aboutsummaryrefslogtreecommitdiff
path: root/py/parsenum.c
blob: 1cfe842577011b01392c04876b96f2423f7be427 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <stdlib.h>

#include "py/runtime.h"
#include "py/parsenumbase.h"
#include "py/parsenum.h"
#include "py/smallint.h"

#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif

STATIC NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) {
    // if lex!=NULL then the parser called us and we need to convert the
    // exception's type from ValueError to SyntaxError and add traceback info
    if (lex != NULL) {
        ((mp_obj_base_t *)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError;
        mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull);
    }
    nlr_raise(exc);
}

mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) {
    const byte *restrict str = (const byte *)str_;
    const byte *restrict top = str + len;
    bool neg = false;
    mp_obj_t ret_val;

    // check radix base
    if ((base != 0 && base < 2) || base > 36) {
        // this won't be reached if lex!=NULL
        mp_raise_ValueError(MP_ERROR_TEXT("int() arg 2 must be >= 2 and <= 36"));
    }

    // skip leading space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // parse optional sign
    if (str < top) {
        if (*str == '+') {
            str++;
        } else if (*str == '-') {
            str++;
            neg = true;
        }
    }

    // parse optional base prefix
    str += mp_parse_num_base((const char *)str, top - str, &base);

    // string should be an integer number
    mp_int_t int_val = 0;
    const byte *restrict str_val_start = str;
    for (; str < top; str++) {
        // get next digit as a value
        mp_uint_t dig = *str;
        if ('0' <= dig && dig <= '9') {
            dig -= '0';
        } else if (dig == '_') {
            continue;
        } else {
            dig |= 0x20; // make digit lower-case
            if ('a' <= dig && dig <= 'z') {
                dig -= 'a' - 10;
            } else {
                // unknown character
                break;
            }
        }
        if (dig >= (mp_uint_t)base) {
            break;
        }

        // add next digi and check for overflow
        if (mp_small_int_mul_overflow(int_val, base)) {
            goto overflow;
        }
        int_val = int_val * base + dig;
        if (!MP_SMALL_INT_FITS(int_val)) {
            goto overflow;
        }
    }

    // negate value if needed
    if (neg) {
        int_val = -int_val;
    }

    // create the small int
    ret_val = MP_OBJ_NEW_SMALL_INT(int_val);

have_ret_val:
    // check we parsed something
    if (str == str_val_start) {
        goto value_error;
    }

    // skip trailing space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // check we reached the end of the string
    if (str != top) {
        goto value_error;
    }

    // return the object
    return ret_val;

overflow:
    // reparse using long int
    {
        const char *s2 = (const char *)str_val_start;
        ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base);
        str = (const byte *)s2;
        goto have_ret_val;
    }

value_error:
    {
        #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
        mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError,
            MP_ERROR_TEXT("invalid syntax for integer"));
        raise_exc(exc, lex);
        #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
        mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError,
            MP_ERROR_TEXT("invalid syntax for integer with base %d"), base);
        raise_exc(exc, lex);
        #else
        vstr_t vstr;
        mp_print_t print;
        vstr_init_print(&vstr, 50, &print);
        mp_printf(&print, "invalid syntax for integer with base %d: ", base);
        mp_str_print_quoted(&print, str_val_start, top - str_val_start, true);
        mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError,
            mp_obj_new_str_from_vstr(&mp_type_str, &vstr));
        raise_exc(exc, lex);
        #endif
    }
}

typedef enum {
    PARSE_DEC_IN_INTG,
    PARSE_DEC_IN_FRAC,
    PARSE_DEC_IN_EXP,
} parse_dec_in_t;

mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) {
    #if MICROPY_PY_BUILTINS_FLOAT

// DEC_VAL_MAX only needs to be rough and is used to retain precision while not overflowing
// SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float
// EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float
//   Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n
//   so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's
//   exponent).
    #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define DEC_VAL_MAX 1e20F
#define SMALL_NORMAL_VAL (1e-37F)
#define SMALL_NORMAL_EXP (-37)
#define EXACT_POWER_OF_10 (9)
    #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define DEC_VAL_MAX 1e200
#define SMALL_NORMAL_VAL (1e-307)
#define SMALL_NORMAL_EXP (-307)
#define EXACT_POWER_OF_10 (22)
    #endif

    const char *top = str + len;
    mp_float_t dec_val = 0;
    bool dec_neg = false;
    bool imag = false;

    // skip leading space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // parse optional sign
    if (str < top) {
        if (*str == '+') {
            str++;
        } else if (*str == '-') {
            str++;
            dec_neg = true;
        }
    }

    const char *str_val_start = str;

    // determine what the string is
    if (str < top && (str[0] | 0x20) == 'i') {
        // string starts with 'i', should be 'inf' or 'infinity' (case insensitive)
        if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') {
            // inf
            str += 3;
            dec_val = (mp_float_t)INFINITY;
            if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') {
                // infinity
                str += 5;
            }
        }
    } else if (str < top && (str[0] | 0x20) == 'n') {
        // string starts with 'n', should be 'nan' (case insensitive)
        if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') {
            // NaN
            str += 3;
            dec_val = MICROPY_FLOAT_C_FUN(nan)("");
        }
    } else {
        // string should be a decimal number
        parse_dec_in_t in = PARSE_DEC_IN_INTG;
        bool exp_neg = false;
        int exp_val = 0;
        int exp_extra = 0;
        while (str < top) {
            unsigned int dig = *str++;
            if ('0' <= dig && dig <= '9') {
                dig -= '0';
                if (in == PARSE_DEC_IN_EXP) {
                    // don't overflow exp_val when adding next digit, instead just truncate
                    // it and the resulting float will still be correct, either inf or 0.0
                    // (use INT_MAX/2 to allow adding exp_extra at the end without overflow)
                    if (exp_val < (INT_MAX / 2 - 9) / 10) {
                        exp_val = 10 * exp_val + dig;
                    }
                } else {
                    if (dec_val < DEC_VAL_MAX) {
                        // dec_val won't overflow so keep accumulating
                        dec_val = 10 * dec_val + dig;
                        if (in == PARSE_DEC_IN_FRAC) {
                            --exp_extra;
                        }
                    } else {
                        // dec_val might overflow and we anyway can't represent more digits
                        // of precision, so ignore the digit and just adjust the exponent
                        if (in == PARSE_DEC_IN_INTG) {
                            ++exp_extra;
                        }
                    }
                }
            } else if (in == PARSE_DEC_IN_INTG && dig == '.') {
                in = PARSE_DEC_IN_FRAC;
            } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) {
                in = PARSE_DEC_IN_EXP;
                if (str < top) {
                    if (str[0] == '+') {
                        str++;
                    } else if (str[0] == '-') {
                        str++;
                        exp_neg = true;
                    }
                }
                if (str == top) {
                    goto value_error;
                }
            } else if (allow_imag && (dig | 0x20) == 'j') {
                imag = true;
                break;
            } else if (dig == '_') {
                continue;
            } else {
                // unknown character
                str--;
                break;
            }
        }

        // work out the exponent
        if (exp_neg) {
            exp_val = -exp_val;
        }

        // apply the exponent, making sure it's not a subnormal value
        exp_val += exp_extra;
        if (exp_val < SMALL_NORMAL_EXP) {
            exp_val -= SMALL_NORMAL_EXP;
            dec_val *= SMALL_NORMAL_VAL;
        }

        // At this point, we need to multiply the mantissa by its base 10 exponent. If possible,
        // we would rather manipulate numbers that have an exact representation in IEEE754. It
        // turns out small positive powers of 10 do, whereas small negative powers of 10 don't.
        // So in that case, we'll yield a division of exact values rather than a multiplication
        // of slightly erroneous values.
        if (exp_val < 0 && exp_val >= -EXACT_POWER_OF_10) {
            dec_val /= MICROPY_FLOAT_C_FUN(pow)(10, -exp_val);
        } else {
            dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val);
        }
    }

    // negate value if needed
    if (dec_neg) {
        dec_val = -dec_val;
    }

    // check we parsed something
    if (str == str_val_start) {
        goto value_error;
    }

    // skip trailing space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // check we reached the end of the string
    if (str != top) {
        goto value_error;
    }

    // return the object
    #if MICROPY_PY_BUILTINS_COMPLEX
    if (imag) {
        return mp_obj_new_complex(0, dec_val);
    } else if (force_complex) {
        return mp_obj_new_complex(dec_val, 0);
    }
    #else
    if (imag || force_complex) {
        raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("complex values not supported")), lex);
    }
    #endif
    else {
        return mp_obj_new_float(dec_val);
    }

value_error:
    raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for number")), lex);

    #else
    raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("decimal numbers not supported")), lex);
    #endif
}