aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/lib
diff options
context:
space:
mode:
authorPeter Zijlstra <peterz@infradead.org>2022-06-14 23:15:48 +0200
committerBorislav Petkov <bp@suse.de>2022-06-27 10:33:59 +0200
commita149180fbcf336e97ce4eb2cdc13672727feb94d (patch)
tree465e0b2ebf7a147d686abed224a732907c475c1b /arch/x86/lib
parent951ddecf435659553ed15a9214e153a3af43a9a1 (diff)
x86: Add magic AMD return-thunk
Note: needs to be in a section distinct from Retpolines such that the Retpoline RET substitution cannot possibly use immediate jumps. ORC unwinding for zen_untrain_ret() and __x86_return_thunk() is a little tricky but works due to the fact that zen_untrain_ret() doesn't have any stack ops and as such will emit a single ORC entry at the start (+0x3f). Meanwhile, unwinding an IP, including the __x86_return_thunk() one (+0x40) will search for the largest ORC entry smaller or equal to the IP, these will find the one ORC entry (+0x3f) and all works. [ Alexandre: SVM part. ] [ bp: Build fix, massages. ] Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de>
Diffstat (limited to 'arch/x86/lib')
-rw-r--r--arch/x86/lib/retpoline.S64
1 files changed, 60 insertions, 4 deletions
diff --git a/arch/x86/lib/retpoline.S b/arch/x86/lib/retpoline.S
index 4467c21215f4..fdd16163b996 100644
--- a/arch/x86/lib/retpoline.S
+++ b/arch/x86/lib/retpoline.S
@@ -72,11 +72,67 @@ SYM_CODE_END(__x86_indirect_thunk_array)
* This function name is magical and is used by -mfunction-return=thunk-extern
* for the compiler to generate JMPs to it.
*/
-SYM_CODE_START(__x86_return_thunk)
- UNWIND_HINT_EMPTY
- ANNOTATE_NOENDBR
+ .section .text.__x86.return_thunk
+
+/*
+ * Safety details here pertain to the AMD Zen{1,2} microarchitecture:
+ * 1) The RET at __x86_return_thunk must be on a 64 byte boundary, for
+ * alignment within the BTB.
+ * 2) The instruction at zen_untrain_ret must contain, and not
+ * end with, the 0xc3 byte of the RET.
+ * 3) STIBP must be enabled, or SMT disabled, to prevent the sibling thread
+ * from re-poisioning the BTB prediction.
+ */
+ .align 64
+ .skip 63, 0xcc
+SYM_FUNC_START_NOALIGN(zen_untrain_ret);
+
+ /*
+ * As executed from zen_untrain_ret, this is:
+ *
+ * TEST $0xcc, %bl
+ * LFENCE
+ * JMP __x86_return_thunk
+ *
+ * Executing the TEST instruction has a side effect of evicting any BTB
+ * prediction (potentially attacker controlled) attached to the RET, as
+ * __x86_return_thunk + 1 isn't an instruction boundary at the moment.
+ */
+ .byte 0xf6
+
+ /*
+ * As executed from __x86_return_thunk, this is a plain RET.
+ *
+ * As part of the TEST above, RET is the ModRM byte, and INT3 the imm8.
+ *
+ * We subsequently jump backwards and architecturally execute the RET.
+ * This creates a correct BTB prediction (type=ret), but in the
+ * meantime we suffer Straight Line Speculation (because the type was
+ * no branch) which is halted by the INT3.
+ *
+ * With SMT enabled and STIBP active, a sibling thread cannot poison
+ * RET's prediction to a type of its choice, but can evict the
+ * prediction due to competitive sharing. If the prediction is
+ * evicted, __x86_return_thunk will suffer Straight Line Speculation
+ * which will be contained safely by the INT3.
+ */
+SYM_INNER_LABEL(__x86_return_thunk, SYM_L_GLOBAL)
ret
int3
SYM_CODE_END(__x86_return_thunk)
-__EXPORT_THUNK(__x86_return_thunk)
+ /*
+ * Ensure the TEST decoding / BTB invalidation is complete.
+ */
+ lfence
+
+ /*
+ * Jump back and execute the RET in the middle of the TEST instruction.
+ * INT3 is for SLS protection.
+ */
+ jmp __x86_return_thunk
+ int3
+SYM_FUNC_END(zen_untrain_ret)
+__EXPORT_THUNK(zen_untrain_ret)
+
+EXPORT_SYMBOL(__x86_return_thunk)