aboutsummaryrefslogtreecommitdiff
path: root/py/objint.c
blob: 5ff5e7de4b5745bdeb786ef650d079cfec3b05d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdlib.h>
#include <assert.h>
#include <string.h>

#include "py/parsenum.h"
#include "py/smallint.h"
#include "py/objint.h"
#include "py/objstr.h"
#include "py/runtime.h"
#include "py/binary.h"

#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif

// This dispatcher function is expected to be independent of the implementation of long int
STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    (void)type_in;
    mp_arg_check_num(n_args, n_kw, 0, 2, false);

    switch (n_args) {
        case 0:
            return MP_OBJ_NEW_SMALL_INT(0);

        case 1:
            if (mp_obj_is_int(args[0])) {
                // already an int (small or long), just return it
                return args[0];
            } else if (mp_obj_is_str_or_bytes(args[0])) {
                // a string, parse it
                size_t l;
                const char *s = mp_obj_str_get_data(args[0], &l);
                return mp_parse_num_integer(s, l, 0, NULL);
            #if MICROPY_PY_BUILTINS_FLOAT
            } else if (mp_obj_is_float(args[0])) {
                return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
            #endif
            } else {
                return mp_unary_op(MP_UNARY_OP_INT, args[0]);
            }

        case 2:
        default: {
            // should be a string, parse it
            size_t l;
            const char *s = mp_obj_str_get_data(args[0], &l);
            return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL);
        }
    }
}

#if MICROPY_PY_BUILTINS_FLOAT

typedef enum {
    MP_FP_CLASS_FIT_SMALLINT,
    MP_FP_CLASS_FIT_LONGINT,
    MP_FP_CLASS_OVERFLOW
} mp_fp_as_int_class_t;

STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) {
    union {
        mp_float_t f;
        #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
        uint32_t i;
        #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
        uint32_t i[2];
        #endif
    } u = {val};

    uint32_t e;
    #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
    e = u.i;
    #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
    e = u.i[MP_ENDIANNESS_LITTLE];
    #endif
#define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32)
#define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32)

    if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) {
        #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
        e |= u.i[MP_ENDIANNESS_BIG] != 0;
        #endif
        if ((e & ~(1U << MP_FLOAT_SIGN_SHIFT_I32)) == 0) {
            // handle case of -0 (when sign is set but rest of bits are zero)
            e = 0;
        } else {
            e += ((1U << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32;
        }
    } else {
        e &= ~((1U << MP_FLOAT_EXP_SHIFT_I32) - 1);
    }
    // 8 * sizeof(uintptr_t) counts the number of bits for a small int
    // TODO provide a way to configure this properly
    if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) {
        return MP_FP_CLASS_FIT_SMALLINT;
    }
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
    if (e <= (((sizeof(long long) * MP_BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) {
        return MP_FP_CLASS_FIT_LONGINT;
    }
    #endif
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
    return MP_FP_CLASS_FIT_LONGINT;
    #else
    return MP_FP_CLASS_OVERFLOW;
    #endif
}
#undef MP_FLOAT_SIGN_SHIFT_I32
#undef MP_FLOAT_EXP_SHIFT_I32

mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
    mp_float_union_t u = {val};
    // IEEE-754: if biased exponent is all 1 bits...
    if (u.p.exp == ((1 << MP_FLOAT_EXP_BITS) - 1)) {
        // ...then number is Inf (positive or negative) if fraction is 0, else NaN.
        if (u.p.frc == 0) {
            mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("can't convert inf to int"));
        } else {
            mp_raise_ValueError(MP_ERROR_TEXT("can't convert NaN to int"));
        }
    } else {
        mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
        if (icl == MP_FP_CLASS_FIT_SMALLINT) {
            return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
        #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
        } else {
            mp_obj_int_t *o = mp_obj_int_new_mpz();
            mpz_set_from_float(&o->mpz, val);
            return MP_OBJ_FROM_PTR(o);
        }
        #else
        #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
        } else if (icl == MP_FP_CLASS_FIT_LONGINT) {
            return mp_obj_new_int_from_ll((long long)val);
        #endif
        } else {
            mp_raise_ValueError(MP_ERROR_TEXT("float too big"));
        }
        #endif
    }
}

#endif

#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
typedef mp_longint_impl_t fmt_int_t;
typedef unsigned long long fmt_uint_t;
#else
typedef mp_int_t fmt_int_t;
typedef mp_uint_t fmt_uint_t;
#endif

void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    (void)kind;
    // The size of this buffer is rather arbitrary. If it's not large
    // enough, a dynamic one will be allocated.
    char stack_buf[sizeof(fmt_int_t) * 4];
    char *buf = stack_buf;
    size_t buf_size = sizeof(stack_buf);
    size_t fmt_size;

    char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
    mp_print_str(print, str);

    if (buf != stack_buf) {
        m_del(char, buf, buf_size);
    }
}

STATIC const uint8_t log_base2_floor[] = {
    0, 1, 1, 2,
    2, 2, 2, 3,
    3, 3, 3, 3,
    3, 3, 3, 4,
    /* if needed, these are the values for higher bases
    4, 4, 4, 4,
    4, 4, 4, 4,
    4, 4, 4, 4,
    4, 4, 4, 5
    */
};

size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) {
    assert(2 <= base && base <= 16);
    size_t num_digits = num_bits / log_base2_floor[base - 1] + 1;
    size_t num_commas = comma ? num_digits / 3 : 0;
    size_t prefix_len = prefix ? strlen(prefix) : 0;
    return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
}

// This routine expects you to pass in a buffer and size (in *buf and *buf_size).
// If, for some reason, this buffer is too small, then it will allocate a
// buffer and return the allocated buffer and size in *buf and *buf_size. It
// is the callers responsibility to free this allocated buffer.
//
// The resulting formatted string will be returned from this function and the
// formatted size will be in *fmt_size.
char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in,
    int base, const char *prefix, char base_char, char comma) {
    fmt_int_t num;
    #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
    // Only have small ints; get the integer value to format.
    num = MP_OBJ_SMALL_INT_VALUE(self_in);
    #else
    if (mp_obj_is_small_int(self_in)) {
        // A small int; get the integer value to format.
        num = MP_OBJ_SMALL_INT_VALUE(self_in);
    } else {
        assert(mp_obj_is_type(self_in, &mp_type_int));
        // Not a small int.
        #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
        const mp_obj_int_t *self = self_in;
        // Get the value to format; mp_obj_get_int truncates to mp_int_t.
        num = self->val;
        #else
        // Delegate to the implementation for the long int.
        return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
        #endif
    }
    #endif

    char sign = '\0';
    if (num < 0) {
        num = -num;
        sign = '-';
    }

    size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma);
    if (needed_size > *buf_size) {
        *buf = m_new(char, needed_size);
        *buf_size = needed_size;
    }
    char *str = *buf;

    char *b = str + needed_size;
    *(--b) = '\0';
    char *last_comma = b;

    if (num == 0) {
        *(--b) = '0';
    } else {
        do {
            // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic
            int c = (fmt_uint_t)num % base;
            num = (fmt_uint_t)num / base;
            if (c >= 10) {
                c += base_char - 10;
            } else {
                c += '0';
            }
            *(--b) = c;
            if (comma && num != 0 && b > str && (last_comma - b) == 3) {
                *(--b) = comma;
                last_comma = b;
            }
        }
        while (b > str && num != 0);
    }
    if (prefix) {
        size_t prefix_len = strlen(prefix);
        char *p = b - prefix_len;
        if (p > str) {
            b = p;
            while (*prefix) {
                *p++ = *prefix++;
            }
        }
    }
    if (sign && b > str) {
        *(--b) = sign;
    }
    *fmt_size = *buf + needed_size - b - 1;

    return b;
}

#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE

int mp_obj_int_sign(mp_obj_t self_in) {
    mp_int_t val = mp_obj_get_int(self_in);
    if (val < 0) {
        return -1;
    } else if (val > 0) {
        return 1;
    } else {
        return 0;
    }
}

// This is called for operations on SMALL_INT that are not handled by mp_unary_op
mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) {
    return MP_OBJ_NULL; // op not supported
}

// This is called for operations on SMALL_INT that are not handled by mp_binary_op
mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
    return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
}

// This is called only with strings whose value doesn't fit in SMALL_INT
mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) {
    mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("long int not supported in this build"));
    return mp_const_none;
}

// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ll(long long val) {
    mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
    return mp_const_none;
}

// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
    mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
    return mp_const_none;
}

mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
    // SMALL_INT accepts only signed numbers, so make sure the input
    // value fits completely in the small-int positive range.
    if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) {
        return MP_OBJ_NEW_SMALL_INT(value);
    }
    mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
    return mp_const_none;
}

mp_obj_t mp_obj_new_int(mp_int_t value) {
    if (MP_SMALL_INT_FITS(value)) {
        return MP_OBJ_NEW_SMALL_INT(value);
    }
    mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow"));
    return mp_const_none;
}

mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
    return MP_OBJ_SMALL_INT_VALUE(self_in);
}

mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
    return MP_OBJ_SMALL_INT_VALUE(self_in);
}

#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE

// This dispatcher function is expected to be independent of the implementation of long int
// It handles the extra cases for integer-like arithmetic
mp_obj_t mp_obj_int_binary_op_extra_cases(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
    if (rhs_in == mp_const_false) {
        // false acts as 0
        return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
    } else if (rhs_in == mp_const_true) {
        // true acts as 0
        return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
    } else if (op == MP_BINARY_OP_MULTIPLY) {
        if (mp_obj_is_str_or_bytes(rhs_in) || mp_obj_is_type(rhs_in, &mp_type_tuple) || mp_obj_is_type(rhs_in, &mp_type_list)) {
            // multiply is commutative for these types, so delegate to them
            return mp_binary_op(op, rhs_in, lhs_in);
        }
    }
    return MP_OBJ_NULL; // op not supported
}

// this is a classmethod
STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) {
    // TODO: Support signed param (assumes signed=False at the moment)
    (void)n_args;

    // get the buffer info
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);

    const byte *buf = (const byte *)bufinfo.buf;
    int delta = 1;
    if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) {
        buf += bufinfo.len - 1;
        delta = -1;
    }

    mp_uint_t value = 0;
    size_t len = bufinfo.len;
    for (; len--; buf += delta) {
        #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
        if (value > (MP_SMALL_INT_MAX >> 8)) {
            // Result will overflow a small-int so construct a big-int
            return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf);
        }
        #endif
        value = (value << 8) | *buf;
    }
    return mp_obj_new_int_from_uint(value);
}

STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj));

STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *args) {
    // TODO: Support signed param (assumes signed=False)
    (void)n_args;

    mp_int_t len = mp_obj_get_int(args[1]);
    if (len < 0) {
        mp_raise_ValueError(NULL);
    }
    bool big_endian = args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little);

    vstr_t vstr;
    vstr_init_len(&vstr, len);
    byte *data = (byte *)vstr.buf;
    memset(data, 0, len);

    #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
    if (!mp_obj_is_small_int(args[0])) {
        mp_obj_int_to_bytes_impl(args[0], big_endian, len, data);
    } else
    #endif
    {
        mp_int_t val = MP_OBJ_SMALL_INT_VALUE(args[0]);
        size_t l = MIN((size_t)len, sizeof(val));
        mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val);
    }

    return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 3, 4, int_to_bytes);

STATIC const mp_rom_map_elem_t int_locals_dict_table[] = {
    { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) },
    { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) },
};

STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);

const mp_obj_type_t mp_type_int = {
    { &mp_type_type },
    .name = MP_QSTR_int,
    .print = mp_obj_int_print,
    .make_new = mp_obj_int_make_new,
    .unary_op = mp_obj_int_unary_op,
    .binary_op = mp_obj_int_binary_op,
    .locals_dict = (mp_obj_dict_t *)&int_locals_dict,
};