aboutsummaryrefslogtreecommitdiff
path: root/secchan/in-band.c
blob: a2197c6a006270117d8dcfe5ced882556a08c808 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*
 * Copyright (c) 2008, 2009 Nicira Networks.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <config.h>
#include "in-band.h"
#include <arpa/inet.h>
#include <errno.h>
#include <inttypes.h>
#include <net/if.h>
#include <string.h>
#include <stdlib.h>
#include "dhcp.h"
#include "dpif.h"
#include "flow.h"
#include "mac-learning.h"
#include "netdev.h"
#include "odp-util.h"
#include "ofp-print.h"
#include "ofproto.h"
#include "ofpbuf.h"
#include "openflow/openflow.h"
#include "openvswitch/datapath-protocol.h"
#include "packets.h"
#include "poll-loop.h"
#include "rconn.h"
#include "status.h"
#include "timeval.h"
#include "vconn.h"

#define THIS_MODULE VLM_in_band
#include "vlog.h"

/* In-band control allows a single network to be used for OpenFlow
 * traffic and other data traffic.  Refer to ovs-vswitchd.conf(5) and 
 * secchan(8) for a description of configuring in-band control.
 *
 * This comment is an attempt to describe how in-band control works at a
 * wire- and implementation-level.  Correctly implementing in-band
 * control has proven difficult due to its many subtleties, and has thus
 * gone through many iterations.  Please read through and understand the
 * reasoning behind the chosen rules before making modifications.
 *
 * In Open vSwitch, in-band control is implemented as "hidden" flows (in
 * that they are not visible through OpenFlow) and at a higher priority
 * than wildcarded flows can be setup by the controller.  This is done 
 * so that the controller cannot interfere with them and possibly break 
 * connectivity with its switches.  It is possible to see all flows, 
 * including in-band ones, with the ovs-appctl "bridge/dump-flows" 
 * command.
 *
 * The following rules are always enabled with the "normal" action by a 
 * switch with in-band control:
 *
 *    a. DHCP requests sent from the local port.
 *    b. ARP replies to the local port's MAC address.
 *    c. ARP requests from the local port's MAC address.
 *    d. ARP replies to the remote side's MAC address.  Note that the 
 *       remote side is either the controller or the gateway to reach 
 *       the controller.
 *    e. ARP requests from the remote side's MAC address.  Note that
 *       like (d), the MAC is either for the controller or gateway.
 *    f. ARP replies containing the controller's IP address as a target.
 *    g. ARP requests containing the controller's IP address as a source.
 *    h. OpenFlow (6633/tcp) traffic to the controller's IP.
 *    i. OpenFlow (6633/tcp) traffic from the controller's IP.
 *
 * The goal of these rules is to be as narrow as possible to allow a
 * switch to join a network and be able to communicate with a
 * controller.  As mentioned earlier, these rules have higher priority
 * than the controller's rules, so if they are too broad, they may 
 * prevent the controller from implementing its policy.  As such,
 * in-band actively monitors some aspects of flow and packet processing
 * so that the rules can be made more precise.
 *
 * In-band control monitors attempts to add flows into the datapath that
 * could interfere with its duties.  The datapath only allows exact
 * match entries, so in-band control is able to be very precise about
 * the flows it prevents.  Flows that miss in the datapath are sent to
 * userspace to be processed, so preventing these flows from being
 * cached in the "fast path" does not affect correctness.  The only type 
 * of flow that is currently prevented is one that would prevent DHCP 
 * replies from being seen by the local port.  For example, a rule that 
 * forwarded all DHCP traffic to the controller would not be allowed, 
 * but one that forwarded to all ports (including the local port) would.
 *
 * As mentioned earlier, packets that miss in the datapath are sent to
 * the userspace for processing.  The userspace has its own flow table,
 * the "classifier", so in-band checks whether any special processing 
 * is needed before the classifier is consulted.  If a packet is a DHCP 
 * response to a request from the local port, the packet is forwarded to 
 * the local port, regardless of the flow table.  Note that this requires 
 * L7 processing of DHCP replies to determine whether the 'chaddr' field 
 * matches the MAC address of the local port.
 *
 * It is interesting to note that for an L3-based in-band control
 * mechanism, the majority of rules are devoted to ARP traffic.  At first 
 * glance, some of these rules appear redundant.  However, each serves an 
 * important role.  First, in order to determine the MAC address of the 
 * remote side (controller or gateway) for other ARP rules, we must allow 
 * ARP traffic for our local port with rules (b) and (c).  If we are 
 * between a switch and its connection to the controller, we have to 
 * allow the other switch's ARP traffic to through.  This is done with 
 * rules (d) and (e), since we do not know the addresses of the other
 * switches a priori, but do know the controller's or gateway's.  Finally, 
 * if the controller is running in a local guest VM that is not reached 
 * through the local port, the switch that is connected to the VM must 
 * allow ARP traffic based on the controller's IP address, since it will 
 * not know the MAC address of the local port that is sending the traffic 
 * or the MAC address of the controller in the guest VM.
 *
 * With a few notable exceptions below, in-band should work in most
 * network setups.  The following are considered "supported' in the
 * current implementation: 
 *
 *    - Locally Connected.  The switch and controller are on the same
 *      subnet.  This uses rules (a), (b), (c), (h), and (i).
 *
 *    - Reached through Gateway.  The switch and controller are on
 *      different subnets and must go through a gateway.  This uses
 *      rules (a), (b), (c), (h), and (i).
 *
 *    - Between Switch and Controller.  This switch is between another
 *      switch and the controller, and we want to allow the other
 *      switch's traffic through.  This uses rules (d), (e), (h), and
 *      (i).  It uses (b) and (c) indirectly in order to know the MAC
 *      address for rules (d) and (e).  Note that DHCP for the other
 *      switch will not work unless the controller explicitly lets this 
 *      switch pass the traffic.
 *
 *    - Between Switch and Gateway.  This switch is between another
 *      switch and the gateway, and we want to allow the other switch's
 *      traffic through.  This uses the same rules and logic as the
 *      "Between Switch and Controller" configuration described earlier.
 *
 *    - Controller on Local VM.  The controller is a guest VM on the
 *      system running in-band control.  This uses rules (a), (b), (c), 
 *      (h), and (i).
 *
 *    - Controller on Local VM with Different Networks.  The controller
 *      is a guest VM on the system running in-band control, but the
 *      local port is not used to connect to the controller.  For
 *      example, an IP address is configured on eth0 of the switch.  The
 *      controller's VM is connected through eth1 of the switch, but an
 *      IP address has not been configured for that port on the switch.
 *      As such, the switch will use eth0 to connect to the controller,
 *      and eth1's rules about the local port will not work.  In the
 *      example, the switch attached to eth0 would use rules (a), (b), 
 *      (c), (h), and (i) on eth0.  The switch attached to eth1 would use 
 *      rules (f), (g), (h), and (i).
 *
 * The following are explicitly *not* supported by in-band control:
 *
 *    - Specify Controller by Name.  Currently, the controller must be 
 *      identified by IP address.  A naive approach would be to permit
 *      all DNS traffic.  Unfortunately, this would prevent the
 *      controller from defining any policy over DNS.  Since switches
 *      that are located behind us need to connect to the controller, 
 *      in-band cannot simply add a rule that allows DNS traffic from
 *      the local port.  The "correct" way to support this is to parse
 *      DNS requests to allow all traffic related to a request for the
 *      controller's name through.  Due to the potential security
 *      problems and amount of processing, we decided to hold off for
 *      the time-being.
 *
 *    - Multiple Controllers.  There is nothing intrinsic in the high-
 *      level design that prevents using multiple (known) controllers, 
 *      however, the current implementation's data structures assume
 *      only one.
 *
 *    - Differing Controllers for Switches.  All switches must know
 *      the L3 addresses for all the controllers that other switches 
 *      may use, since rules need to be setup to allow traffic related 
 *      to those controllers through.  See rules (f), (g), (h), and (i).
 *
 *    - Differing Routes for Switches.  In order for the switch to 
 *      allow other switches to connect to a controller through a 
 *      gateway, it allows the gateway's traffic through with rules (d)
 *      and (e).  If the routes to the controller differ for the two
 *      switches, we will not know the MAC address of the alternate 
 *      gateway.
 */

#define IB_BASE_PRIORITY 18181800

enum {
    IBR_FROM_LOCAL_DHCP,          /* (a) From local port, DHCP. */
    IBR_TO_LOCAL_ARP,             /* (b) To local port, ARP. */
    IBR_FROM_LOCAL_ARP,           /* (c) From local port, ARP. */
    IBR_TO_REMOTE_ARP,            /* (d) To remote MAC, ARP. */
    IBR_FROM_REMOTE_ARP,          /* (e) From remote MAC, ARP. */
    IBR_TO_CTL_ARP,               /* (f) To controller IP, ARP. */
    IBR_FROM_CTL_ARP,             /* (g) From controller IP, ARP. */
    IBR_TO_CTL_OFP,               /* (h) To controller, OpenFlow port. */
    IBR_FROM_CTL_OFP,             /* (i) From controller, OpenFlow port. */
#if OFP_TCP_PORT != OFP_SSL_PORT
#error Need to support separate TCP and SSL flows.
#endif
    N_IB_RULES
};

struct ib_rule {
    bool installed;
    flow_t flow;
    uint32_t wildcards;
    unsigned int priority;
};

struct in_band {
    struct ofproto *ofproto;
    struct rconn *controller;
    struct status_category *ss_cat;

    /* Keep track of local port's information. */
    uint8_t local_mac[ETH_ADDR_LEN];       /* Current MAC. */
    char local_name[IF_NAMESIZE];          /* Local device name. */
    time_t next_local_refresh;

    /* Keep track of controller and next hop's information. */
    uint32_t controller_ip;                /* Controller IP, 0 if unknown. */
    uint8_t remote_mac[ETH_ADDR_LEN];      /* Remote MAC. */
    uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous remote MAC. */
    time_t next_remote_refresh;

    /* Rules that we set up. */
    struct ib_rule rules[N_IB_RULES];
};

static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60);

static const uint8_t *
get_remote_mac(struct in_band *ib)
{
    int retval;
    bool have_mac;
    struct in_addr c_in4, r_in4;
    char *dev_name;
    time_t now = time_now();

    if (now >= ib->next_remote_refresh) {
        c_in4.s_addr = ib->controller_ip;
        memset(ib->remote_mac, 0, sizeof ib->remote_mac);
        retval = netdev_get_next_hop(&c_in4, &r_in4, &dev_name);
        if (retval) {
            VLOG_WARN("cannot find route for controller ("IP_FMT"): %s",
                    IP_ARGS(&ib->controller_ip), strerror(retval));
            ib->next_remote_refresh = now + 1;
            return NULL;
        }
        if (!r_in4.s_addr) {
            r_in4.s_addr = c_in4.s_addr;
        }

        retval = netdev_nodev_arp_lookup(dev_name, r_in4.s_addr, 
                                         ib->remote_mac);
        if (retval) {
            VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s",
                        IP_ARGS(&r_in4.s_addr), strerror(retval));
        }
        have_mac = !eth_addr_is_zero(ib->remote_mac);
        free(dev_name);

        if (have_mac 
                && !eth_addr_equals(ib->last_remote_mac, ib->remote_mac)) {
            VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT" to "
                     ETH_ADDR_FMT,
                     ETH_ADDR_ARGS(ib->last_remote_mac),
                     ETH_ADDR_ARGS(ib->remote_mac));
            memcpy(ib->last_remote_mac, ib->remote_mac, ETH_ADDR_LEN);
        }

        /* Schedule next refresh.
         *
         * If we have an IP address but not a MAC address, then refresh
         * quickly, since we probably will get a MAC address soon (via ARP).
         * Otherwise, we can afford to wait a little while. */
        ib->next_remote_refresh 
                = now + (!ib->controller_ip || have_mac ? 10 : 1);
    }

    return !eth_addr_is_zero(ib->remote_mac) ? ib->remote_mac : NULL;
}

static const uint8_t *
get_local_mac(struct in_band *ib)
{
    time_t now = time_now();
    if (now >= ib->next_local_refresh) {
        uint8_t ea[ETH_ADDR_LEN];
        if (!netdev_nodev_get_etheraddr(ib->local_name, ea)) {
            memcpy(ib->local_mac, ea, ETH_ADDR_LEN);
        }
        ib->next_local_refresh = now + 1;
    }
    return !eth_addr_is_zero(ib->local_mac) ? ib->local_mac : NULL;
}

static void
in_band_status_cb(struct status_reply *sr, void *in_band_)
{
    struct in_band *in_band = in_band_;

    if (!eth_addr_is_zero(in_band->local_mac)) {
        status_reply_put(sr, "local-mac="ETH_ADDR_FMT,
                         ETH_ADDR_ARGS(in_band->local_mac));
    }

    if (!eth_addr_is_zero(in_band->remote_mac)) {
        status_reply_put(sr, "remote-mac="ETH_ADDR_FMT,
                         ETH_ADDR_ARGS(in_band->remote_mac));
    }
}

static void
drop_flow(struct in_band *in_band, int rule_idx)
{
    struct ib_rule *rule = &in_band->rules[rule_idx];

    if (rule->installed) {
        rule->installed = false;
        ofproto_delete_flow(in_band->ofproto, &rule->flow, rule->wildcards,
                            rule->priority);
    }
}

/* out_port and fixed_fields are assumed never to change. */
static void
setup_flow(struct in_band *in_band, int rule_idx, const flow_t *flow,
           uint32_t fixed_fields, uint16_t out_port)
{
    struct ib_rule *rule = &in_band->rules[rule_idx];

    if (!rule->installed || memcmp(flow, &rule->flow, sizeof *flow)) {
        union ofp_action action;

        drop_flow(in_band, rule_idx);

        rule->installed = true;
        rule->flow = *flow;
        rule->wildcards = OFPFW_ALL & ~fixed_fields;
        rule->priority = IB_BASE_PRIORITY + (N_IB_RULES - rule_idx);

        action.type = htons(OFPAT_OUTPUT);
        action.output.len = htons(sizeof action);
        action.output.port = htons(out_port);
        action.output.max_len = htons(0);
        ofproto_add_flow(in_band->ofproto, &rule->flow, rule->wildcards,
                         rule->priority, &action, 1, 0);
    }
}

/* Returns true if 'packet' should be sent to the local port regardless
 * of the flow table. */ 
bool
in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, 
                    const struct ofpbuf *packet)
{
    if (!in_band) {
        return false;
    }

    /* Regardless of how the flow table is configured, we want to be
     * able to see replies to our DHCP requests. */
    if (flow->dl_type == htons(ETH_TYPE_IP)
            && flow->nw_proto == IP_TYPE_UDP
            && flow->tp_src == htons(DHCP_SERVER_PORT)
            && flow->tp_dst == htons(DHCP_CLIENT_PORT)
            && packet->l7) {
        struct dhcp_header *dhcp;
        const uint8_t *local_mac;

        dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data,
                         sizeof *dhcp);
        if (!dhcp) {
            return false;
        }

        local_mac = get_local_mac(in_band);
        if (eth_addr_equals(dhcp->chaddr, local_mac)) {
            return true;
        }
    }

    return false;
}

/* Returns true if the rule that would match 'flow' with 'actions' is 
 * allowed to be set up in the datapath. */
bool
in_band_rule_check(struct in_band *in_band, const flow_t *flow,
                   const struct odp_actions *actions)
{
    if (!in_band) {
        return true;
    }

    /* Don't allow flows that would prevent DHCP replies from being seen
     * by the local port. */
    if (flow->dl_type == htons(ETH_TYPE_IP)
            && flow->nw_proto == IP_TYPE_UDP
            && flow->tp_src == htons(DHCP_SERVER_PORT) 
            && flow->tp_dst == htons(DHCP_CLIENT_PORT)) {
        int i;

        for (i=0; i<actions->n_actions; i++) {
            if (actions->actions[i].output.type == ODPAT_OUTPUT 
                    && actions->actions[i].output.port == ODPP_LOCAL) {
                return true;
            }   
        }
        return false;
    }

    return true;
}

void
in_band_run(struct in_band *in_band)
{
    time_t now = time_now();
    uint32_t controller_ip;
    const uint8_t *remote_mac;
    const uint8_t *local_mac;
    flow_t flow;

    if (now < in_band->next_remote_refresh 
            && now < in_band->next_local_refresh) {
        return;
    }

    controller_ip = rconn_get_remote_ip(in_band->controller);
    if (in_band->controller_ip && controller_ip != in_band->controller_ip) {
        VLOG_DBG("controller IP address changed from "IP_FMT" to "IP_FMT, 
                 IP_ARGS(&in_band->controller_ip),
                 IP_ARGS(&controller_ip));
    }
    in_band->controller_ip = controller_ip;

    remote_mac = get_remote_mac(in_band);
    local_mac = get_local_mac(in_band);

    if (local_mac) {
        /* Allow DHCP requests to be sent from the local port. */
        memset(&flow, 0, sizeof flow);
        flow.in_port = ODPP_LOCAL;
        flow.dl_type = htons(ETH_TYPE_IP);
        memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN);
        flow.nw_proto = IP_TYPE_UDP;
        flow.tp_src = htons(DHCP_CLIENT_PORT);
        flow.tp_dst = htons(DHCP_SERVER_PORT);
        setup_flow(in_band, IBR_FROM_LOCAL_DHCP, &flow,
                   (OFPFW_IN_PORT | OFPFW_DL_TYPE | OFPFW_DL_SRC
                    | OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST), 
                   OFPP_NORMAL);

        /* Allow the connection's interface to receive directed ARP traffic. */
        memset(&flow, 0, sizeof flow);
        flow.dl_type = htons(ETH_TYPE_ARP);
        memcpy(flow.dl_dst, local_mac, ETH_ADDR_LEN);
        flow.nw_proto = ARP_OP_REPLY;
        setup_flow(in_band, IBR_TO_LOCAL_ARP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), 
                   OFPP_NORMAL);

        /* Allow the connection's interface to be the source of ARP traffic. */
        memset(&flow, 0, sizeof flow);
        flow.dl_type = htons(ETH_TYPE_ARP);
        memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN);
        flow.nw_proto = ARP_OP_REQUEST;
        setup_flow(in_band, IBR_FROM_LOCAL_ARP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO),
                   OFPP_NORMAL);
    } else {
        drop_flow(in_band, IBR_TO_LOCAL_ARP);
        drop_flow(in_band, IBR_FROM_LOCAL_ARP);
    }

    if (remote_mac) {
        /* Allow ARP replies to the remote side's MAC. */
        memset(&flow, 0, sizeof flow);
        flow.dl_type = htons(ETH_TYPE_ARP);
        memcpy(flow.dl_dst, remote_mac, ETH_ADDR_LEN);
        flow.nw_proto = ARP_OP_REPLY;
        setup_flow(in_band, IBR_TO_REMOTE_ARP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), 
                   OFPP_NORMAL);

       /* Allow ARP requests from the remote side's MAC. */
        memset(&flow, 0, sizeof flow);
        flow.dl_type = htons(ETH_TYPE_ARP);
        memcpy(flow.dl_src, remote_mac, ETH_ADDR_LEN);
        flow.nw_proto = ARP_OP_REQUEST;
        setup_flow(in_band, IBR_FROM_REMOTE_ARP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), 
                   OFPP_NORMAL);
    } else {
        drop_flow(in_band, IBR_TO_REMOTE_ARP);
        drop_flow(in_band, IBR_FROM_REMOTE_ARP);
    }

    if (controller_ip) {
        /* Allow ARP replies to the controller's IP. */
        memset(&flow, 0, sizeof flow);
        flow.dl_type = htons(ETH_TYPE_ARP);
        flow.nw_proto = ARP_OP_REPLY;
        flow.nw_dst = controller_ip;
        setup_flow(in_band, IBR_TO_CTL_ARP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK),
                   OFPP_NORMAL);

       /* Allow ARP requests from the controller's IP. */
        memset(&flow, 0, sizeof flow);
        flow.dl_type = htons(ETH_TYPE_ARP);
        flow.nw_proto = ARP_OP_REQUEST;
        flow.nw_src = controller_ip;
        setup_flow(in_band, IBR_FROM_CTL_ARP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK),
                   OFPP_NORMAL);
     
        /* OpenFlow traffic to or from the controller.
         *
         * (A given field's value is completely ignored if it is wildcarded,
         * which is why we can get away with using a single 'flow' in each
         * case here.) */
        memset(&flow, 0, sizeof flow);
        flow.dl_type = htons(ETH_TYPE_IP);
        flow.nw_proto = IP_TYPE_TCP;
        flow.nw_src = controller_ip;
        flow.nw_dst = controller_ip;
        flow.tp_src = htons(OFP_TCP_PORT);
        flow.tp_dst = htons(OFP_TCP_PORT);
        setup_flow(in_band, IBR_TO_CTL_OFP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK 
                    | OFPFW_TP_DST), OFPP_NORMAL);
        setup_flow(in_band, IBR_FROM_CTL_OFP, &flow,
                   (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK
                    | OFPFW_TP_SRC), OFPP_NORMAL);
    } else {
        drop_flow(in_band, IBR_TO_CTL_ARP);
        drop_flow(in_band, IBR_FROM_CTL_ARP);
        drop_flow(in_band, IBR_TO_CTL_OFP);
        drop_flow(in_band, IBR_FROM_CTL_OFP);
    }
}

void
in_band_wait(struct in_band *in_band)
{
    time_t now = time_now();
    time_t wakeup 
            = MIN(in_band->next_remote_refresh, in_band->next_local_refresh);
    if (wakeup > now) {
        poll_timer_wait((wakeup - now) * 1000);
    } else {
        poll_immediate_wake();
    }
}

void
in_band_flushed(struct in_band *in_band)
{
    int i;

    for (i = 0; i < N_IB_RULES; i++) {
        in_band->rules[i].installed = false;
    }
}

void
in_band_create(struct ofproto *ofproto, struct dpif *dpif,
               struct switch_status *ss, struct rconn *controller, 
               struct in_band **in_bandp)
{
    struct in_band *in_band;
    int error;

    in_band = xcalloc(1, sizeof *in_band);
    error = dpif_port_get_name(dpif, ODPP_LOCAL, in_band->local_name, 
                               sizeof in_band->local_name);
    if (error) {
        free(in_band);
        return;
    }

    in_band->ofproto = ofproto;
    in_band->controller = controller;
    in_band->ss_cat = switch_status_register(ss, "in-band",
                                             in_band_status_cb, in_band);
    in_band->next_remote_refresh = TIME_MIN;
    in_band->next_local_refresh = TIME_MIN;

    *in_bandp = in_band;
}

void
in_band_destroy(struct in_band *in_band)
{
    if (in_band) {
        switch_status_unregister(in_band->ss_cat);
        /* We don't own the rconn. */
    }
}