/* spi_dw.c - Designware SPI driver implementation */ /* * Copyright (c) 2015 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IOAPIC #include #endif #define SYS_LOG_DOMAIN "SPI DW" #define SYS_LOG_LEVEL CONFIG_SYS_LOG_SPI_LEVEL #include #if (CONFIG_SYS_LOG_SPI_LEVEL == 4) #define DBG_COUNTER_INIT() \ u32_t __cnt = 0 #define DBG_COUNTER_INC() \ (__cnt++) #define DBG_COUNTER_RESULT() \ (__cnt) #else #define DBG_COUNTER_INIT() {; } #define DBG_COUNTER_INC() {; } #define DBG_COUNTER_RESULT() 0 #endif #ifdef SPI_DW_SPI_CLOCK #define SPI_DW_CLK_DIVIDER(ssi_clk_hz) \ ((SPI_DW_SPI_CLOCK / ssi_clk_hz) & 0xFFFF) /* provision for soc.h providing a clock that is different than CPU clock */ #else #define SPI_DW_CLK_DIVIDER(ssi_clk_hz) \ ((CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / ssi_clk_hz) & 0xFFFF) #endif static void completed(struct device *dev, int error) { const struct spi_dw_config *info = dev->config->config_info; struct spi_dw_data *spi = dev->driver_data; if (error) { goto out; } /* * There are several situations here. * 1. spi_write w rx_buf - need last_tx && rx_buf_len zero to be done. * 2. spi_write w/o rx_buf - only need to determine when write is done. * 3. spi_read - need rx_buf_len zero. */ if (spi->tx_buf && spi->rx_buf) { if (!spi->last_tx || spi->rx_buf_len) return; } else if (spi->tx_buf) { if (!spi->last_tx) return; } else { /* or, spi->rx_buf!=0 */ if (spi->rx_buf_len) return; } out: /* need to give time for FIFOs to drain before issuing more commands */ while (test_bit_sr_busy(info->regs)) { } spi->error = error; /* Disabling interrupts */ write_imr(DW_SPI_IMR_MASK, info->regs); /* Disabling the controller */ clear_bit_ssienr(info->regs); _spi_control_cs(dev, 0); SYS_LOG_DBG("SPI transaction completed %s error", error ? "with" : "without"); k_sem_give(&spi->device_sync_sem); } static void push_data(struct device *dev) { const struct spi_dw_config *info = dev->config->config_info; struct spi_dw_data *spi = dev->driver_data; u32_t data = 0; u32_t f_tx; DBG_COUNTER_INIT(); if (spi->rx_buf) { f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs) - read_rxflr(info->regs); if ((int)f_tx < 0) { f_tx = 0; /* if rx-fifo is full, hold off tx */ } } else { f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs); } if (f_tx && (spi->tx_buf_len == 0)) { /* room in fifo, yet nothing to send */ spi->last_tx = 1; /* setting last_tx indicates TX is done */ } while (f_tx) { if (spi->tx_buf && spi->tx_buf_len > 0) { switch (spi->dfs) { case 1: data = UNALIGNED_GET((u8_t *)(spi->tx_buf)); break; case 2: data = UNALIGNED_GET((u16_t *)(spi->tx_buf)); break; #ifndef CONFIG_ARC case 4: data = UNALIGNED_GET((u32_t *)(spi->tx_buf)); break; #endif } spi->tx_buf += spi->dfs; spi->tx_buf_len--; } else if (spi->rx_buf && spi->rx_buf_len > 0) { /* No need to push more than necessary */ if (spi->rx_buf_len - spi->fifo_diff <= 0) { break; } data = 0; } else { /* Nothing to push anymore */ break; } write_dr(data, info->regs); f_tx--; spi->fifo_diff++; DBG_COUNTER_INC(); } if (spi->last_tx) { write_txftlr(0, info->regs); /* prevents any further interrupts demanding TX fifo fill */ } SYS_LOG_DBG("Pushed: %d", DBG_COUNTER_RESULT()); } static void pull_data(struct device *dev) { const struct spi_dw_config *info = dev->config->config_info; struct spi_dw_data *spi = dev->driver_data; u32_t data = 0; DBG_COUNTER_INIT(); while (read_rxflr(info->regs)) { data = read_dr(info->regs); DBG_COUNTER_INC(); if (spi->rx_buf && spi->rx_buf_len > 0) { switch (spi->dfs) { case 1: UNALIGNED_PUT(data, (u8_t *)spi->rx_buf); break; case 2: UNALIGNED_PUT(data, (u16_t *)spi->rx_buf); break; #ifndef CONFIG_ARC case 4: UNALIGNED_PUT(data, (u32_t *)spi->rx_buf); break; #endif } spi->rx_buf += spi->dfs; spi->rx_buf_len--; } spi->fifo_diff--; } if (!spi->rx_buf_len && spi->tx_buf_len < DW_SPI_FIFO_DEPTH) { write_rxftlr(spi->tx_buf_len - 1, info->regs); } else if (read_rxftlr(info->regs) >= spi->rx_buf_len) { write_rxftlr(spi->rx_buf_len - 1, info->regs); } SYS_LOG_DBG("Pulled: %d", DBG_COUNTER_RESULT()); } static inline bool _spi_dw_is_controller_ready(struct device *dev) { const struct spi_dw_config *info = dev->config->config_info; if (test_bit_ssienr(info->regs) || test_bit_sr_busy(info->regs)) { return false; } return true; } static int spi_dw_configure(struct device *dev, struct spi_config *config) { const struct spi_dw_config *info = dev->config->config_info; struct spi_dw_data *spi = dev->driver_data; u32_t flags = config->config; u32_t ctrlr0 = 0; u32_t mode; SYS_LOG_DBG("%s: %p (0x%x), %p", __func__, dev, info->regs, config); /* Check status */ if (!_spi_dw_is_controller_ready(dev)) { SYS_LOG_DBG("%s: Controller is busy", __func__); return -EBUSY; } /* Word size */ ctrlr0 |= DW_SPI_CTRLR0_DFS(SPI_WORD_SIZE_GET(flags)); /* Determine how many bytes are required per-frame */ spi->dfs = SPI_DFS_TO_BYTES(SPI_WORD_SIZE_GET(flags)); /* SPI mode */ mode = SPI_MODE(flags); if (mode & SPI_MODE_CPOL) { ctrlr0 |= DW_SPI_CTRLR0_SCPOL; } if (mode & SPI_MODE_CPHA) { ctrlr0 |= DW_SPI_CTRLR0_SCPH; } if (mode & SPI_MODE_LOOP) { ctrlr0 |= DW_SPI_CTRLR0_SRL; } /* Installing the configuration */ write_ctrlr0(ctrlr0, info->regs); /* * Configure the rate. Use this small hack to allow the user to call * spi_configure() with both a divider (as the driver was initially * written) and a frequency (as the SPI API suggests to). The clock * divider is a 16bit value, hence we can fairly, and safely, assume * that everything above this value is a frequency. The trade-off is * that if one wants to use a bus frequency of 64kHz (or less), it has * the use a divider... */ if (config->max_sys_freq > 0xffff) { write_baudr(SPI_DW_CLK_DIVIDER(config->max_sys_freq), info->regs); } else { write_baudr(config->max_sys_freq, info->regs); } return 0; } static int spi_dw_slave_select(struct device *dev, u32_t slave) { struct spi_dw_data *spi = dev->driver_data; SYS_LOG_DBG("%s: %p %d", __func__, dev, slave); if (slave == 0 || slave > 16) { return -EINVAL; } spi->slave = 1 << (slave - 1); return 0; } static int spi_dw_transceive(struct device *dev, const void *tx_buf, u32_t tx_buf_len, void *rx_buf, u32_t rx_buf_len) { const struct spi_dw_config *info = dev->config->config_info; struct spi_dw_data *spi = dev->driver_data; u32_t rx_thsld = DW_SPI_RXFTLR_DFLT; u32_t imask; SYS_LOG_DBG("%s: %p, %p, %u, %p, %u", __func__, dev, tx_buf, tx_buf_len, rx_buf, rx_buf_len); /* Check status */ if (!_spi_dw_is_controller_ready(dev)) { SYS_LOG_DBG("%s: Controller is busy", __func__); return -EBUSY; } /* Set buffers info */ spi->tx_buf = tx_buf; spi->tx_buf_len = tx_buf_len/spi->dfs; spi->rx_buf = rx_buf; if (rx_buf) { spi->rx_buf_len = rx_buf_len/spi->dfs; } else { spi->rx_buf_len = 0; /* must be zero if no buffer */ } spi->fifo_diff = 0; spi->last_tx = 0; /* Tx Threshold */ write_txftlr(DW_SPI_TXFTLR_DFLT, info->regs); /* Does Rx thresholds needs to be lower? */ if (spi->rx_buf_len && spi->rx_buf_len < DW_SPI_FIFO_DEPTH) { rx_thsld = spi->rx_buf_len - 1; } else if (!spi->rx_buf_len && spi->tx_buf_len < DW_SPI_FIFO_DEPTH) { rx_thsld = spi->tx_buf_len - 1; /* TODO: why? */ } write_rxftlr(rx_thsld, info->regs); /* Slave select */ write_ser(spi->slave, info->regs); _spi_control_cs(dev, 1); /* Enable interrupts */ imask = DW_SPI_IMR_UNMASK; if (!rx_buf) { /* if there is no rx buffer, keep all rx interrupts masked */ imask &= DW_SPI_IMR_MASK_RX; } write_imr(imask, info->regs); /* Enable the controller */ set_bit_ssienr(info->regs); k_sem_take(&spi->device_sync_sem, K_FOREVER); if (spi->error) { spi->error = 0; return -EIO; } return 0; } void spi_dw_isr(void *arg) { struct device *dev = (struct device *)arg; const struct spi_dw_config *info = dev->config->config_info; u32_t error = 0; u32_t int_status; int_status = read_isr(info->regs); SYS_LOG_DBG("SPI int_status 0x%x - (tx: %d, rx: %d)", int_status, read_txflr(info->regs), read_rxflr(info->regs)); if (int_status & DW_SPI_ISR_ERRORS_MASK) { error = 1; goto out; } if (int_status & DW_SPI_ISR_RXFIS) { pull_data(dev); } if (int_status & DW_SPI_ISR_TXEIS) { push_data(dev); } out: clear_interrupts(info->regs); completed(dev, error); } static const struct spi_driver_api dw_spi_api = { .configure = spi_dw_configure, .slave_select = spi_dw_slave_select, .transceive = spi_dw_transceive, }; int spi_dw_init(struct device *dev) { const struct spi_dw_config *info = dev->config->config_info; struct spi_dw_data *spi = dev->driver_data; _clock_config(dev); _clock_on(dev); #if 0 /* TODO: Not correct version for every target. Don't check. */ #ifndef CONFIG_SOC_QUARK_SE_C1000_SS if (read_ssi_comp_version(info->regs) != DW_SSI_COMP_VERSION) { dev->driver_api = NULL; _clock_off(dev); return -EPERM; } #endif #endif info->config_func(); k_sem_init(&spi->device_sync_sem, 0, UINT_MAX); _spi_config_cs(dev); /* Masking interrupt and making sure controller is disabled */ write_imr(DW_SPI_IMR_MASK, info->regs); clear_bit_ssienr(info->regs); SYS_LOG_DBG("Designware SPI driver initialized on device: %p", dev); return 0; } #ifdef CONFIG_SPI_0 void spi_config_0_irq(void); struct spi_dw_data spi_dw_data_port_0; const struct spi_dw_config spi_dw_config_0 = { .regs = SPI_DW_PORT_0_REGS, #ifdef CONFIG_SPI_DW_CLOCK_GATE .clock_data = UINT_TO_POINTER(CONFIG_SPI_0_CLOCK_GATE_SUBSYS), #endif /* CONFIG_SPI_DW_CLOCK_GATE */ #ifdef CONFIG_SPI_DW_CS_GPIO .cs_gpio_name = CONFIG_SPI_0_CS_GPIO_PORT, .cs_gpio_pin = CONFIG_SPI_0_CS_GPIO_PIN, #endif .config_func = spi_config_0_irq }; DEVICE_AND_API_INIT(spi_dw_port_0, CONFIG_SPI_0_NAME, spi_dw_init, &spi_dw_data_port_0, &spi_dw_config_0, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, &dw_spi_api); void spi_config_0_irq(void) { #ifdef CONFIG_SPI_DW_INTERRUPT_SINGLE_LINE IRQ_CONNECT(SPI_DW_PORT_0_IRQ, CONFIG_SPI_0_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_0), SPI_DW_IRQ_FLAGS); irq_enable(SPI_DW_PORT_0_IRQ); _spi_int_unmask(SPI_DW_PORT_0_INT_MASK); #else /* SPI_DW_INTERRUPT_SEPARATED_LINES */ IRQ_CONNECT(IRQ_SPI0_RX_AVAIL, CONFIG_SPI_0_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_0), SPI_DW_IRQ_FLAGS); IRQ_CONNECT(IRQ_SPI0_TX_REQ, CONFIG_SPI_0_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_0), SPI_DW_IRQ_FLAGS); IRQ_CONNECT(IRQ_SPI0_ERR_INT, CONFIG_SPI_0_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_0), SPI_DW_IRQ_FLAGS); irq_enable(IRQ_SPI0_RX_AVAIL); irq_enable(IRQ_SPI0_TX_REQ); irq_enable(IRQ_SPI0_ERR_INT); _spi_int_unmask(SPI_DW_PORT_0_RX_INT_MASK); _spi_int_unmask(SPI_DW_PORT_0_TX_INT_MASK); _spi_int_unmask(SPI_DW_PORT_0_ERROR_INT_MASK); #endif } #endif /* CONFIG_SPI_0 */ #ifdef CONFIG_SPI_1 void spi_config_1_irq(void); struct spi_dw_data spi_dw_data_port_1; static const struct spi_dw_config spi_dw_config_1 = { .regs = SPI_DW_PORT_1_REGS, #ifdef CONFIG_SPI_DW_CLOCK_GATE .clock_data = UINT_TO_POINTER(CONFIG_SPI_1_CLOCK_GATE_SUBSYS), #endif /* CONFIG_SPI_DW_CLOCK_GATE */ #ifdef CONFIG_SPI_DW_CS_GPIO .cs_gpio_name = CONFIG_SPI_1_CS_GPIO_PORT, .cs_gpio_pin = CONFIG_SPI_1_CS_GPIO_PIN, #endif .config_func = spi_config_1_irq }; DEVICE_AND_API_INIT(spi_dw_port_1, CONFIG_SPI_1_NAME, spi_dw_init, &spi_dw_data_port_1, &spi_dw_config_1, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, &dw_spi_api); void spi_config_1_irq(void) { #ifdef CONFIG_SPI_DW_INTERRUPT_SINGLE_LINE IRQ_CONNECT(SPI_DW_PORT_1_IRQ, CONFIG_SPI_1_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_1), SPI_DW_IRQ_FLAGS); irq_enable(SPI_DW_PORT_1_IRQ); _spi_int_unmask(SPI_DW_PORT_1_INT_MASK); #else /* SPI_DW_INTERRUPT_SEPARATED_LINES */ IRQ_CONNECT(IRQ_SPI1_RX_AVAIL, CONFIG_SPI_1_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_1), SPI_DW_IRQ_FLAGS); IRQ_CONNECT(IRQ_SPI1_TX_REQ, CONFIG_SPI_1_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_1), SPI_DW_IRQ_FLAGS); IRQ_CONNECT(IRQ_SPI1_ERR_INT, CONFIG_SPI_1_IRQ_PRI, spi_dw_isr, DEVICE_GET(spi_dw_port_1), SPI_DW_IRQ_FLAGS); irq_enable(IRQ_SPI1_RX_AVAIL); irq_enable(IRQ_SPI1_TX_REQ); irq_enable(IRQ_SPI1_ERR_INT); _spi_int_unmask(SPI_DW_PORT_1_RX_INT_MASK); _spi_int_unmask(SPI_DW_PORT_1_TX_INT_MASK); _spi_int_unmask(SPI_DW_PORT_1_ERROR_INT_MASK); #endif } #endif /* CONFIG_SPI_1 */