aboutsummaryrefslogtreecommitdiff
path: root/source/cmac_mode.c
blob: 99cdf7b4b027c8db9ab50a0f51b869e190eda7ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/* cmac_mode.c - TinyCrypt CMAC mode implementation */

/*
 *  Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions are met:
 *
 *    - Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *
 *    - Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 *    - Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

#include <tinycrypt/aes.h>
#include <tinycrypt/cmac_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>

/* max number of calls until change the key (2^48).*/
static uint64_t MAX_CALLS = ((uint64_t)1 << 48);

/*
 *  gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
 *  array with byte 0 the most significant and byte 15 the least significant.
 *  High bit carry reduction is based on the primitive polynomial
 *
 *                     X^128 + X^7 + X^2 + X + 1,
 *
 *  which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed,
 *  since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since
 *  addition of polynomials with coefficients in Z/Z(2) is just XOR, we can
 *  add X^128 to both sides to get
 *
 *       X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1)
 *
 *  and the coefficients of the polynomial on the right hand side form the
 *  string 1000 0111 = 0x87, which is the value of gf_wrap.
 *
 *  This gets used in the following way. Doubling in GF(2^128) is just a left
 *  shift by 1 bit, except when the most significant bit is 1. In the latter
 *  case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit
 *  that overflows beyond 128 bits can be replaced by addition of
 *  X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition
 *  in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87
 *  into the low order byte after a left shift when the starting high order
 *  bit is 1.
 */
const unsigned char gf_wrap = 0x87;

/*
 *  assumes: out != NULL and points to a GF(2^n) value to receive the
 *            doubled value;
 *           in != NULL and points to a 16 byte GF(2^n) value
 *            to double;
 *           the in and out buffers do not overlap.
 *  effects: doubles the GF(2^n) value pointed to by "in" and places
 *           the result in the GF(2^n) value pointed to by "out."
 */
void gf_double(uint8_t *out, uint8_t *in)
{

	/* start with low order byte */
	uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);

	/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
	uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;

	out += (TC_AES_BLOCK_SIZE - 1);
	for (;;) {
		*out-- = (*x << 1) ^ carry;
		if (x == in) {
			break;
		}
		carry = *x-- >> 7;
	}
}

int32_t tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
{

	/* input sanity check: */
	if (s == (TCCmacState_t) 0 ||
	    key == (const uint8_t *) 0) {
		return TC_FAIL;
	}

	/* put s into a known state */
	_set(s, 0, sizeof(*s));
	s->sched = sched;

	/* configure the encryption key used by the underlying block cipher */
	tc_aes128_set_encrypt_key(s->sched, key);

	/* compute s->K1 and s->K2 from s->iv using s->keyid */
	_set(s->iv, 0, TC_AES_BLOCK_SIZE);
	tc_aes_encrypt(s->iv, s->iv, s->sched);
	gf_double (s->K1, s->iv);
	gf_double (s->K2, s->K1);

	/* reset s->iv to 0 in case someone wants to compute now */
	tc_cmac_init(s);

	return TC_SUCCESS;
}

int32_t tc_cmac_erase(TCCmacState_t s)
{
	if (s == (TCCmacState_t) 0) {
		return TC_FAIL;
	}

	/* destroy the current state */
	_set(s, 0, sizeof(*s));

	return TC_SUCCESS;
}

int32_t tc_cmac_init(TCCmacState_t s)
{
	/* input sanity check: */
	if (s == (TCCmacState_t) 0) {
		return TC_FAIL;
	}

	/* CMAC starts with an all zero initialization vector */
	_set(s->iv, 0, TC_AES_BLOCK_SIZE);

	/* and the leftover buffer is empty */
	_set(s->leftover, 0, TC_AES_BLOCK_SIZE);
	s->leftover_offset = 0;

	/* Set countdown to max number of calls allowed before re-keying: */
	s->countdown = MAX_CALLS;

	return TC_SUCCESS;
}

int32_t tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
{
	uint32_t i;

	/* input sanity check: */
	if (s == (TCCmacState_t) 0) {
		return TC_FAIL;
	}
	if (data_length == 0) {
		return  TC_SUCCESS;
	}
	if (data == (const uint8_t *) 0) {
		return TC_FAIL;
	}

	if (s->countdown == 0) {
		return TC_FAIL;
	}

	s->countdown--;

	if (s->leftover_offset > 0) {
		/* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
		size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;

		if (data_length < remaining_space) {
			/* still not enough data to encrypt this time either */
			_copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
			s->leftover_offset += data_length;
			return TC_SUCCESS;
		}
		/* leftover block is now full; encrypt it first */
		_copy(&s->leftover[s->leftover_offset],
		      remaining_space,
		      data,
		      remaining_space);
		data_length -= remaining_space;
		data += remaining_space;
		s->leftover_offset = 0;

		for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
			s->iv[i] ^= s->leftover[i];
		}
		tc_aes_encrypt(s->iv, s->iv, s->sched);
	}

	/* CBC encrypt each (except the last) of the data blocks */
	while (data_length > TC_AES_BLOCK_SIZE) {
		for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
			s->iv[i] ^= data[i];
		}
		tc_aes_encrypt(s->iv, s->iv, s->sched);
		data += TC_AES_BLOCK_SIZE;
		data_length  -= TC_AES_BLOCK_SIZE;
	}

	if (data_length > 0) {
		/* save leftover data for next time */
		_copy(s->leftover, data_length, data, data_length);
		s->leftover_offset = data_length;
	}

	return TC_SUCCESS;
}

int32_t tc_cmac_final(uint8_t *tag, TCCmacState_t s)
{
	uint8_t *k;
	uint32_t i;

	/* input sanity check: */
	if (tag == (uint8_t *) 0 ||
	    s == (TCCmacState_t) 0) {
		return TC_FAIL;
	}

	if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
		/* the last message block is a full-sized block */
		k = (uint8_t *) s->K1;
	} else {
		/* the final message block is not a full-sized  block */
		size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;

		_set(&s->leftover[s->leftover_offset], 0, remaining);
		s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
		k = (uint8_t *) s->K2;
	}
	for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
		s->iv[i] ^= s->leftover[i] ^ k[i];
	}

	tc_aes_encrypt(tag, s->iv, s->sched);

	/* erasing state: */
	tc_cmac_erase(s);

	return TC_SUCCESS;
}