in its delay slots are grouped together into a @code{sequence}.
+The insn requiring the delay slot is the first insn in the vector;
+subsequent insns are to be placed in the delay slot.
+
+@code{INSN_ANNULLED_BRANCH_P} is set on an insn in a delay slot to
+indicate that a branch insn should be used that will conditionally annul
+the effect of the insns in the delay slots. In such a case,
+@code{INSN_FROM_TARGET_P} indicates that the insn is from the target of
+the branch and should be executed only if the branch is taken; otherwise
+the insn should be executed only if the branch is not taken.
+@xref{Delay Slots}.
+@end table
+
+These expression codes appear in place of a side effect, as the body of
+an insn, though strictly speaking they do not always describe side
+effects as such:
+
+@table @code
+@findex asm_input
+@item (asm_input @var{s})
+Represents literal assembler code as described by the string @var{s}.
+
+@findex unspec
+@findex unspec_volatile
+@item (unspec [@var{operands} @dots{}] @var{index})
+@itemx (unspec_volatile [@var{operands} @dots{}] @var{index})
+Represents a machine-specific operation on @var{operands}. @var{index}
+selects between multiple machine-specific operations.
+@code{unspec_volatile} is used for volatile operations and operations
+that may trap; @code{unspec} is used for other operations.
+
+These codes may appear inside a @code{pattern} of an
+insn, inside a @code{parallel}, or inside an expression.
+
+@findex addr_vec
+@item (addr_vec:@var{m} [@var{lr0} @var{lr1} @dots{}])
+Represents a table of jump addresses. The vector elements @var{lr0},
+etc., are @code{label_ref} expressions. The mode @var{m} specifies
+how much space is given to each address; normally @var{m} would be
+@code{Pmode}.
+
+@findex addr_diff_vec
+@item (addr_diff_vec:@var{m} @var{base} [@var{lr0} @var{lr1} @dots{}])
+Represents a table of jump addresses expressed as offsets from
+@var{base}. The vector elements @var{lr0}, etc., are @code{label_ref}
+expressions and so is @var{base}. The mode @var{m} specifies how much
+space is given to each address-difference.@refill
+@end table
+
+@node Incdec, Assembler, Side Effects, RTL
+@section Embedded Side-Effects on Addresses
+@cindex RTL preincrement
+@cindex RTL postincrement
+@cindex RTL predecrement
+@cindex RTL postdecrement
+
+Four special side-effect expression codes appear as memory addresses.
+
+@table @code
+@findex pre_dec
+@item (pre_dec:@var{m} @var{x})
+Represents the side effect of decrementing @var{x} by a standard
+amount and represents also the value that @var{x} has after being
+decremented. @var{x} must be a @code{reg} or @code{mem}, but most
+machines allow only a @code{reg}. @var{m} must be the machine mode
+for pointers on the machine in use. The amount @var{x} is decremented
+by is the length in bytes of the machine mode of the containing memory
+reference of which this expression serves as the address. Here is an
+example of its use:@refill
+
+@example
+(mem:DF (pre_dec:SI (reg:SI 39)))
+@end example
+
+@noindent
+This says to decrement pseudo register 39 by the length of a @code{DFmode}
+value and use the result to address a @code{DFmode} value.
+
+@findex pre_inc
+@item (pre_inc:@var{m} @var{x})
+Similar, but specifies incrementing @var{x} instead of decrementing it.
+
+@findex post_dec
+@item (post_dec:@var{m} @var{x})
+Represents the same side effect as @code{pre_dec} but a different
+value. The value represented here is the value @var{x} has @i{before}
+being decremented.
+
+@findex post_inc
+@item (post_inc:@var{m} @var{x})
+Similar, but specifies incrementing @var{x} instead of decrementing it.
+@end table
+
+These embedded side effect expressions must be used with care. Instruction
+patterns may not use them. Until the @samp{flow} pass of the compiler,
+they may occur only to represent pushes onto the stack. The @samp{flow}
+pass finds cases where registers are incremented or decremented in one
+instruction and used as an address shortly before or after; these cases are
+then transformed to use pre- or post-increment or -decrement.
+
+If a register used as the operand of these expressions is used in
+another address in an insn, the original value of the register is used.
+Uses of the register outside of an address are not permitted within the
+same insn as a use in an embedded side effect expression because such
+insns behave differently on different machines and hence must be treated
+as ambiguous and disallowed.
+
+An instruction that can be represented with an embedded side effect
+could also be represented using @code{parallel} containing an additional
+@code{set} to describe how the address register is altered. This is not
+done because machines that allow these operations at all typically
+allow them wherever a memory address is called for. Describing them as
+additional parallel stores would require doubling the number of entries
+in the machine description.
+
+@node Assembler, Insns, Incdec, RTL
+@section Assembler Instructions as Expressions
+@cindex assembler instructions in RTL
+
+@cindex @code{asm_operands}, usage
+The RTX code @code{asm_operands} represents a value produced by a
+user-specified assembler instruction. It is used to represent
+an @code{asm} statement with arguments. An @code{asm} statement with
+a single output operand, like this:
+
+@smallexample
+asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
+@end smallexample
+
+@noindent
+is represented using a single @code{asm_operands} RTX which represents
+the value that is stored in @code{outputvar}:
+
+@smallexample
+(set @var{rtx-for-outputvar}
+ (asm_operands "foo %1,%2,%0" "a" 0
+ [@var{rtx-for-addition-result} @var{rtx-for-*z}]
+ [(asm_input:@var{m1} "g")
+ (asm_input:@var{m2} "di")]))
+@end smallexample
+
+@noindent
+Here the operands of the @code{asm_operands} RTX are the assembler
+template string, the output-operand's constraint, the index-number of the
+output operand among the output operands specified, a vector of input
+operand RTX's, and a vector of input-operand modes and constraints. The
+mode @var{m1} is the mode of the sum @code{x+y}; @var{m2} is that of
+@code{*z}.
+
+When an @code{asm} statement has multiple output values, its insn has
+several such @code{set} RTX's inside of a @code{parallel}. Each @code{set}
+contains a @code{asm_operands}; all of these share the same assembler
+template and vectors, but each contains the constraint for the respective
+output operand. They are also distinguished by the output-operand index
+number, which is 0, 1, @dots{} for successive output operands.
+
+@node Insns, Calls, Assembler, RTL
+@section Insns
+@cindex insns
+
+The RTL representation of the code for a function is a doubly-linked
+chain of objects called @dfn{insns}. Insns are expressions with
+special codes that are used for no other purpose. Some insns are
+actual instructions; others represent dispatch tables for @code{switch}
+statements; others represent labels to jump to or various sorts of
+declarative information.
+
+In addition to its own specific data, each insn must have a unique
+id-number that distinguishes it from all other insns in the current
+function (after delayed branch scheduling, copies of an insn with the
+same id-number may be present in multiple places in a function, but
+these copies will always be identical and will only appear inside a
+@code{sequence}), and chain pointers to the preceding and following
+insns. These three fields occupy the same position in every insn,
+independent of the expression code of the insn. They could be accessed
+with @code{XEXP} and @code{XINT}, but instead three special macros are
+always used:
+
+@table @code
+@findex INSN_UID
+@item INSN_UID (@var{i})
+Accesses the unique id of insn @var{i}.
+
+@findex PREV_INSN
+@item PREV_INSN (@var{i})
+Accesses the chain pointer to the insn preceding @var{i}.
+If @var{i} is the first insn, this is a null pointer.
+
+@findex NEXT_INSN
+@item NEXT_INSN (@var{i})
+Accesses the chain pointer to the insn following @var{i}.
+If @var{i} is the last insn, this is a null pointer.
+@end table
+
+@findex get_insns
+@findex get_last_insn
+The first insn in the chain is obtained by calling @code{get_insns}; the
+last insn is the result of calling @code{get_last_insn}. Within the
+chain delimited by these insns, the @code{NEXT_INSN} and
+@code{PREV_INSN} pointers must always correspond: if @var{insn} is not
+the first insn,
+
+@example
+NEXT_INSN (PREV_INSN (@var{insn})) == @var{insn}
+@end example
+
+@noindent
+is always true and if @var{insn} is not the last insn,
+
+@example
+PREV_INSN (NEXT_INSN (@var{insn})) == @var{insn}
+@end example
+
+@noindent
+is always true.
+
+After delay slot scheduling, some of the insns in the chain might be
+@code{sequence} expressions, which contain a vector of insns. The value
+of @code{NEXT_INSN} in all but the last of these insns is the next insn
+in the vector; the value of @code{NEXT_INSN} of the last insn in the vector
+is the same as the value of @code{NEXT_INSN} for the @code{sequence} in
+which it is contained. Similar rules apply for @code{PREV_INSN}.
+
+This means that the above invariants are not necessarily true for insns
+inside @code{sequence} expressions. Specifically, if @var{insn} is the
+first insn in a @code{sequence}, @code{NEXT_INSN (PREV_INSN (@var{insn}))}
+is the insn containing the @code{sequence} expression, as is the value
+of @code{PREV_INSN (NEXT_INSN (@var{insn}))} is @var{insn} is the last
+insn in the @code{sequence} expression. You can use these expressions
+to find the containing @code{sequence} expression.@refill
+
+Every insn has one of the following six expression codes:
+
+@table @code
+@findex insn
+@item insn
+The expression code @code{insn} is used for instructions that do not jump
+and do not do function calls. @code{sequence} expressions are always
+contained in insns with code @code{insn} even if one of those insns
+should jump or do function calls.
+
+Insns with code @code{insn} have four additional fields beyond the three
+mandatory ones listed above. These four are described in a table below.
+
+@findex jump_insn
+@item jump_insn
+The expression code @code{jump_insn} is used for instructions that may
+jump (or, more generally, may contain @code{label_ref} expressions). If
+there is an instruction to return from the current function, it is
+recorded as a @code{jump_insn}.
+
+@findex JUMP_LABEL
+@code{jump_insn} insns have the same extra fields as @code{insn} insns,
+accessed in the same way and in addition contain a field
+@code{JUMP_LABEL} which is defined once jump optimization has completed.
+
+For simple conditional and unconditional jumps, this field contains the
+@code{code_label} to which this insn will (possibly conditionally)
+branch. In a more complex jump, @code{JUMP_LABEL} records one of the
+labels that the insn refers to; the only way to find the others
+is to scan the entire body of the insn.
+
+Return insns count as jumps, but since they do not refer to any labels,
+they have zero in the @code{JUMP_LABEL} field.
+
+@findex call_insn
+@item call_insn
+The expression code @code{call_insn} is used for instructions that may do
+function calls. It is important to distinguish these instructions because
+they imply that certain registers and memory locations may be altered
+unpredictably.
+
+@findex CALL_INSN_FUNCTION_USAGE
+@code{call_insn} insns have the same extra fields as @code{insn} insns,
+accessed in the same way and in addition contain a field
+@code{CALL_INSN_FUNCTION_USAGE}, which contains a list (chain of
+@code{expr_list} expressions) containing @code{use} and @code{clobber}
+expressions that denote hard registers used or clobbered by the called
+function. A register specified in a @code{clobber} in this list is
+modified @emph{after} the execution of the @code{call_insn}, while a
+register in a @code{clobber} in the body of the @code{call_insn} is
+clobbered before the insn completes execution. @code{clobber}
+expressions in this list augment registers specified in
+@code{CALL_USED_REGISTERS} (@pxref{Register Basics}).
+
+@findex code_label
+@findex CODE_LABEL_NUMBER
+@item code_label
+A @code{code_label} insn represents a label that a jump insn can jump
+to. It contains two special fields of data in addition to the three
+standard ones. @code{CODE_LABEL_NUMBER} is used to hold the @dfn{label
+number}, a number that identifies this label uniquely among all the
+labels in the compilation (not just in the current function).
+Ultimately, the label is represented in the assembler output as an
+assembler label, usually of the form @samp{L@var{n}} where @var{n} is
+the label number.
+
+When a @code{code_label} appears in an RTL expression, it normally
+appears within a @code{label_ref} which represents the address of
+the label, as a number.
+
+@findex LABEL_NUSES
+The field @code{LABEL_NUSES} is only defined once the jump optimization
+phase is completed and contains the number of times this label is
+referenced in the current function.
+
+@findex barrier
+@item barrier
+Barriers are placed in the instruction stream when control cannot flow
+past them. They are placed after unconditional jump instructions to
+indicate that the jumps are unconditional and after calls to
+@code{volatile} functions, which do not return (e.g., @code{exit}).
+They contain no information beyond the three standard fields.
+
+@findex note
+@findex NOTE_LINE_NUMBER
+@findex NOTE_SOURCE_FILE
+@item note
+@code{note} insns are used to represent additional debugging and
+declarative information. They contain two nonstandard fields, an
+integer which is accessed with the macro @code{NOTE_LINE_NUMBER} and a
+string accessed with @code{NOTE_SOURCE_FILE}.
+
+If @code{NOTE_LINE_NUMBER} is positive, the note represents the
+position of a source line and @code{NOTE_SOURCE_FILE} is the source file name
+that the line came from. These notes control generation of line
+number data in the assembler output.
+
+Otherwise, @code{NOTE_LINE_NUMBER} is not really a line number but a
+code with one of the following values (and @code{NOTE_SOURCE_FILE}
+must contain a null pointer):
+
+@table @code
+@findex NOTE_INSN_DELETED
+@item NOTE_INSN_DELETED
+Such a note is completely ignorable. Some passes of the compiler
+delete insns by altering them into notes of this kind.
+
+@findex NOTE_INSN_BLOCK_BEG
+@findex NOTE_INSN_BLOCK_END
+@item NOTE_INSN_BLOCK_BEG
+@itemx NOTE_INSN_BLOCK_END
+These types of notes indicate the position of the beginning and end
+of a level of scoping of variable names. They control the output
+of debugging information.
+
+@findex NOTE_INSN_EH_REGION_BEG
+@findex NOTE_INSN_EH_REGION_END
+@item NOTE_INSN_EH_REGION_BEG
+@itemx NOTE_INSN_EH_REGION_END
+These types of notes indicate the position of the beginning and end of a
+level of scoping for exception handling. @code{NOTE_BLOCK_NUMBER}
+identifies which @code{CODE_LABEL} is associated with the given region.
+
+@findex NOTE_INSN_LOOP_BEG
+@findex NOTE_INSN_LOOP_END
+@item NOTE_INSN_LOOP_BEG
+@itemx NOTE_INSN_LOOP_END
+These types of notes indicate the position of the beginning and end
+of a @code{while} or @code{for} loop. They enable the loop optimizer
+to find loops quickly.
+
+@findex NOTE_INSN_LOOP_CONT
+@item NOTE_INSN_LOOP_CONT
+Appears at the place in a loop that @code{continue} statements jump to.
+
+@findex NOTE_INSN_LOOP_VTOP
+@item NOTE_INSN_LOOP_VTOP
+This note indicates the place in a loop where the exit test begins for
+those loops in which the exit test has been duplicated. This position
+becomes another virtual start of the loop when considering loop
+invariants.
+
+@findex NOTE_INSN_FUNCTION_END
+@item NOTE_INSN_FUNCTION_END
+Appears near the end of the function body, just before the label that
+@code{return} statements jump to (on machine where a single instruction
+does not suffice for returning). This note may be deleted by jump
+optimization.
+
+@findex NOTE_INSN_SETJMP
+@item NOTE_INSN_SETJMP
+Appears following each call to @code{setjmp} or a related function.
+@end table
+
+These codes are printed symbolically when they appear in debugging dumps.
+@end table
+
+@cindex @code{HImode}, in @code{insn}
+@cindex @code{QImode}, in @code{insn}
+The machine mode of an insn is normally @code{VOIDmode}, but some
+phases use the mode for various purposes; for example, the reload pass
+sets it to @code{HImode} if the insn needs reloading but not register
+elimination and @code{QImode} if both are required. The common
+subexpression elimination pass sets the mode of an insn to @code{QImode}
+when it is the first insn in a block that has already been processed.
+
+Here is a table of the extra fields of @code{insn}, @code{jump_insn}
+and @code{call_insn} insns:
+
+@table @code
+@findex PATTERN
+@item PATTERN (@var{i})
+An expression for the side effect performed by this insn. This must be
+one of the following codes: @code{set}, @code{call}, @code{use},
+@code{clobber}, @code{return}, @code{asm_input}, @code{asm_output},
+@code{addr_vec}, @code{addr_diff_vec}, @code{trap_if}, @code{unspec},
+@code{unspec_volatile}, @code{parallel}, or @code{sequence}. If it is a @code{parallel},
+each element of the @code{parallel} must be one these codes, except that
+@code{parallel} expressions cannot be nested and @code{addr_vec} and
+@code{addr_diff_vec} are not permitted inside a @code{parallel} expression.
+
+@findex INSN_CODE
+@item INSN_CODE (@var{i})
+An integer that says which pattern in the machine description matches
+this insn, or -1 if the matching has not yet been attempted.
+
+Such matching is never attempted and this field remains -1 on an insn
+whose pattern consists of a single @code{use}, @code{clobber},
+@code{asm_input}, @code{addr_vec} or @code{addr_diff_vec} expression.
+
+@findex asm_noperands
+Matching is also never attempted on insns that result from an @code{asm}
+statement. These contain at least one @code{asm_operands} expression.
+The function @code{asm_noperands} returns a non-negative value for
+such insns.
+
+In the debugging output, this field is printed as a number followed by
+a symbolic representation that locates the pattern in the @file{md}
+file as some small positive or negative offset from a named pattern.
+
+@findex LOG_LINKS
+@item LOG_LINKS (@var{i})
+A list (chain of @code{insn_list} expressions) giving information about
+dependencies between instructions within a basic block. Neither a jump
+nor a label may come between the related insns.
+
+@findex REG_NOTES
+@item REG_NOTES (@var{i})
+A list (chain of @code{expr_list} and @code{insn_list} expressions)
+giving miscellaneous information about the insn. It is often
+information pertaining to the registers used in this insn.
+@end table
+
+The @code{LOG_LINKS} field of an insn is a chain of @code{insn_list}
+expressions. Each of these has two operands: the first is an insn,
+and the second is another @code{insn_list} expression (the next one in
+the chain). The last @code{insn_list} in the chain has a null pointer
+as second operand. The significant thing about the chain is which
+insns appear in it (as first operands of @code{insn_list}
+expressions). Their order is not significant.
+
+This list is originally set up by the flow analysis pass; it is a null
+pointer until then. Flow only adds links for those data dependencies
+which can be used for instruction combination. For each insn, the flow
+analysis pass adds a link to insns which store into registers values
+that are used for the first time in this insn. The instruction
+scheduling pass adds extra links so that every dependence will be
+represented. Links represent data dependencies, antidependencies and
+output dependencies; the machine mode of the link distinguishes these
+three types: antidependencies have mode @code{REG_DEP_ANTI}, output
+dependencies have mode @code{REG_DEP_OUTPUT}, and data dependencies have
+mode @code{VOIDmode}.
+
+The @code{REG_NOTES} field of an insn is a chain similar to the
+@code{LOG_LINKS} field but it includes @code{expr_list} expressions in
+addition to @code{insn_list} expressions. There are several kinds of
+register notes, which are distinguished by the machine mode, which in a
+register note is really understood as being an @code{enum reg_note}.
+The first operand @var{op} of the note is data whose meaning depends on
+the kind of note.
+
+@findex REG_NOTE_KIND
+@findex PUT_REG_NOTE_KIND
+The macro @code{REG_NOTE_KIND (@var{x})} returns the kind of
+register note. Its counterpart, the macro @code{PUT_REG_NOTE_KIND
+(@var{x}, @var{newkind})} sets the register note type of @var{x} to be
+@var{newkind}.
+
+Register notes are of three classes: They may say something about an
+input to an insn, they may say something about an output of an insn, or
+they may create a linkage between two insns. There are also a set
+of values that are only used in @code{LOG_LINKS}.
+
+These register notes annotate inputs to an insn:
+
+@table @code
+@findex REG_DEAD
+@item REG_DEAD
+The value in @var{op} dies in this insn; that is to say, altering the
+value immediately after this insn would not affect the future behavior
+of the program.
+
+This does not necessarily mean that the register @var{op} has no useful
+value after this insn since it may also be an output of the insn. In
+such a case, however, a @code{REG_DEAD} note would be redundant and is
+usually not present until after the reload pass, but no code relies on
+this fact.
+
+@findex REG_INC
+@item REG_INC
+The register @var{op} is incremented (or decremented; at this level
+there is no distinction) by an embedded side effect inside this insn.
+This means it appears in a @code{post_inc}, @code{pre_inc},
+@code{post_dec} or @code{pre_dec} expression.
+
+@findex REG_NONNEG
+@item REG_NONNEG
+The register @var{op} is known to have a nonnegative value when this
+insn is reached. This is used so that decrement and branch until zero
+instructions, such as the m68k dbra, can be matched.
+
+The @code{REG_NONNEG} note is added to insns only if the machine
+description has a @samp{decrement_and_branch_until_zero} pattern.
+
+@findex REG_NO_CONFLICT
+@item REG_NO_CONFLICT
+This insn does not cause a conflict between @var{op} and the item
+being set by this insn even though it might appear that it does.
+In other words, if the destination register and @var{op} could
+otherwise be assigned the same register, this insn does not
+prevent that assignment.
+
+Insns with this note are usually part of a block that begins with a
+@code{clobber} insn specifying a multi-word pseudo register (which will
+be the output of the block), a group of insns that each set one word of
+the value and have the @code{REG_NO_CONFLICT} note attached, and a final
+insn that copies the output to itself with an attached @code{REG_EQUAL}
+note giving the expression being computed. This block is encapsulated
+with @code{REG_LIBCALL} and @code{REG_RETVAL} notes on the first and
+last insns, respectively.
+
+@findex REG_LABEL
+@item REG_LABEL
+This insn uses @var{op}, a @code{code_label}, but is not a
+@code{jump_insn}. The presence of this note allows jump optimization to
+be aware that @var{op} is, in fact, being used.
+@end table
+
+The following notes describe attributes of outputs of an insn:
+
+@table @code
+@findex REG_EQUIV
+@findex REG_EQUAL
+@item REG_EQUIV
+@itemx REG_EQUAL
+This note is only valid on an insn that sets only one register and
+indicates that that register will be equal to @var{op} at run time; the
+scope of this equivalence differs between the two types of notes. The
+value which the insn explicitly copies into the register may look
+different from @var{op}, but they will be equal at run time. If the
+output of the single @code{set} is a @code{strict_low_part} expression,
+the note refers to the register that is contained in @code{SUBREG_REG}
+of the @code{subreg} expression.
+
+For @code{REG_EQUIV}, the register is equivalent to @var{op} throughout
+the entire function, and could validly be replaced in all its
+occurrences by @var{op}. (``Validly'' here refers to the data flow of
+the program; simple replacement may make some insns invalid.) For
+example, when a constant is loaded into a register that is never
+assigned any other value, this kind of note is used.
+
+When a parameter is copied into a pseudo-register at entry to a function,
+a note of this kind records that the register is equivalent to the stack
+slot where the parameter was passed. Although in this case the register
+may be set by other insns, it is still valid to replace the register
+by the stack slot throughout the function.
+
+A @code{REG_EQUIV} note is also used on an instruction which copies a
+register parameter into a pseudo-register at entry to a function, if
+there is a stack slot where that parameter could be stored. Although
+other insns may set the pseudo-register, it is valid for the compiler to
+replace the pseudo-register by stack slot throughout the function,
+provided the compiler ensures that the stack slot is properly
+initialized by making the replacement in the initial copy instruction as
+well. This is used on machines for which the calling convention
+allocates stack space for register parameters. See
+@code{REG_PARM_STACK_SPACE} in @ref{Stack Arguments}.
+
+In the case of @code{REG_EQUAL}, the register that is set by this insn
+will be equal to @var{op} at run time at the end of this insn but not
+necessarily elsewhere in the function. In this case, @var{op}
+is typically an arithmetic expression. For example, when a sequence of
+insns such as a library call is used to perform an arithmetic operation,
+this kind of note is attached to the insn that produces or copies the
+final value.
+
+These two notes are used in different ways by the compiler passes.
+@code{REG_EQUAL} is used by passes prior to register allocation (such as
+common subexpression elimination and loop optimization) to tell them how
+to think of that value. @code{REG_EQUIV} notes are used by register
+allocation to indicate that there is an available substitute expression
+(either a constant or a @code{mem} expression for the location of a
+parameter on the stack) that may be used in place of a register if
+insufficient registers are available.
+
+Except for stack homes for parameters, which are indicated by a
+@code{REG_EQUIV} note and are not useful to the early optimization
+passes and pseudo registers that are equivalent to a memory location
+throughout there entire life, which is not detected until later in
+the compilation, all equivalences are initially indicated by an attached
+@code{REG_EQUAL} note. In the early stages of register allocation, a
+@code{REG_EQUAL} note is changed into a @code{REG_EQUIV} note if
+@var{op} is a constant and the insn represents the only set of its
+destination register.
+
+Thus, compiler passes prior to register allocation need only check for
+@code{REG_EQUAL} notes and passes subsequent to register allocation
+need only check for @code{REG_EQUIV} notes.
+
+@findex REG_UNUSED
+@item REG_UNUSED
+The register @var{op} being set by this insn will not be used in a
+subsequent insn. This differs from a @code{REG_DEAD} note, which
+indicates that the value in an input will not be used subsequently.
+These two notes are independent; both may be present for the same
+register.
+
+@findex REG_WAS_0
+@item REG_WAS_0
+The single output of this insn contained zero before this insn.
+@var{op} is the insn that set it to zero. You can rely on this note if
+it is present and @var{op} has not been deleted or turned into a @code{note};
+its absence implies nothing.
+@end table
+
+These notes describe linkages between insns. They occur in pairs: one
+insn has one of a pair of notes that points to a second insn, which has
+the inverse note pointing back to the first insn.
+
+@table @code
+@findex REG_RETVAL
+@item REG_RETVAL
+This insn copies the value of a multi-insn sequence (for example, a
+library call), and @var{op} is the first insn of the sequence (for a
+library call, the first insn that was generated to set up the arguments
+for the library call).
+
+Loop optimization uses this note to treat such a sequence as a single
+operation for code motion purposes and flow analysis uses this note to
+delete such sequences whose results are dead.
+
+A @code{REG_EQUAL} note will also usually be attached to this insn to
+provide the expression being computed by the sequence.
+
+@findex REG_LIBCALL
+@item REG_LIBCALL
+This is the inverse of @code{REG_RETVAL}: it is placed on the first
+insn of a multi-insn sequence, and it points to the last one.
+
+@findex REG_CC_SETTER
+@findex REG_CC_USER
+@item REG_CC_SETTER
+@itemx REG_CC_USER
+On machines that use @code{cc0}, the insns which set and use @code{cc0}
+set and use @code{cc0} are adjacent. However, when branch delay slot
+filling is done, this may no longer be true. In this case a
+@code{REG_CC_USER} note will be placed on the insn setting @code{cc0} to
+point to the insn using @code{cc0} and a @code{REG_CC_SETTER} note will
+be placed on the insn using @code{cc0} to point to the insn setting
+@code{cc0}.@refill
+@end table
+
+These values are only used in the @code{LOG_LINKS} field, and indicate
+the type of dependency that each link represents. Links which indicate
+a data dependence (a read after write dependence) do not use any code,
+they simply have mode @code{VOIDmode}, and are printed without any
+descriptive text.
+
+@table @code
+@findex REG_DEP_ANTI
+@item REG_DEP_ANTI
+This indicates an anti dependence (a write after read dependence).
+
+@findex REG_DEP_OUTPUT
+@item REG_DEP_OUTPUT
+This indicates an output dependence (a write after write dependence).
+@end table
+
+These notes describe information gathered from gcov profile data. They
+are stored in the @code{REG_NOTES} field of an insn as an
+@code{expr_list}.
+
+@table @code
+@findex REG_EXEC_COUNT
+@item REG_EXEC_COUNT
+This is used to indicate the number of times a basic block was executed
+according to the profile data. The note is attached to the first insn in
+the basic block.
+
+@findex REG_BR_PROB
+@item REG_BR_PROB
+This is used to specify the ratio of branches to non-branches of a
+branch insn according to the profile data. The value is stored as a
+value between 0 and REG_BR_PROB_BASE; larger values indicate a higher
+probability that the branch will be taken.
+@end table
+
+For convenience, the machine mode in an @code{insn_list} or
+@code{expr_list} is printed using these symbolic codes in debugging dumps.
+
+@findex insn_list
+@findex expr_list
+The only difference between the expression codes @code{insn_list} and
+@code{expr_list} is that the first operand of an @code{insn_list} is
+assumed to be an insn and is printed in debugging dumps as the insn's
+unique id; the first operand of an @code{expr_list} is printed in the
+ordinary way as an expression.
+
+@node Calls, Sharing, Insns, RTL
+@section RTL Representation of Function-Call Insns
+@cindex calling functions in RTL
+@cindex RTL function-call insns
+@cindex function-call insns
+
+Insns that call subroutines have the RTL expression code @code{call_insn}.
+These insns must satisfy special rules, and their bodies must use a special
+RTL expression code, @code{call}.
+
+@cindex @code{call} usage
+A @code{call} expression has two operands, as follows:
+
+@example
+(call (mem:@var{fm} @var{addr}) @var{nbytes})
+@end example
+
+@noindent
+Here @var{nbytes} is an operand that represents the number of bytes of
+argument data being passed to the subroutine, @var{fm} is a machine mode
+(which must equal as the definition of the @code{FUNCTION_MODE} macro in
+the machine description) and @var{addr} represents the address of the
+subroutine.
+
+For a subroutine that returns no value, the @code{call} expression as
+shown above is the entire body of the insn, except that the insn might
+also contain @code{use} or @code{clobber} expressions.
+
+@cindex @code{BLKmode}, and function return values
+For a subroutine that returns a value whose mode is not @code{BLKmode},
+the value is returned in a hard register. If this register's number is
+@var{r}, then the body of the call insn looks like this:
+
+@example
+(set (reg:@var{m} @var{r})
+ (call (mem:@var{fm} @var{addr}) @var{nbytes}))
+@end example
+
+@noindent
+This RTL expression makes it clear (to the optimizer passes) that the
+appropriate register receives a useful value in this insn.
+
+When a subroutine returns a @code{BLKmode} value, it is handled by
+passing to the subroutine the address of a place to store the value.
+So the call insn itself does not ``return'' any value, and it has the
+same RTL form as a call that returns nothing.
+
+On some machines, the call instruction itself clobbers some register,
+for example to contain the return address. @code{call_insn} insns
+on these machines should have a body which is a @code{parallel}
+that contains both the @code{call} expression and @code{clobber}
+expressions that indicate which registers are destroyed. Similarly,
+if the call instruction requires some register other than the stack
+pointer that is not explicitly mentioned it its RTL, a @code{use}
+subexpression should mention that register.
+
+Functions that are called are assumed to modify all registers listed in
+the configuration macro @code{CALL_USED_REGISTERS} (@pxref{Register
+Basics}) and, with the exception of @code{const} functions and library
+calls, to modify all of memory.
+
+Insns containing just @code{use} expressions directly precede the
+@code{call_insn} insn to indicate which registers contain inputs to the
+function. Similarly, if registers other than those in
+@code{CALL_USED_REGISTERS} are clobbered by the called function, insns
+containing a single @code{clobber} follow immediately after the call to
+indicate which registers.
+
+@node Sharing
+@section Structure Sharing Assumptions
+@cindex sharing of RTL components
+@cindex RTL structure sharing assumptions
+
+The compiler assumes that certain kinds of RTL expressions are unique;
+there do not exist two distinct objects representing the same value.
+In other cases, it makes an opposite assumption: that no RTL expression
+object of a certain kind appears in more than one place in the
+containing structure.
+
+These assumptions refer to a single function; except for the RTL
+objects that describe global variables and external functions,
+and a few standard objects such as small integer constants,
+no RTL objects are common to two functions.
+
+@itemize @bullet
+@cindex @code{reg}, RTL sharing
+@item
+Each pseudo-register has only a single @code{reg} object to represent it,
+and therefore only a single machine mode.
+
+@cindex symbolic label
+@cindex @code{symbol_ref}, RTL sharing
+@item
+For any symbolic label, there is only one @code{symbol_ref} object
+referring to it.
+
+@cindex @code{const_int}, RTL sharing
+@item
+There is only one @code{const_int} expression with value 0, only
+one with value 1, and only one with value @minus{}1.
+Some other integer values are also stored uniquely.
+
+@cindex @code{pc}, RTL sharing
+@item
+There is only one @code{pc} expression.
+
+@cindex @code{cc0}, RTL sharing
+@item
+There is only one @code{cc0} expression.
+
+@cindex @code{const_double}, RTL sharing
+@item
+There is only one @code{const_double} expression with value 0 for
+each floating point mode. Likewise for values 1 and 2.
+
+@cindex @code{label_ref}, RTL sharing
+@cindex @code{scratch}, RTL sharing
+@item
+No @code{label_ref} or @code{scratch} appears in more than one place in
+the RTL structure; in other words, it is safe to do a tree-walk of all
+the insns in the function and assume that each time a @code{label_ref}
+or @code{scratch} is seen it is distinct from all others that are seen.
+
+@cindex @code{mem}, RTL sharing
+@item
+Only one @code{mem} object is normally created for each static
+variable or stack slot, so these objects are frequently shared in all
+the places they appear. However, separate but equal objects for these
+variables are occasionally made.
+
+@cindex @code{asm_operands}, RTL sharing
+@item
+When a single @code{asm} statement has multiple output operands, a
+distinct @code{asm_operands} expression is made for each output operand.
+However, these all share the vector which contains the sequence of input
+operands. This sharing is used later on to test whether two
+@code{asm_operands} expressions come from the same statement, so all
+optimizations must carefully preserve the sharing if they copy the
+vector at all.
+
+@item
+No RTL object appears in more than one place in the RTL structure
+except as described above. Many passes of the compiler rely on this
+by assuming that they can modify RTL objects in place without unwanted
+side-effects on other insns.
+
+@findex unshare_all_rtl
+@item
+During initial RTL generation, shared structure is freely introduced.
+After all the RTL for a function has been generated, all shared
+structure is copied by @code{unshare_all_rtl} in @file{emit-rtl.c},
+after which the above rules are guaranteed to be followed.
+
+@findex copy_rtx_if_shared
+@item
+During the combiner pass, shared structure within an insn can exist
+temporarily. However, the shared structure is copied before the
+combiner is finished with the insn. This is done by calling
+@code{copy_rtx_if_shared}, which is a subroutine of
+@code{unshare_all_rtl}.
+@end itemize
+
+@node Reading RTL
+@section Reading RTL
+
+To read an RTL object from a file, call @code{read_rtx}. It takes one
+argument, a stdio stream, and returns a single RTL object.
+
+Reading RTL from a file is very slow. This is not currently a
+problem since reading RTL occurs only as part of building the
+compiler.
+
+People frequently have the idea of using RTL stored as text in a file as
+an interface between a language front end and the bulk of GNU CC. This
+idea is not feasible.
+
+GNU CC was designed to use RTL internally only. Correct RTL for a given
+program is very dependent on the particular target machine. And the RTL
+does not contain all the information about the program.
+
+The proper way to interface GNU CC to a new language front end is with
+the ``tree'' data structure. There is no manual for this data
+structure, but it is described in the files @file{tree.h} and
+@file{tree.def}.