aboutsummaryrefslogtreecommitdiff
path: root/py/emitnative.c
blob: 6683ea420260f8293785ccc70f224072d34caf31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

// Essentially normal Python has 1 type: Python objects
// Viper has more than 1 type, and is just a more complicated (a superset of) Python.
// If you declare everything in Viper as a Python object (ie omit type decls) then
// it should in principle be exactly the same as Python native.
// Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc.
// In practice we won't have a VM but rather do this in asm which is actually very minimal.

// Because it breaks strict Python equivalence it should be a completely separate
// decorator.  It breaks equivalence because overflow on integers wraps around.
// It shouldn't break equivalence if you don't use the new types, but since the
// type decls might be used in normal Python for other reasons, it's probably safest,
// cleanest and clearest to make it a separate decorator.

// Actually, it does break equivalence because integers default to native integers,
// not Python objects.

// for x in l[0:8]: can be compiled into a native loop if l has pointer type

#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "py/emit.h"
#include "py/nativeglue.h"
#include "py/objfun.h"
#include "py/objstr.h"

#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif

// wrapper around everything in this file
#if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA || N_XTENSAWIN

// C stack layout for native functions:
//  0:                          nlr_buf_t [optional]
//                              return_value [optional word]
//                              exc_handler_unwind [optional word]
//  emit->code_state_start:     mp_code_state_native_t
//  emit->stack_start:          Python object stack             | emit->n_state
//                              locals (reversed, L0 at end)    |
//
// C stack layout for native generator functions:
//  0=emit->stack_start:        nlr_buf_t
//                              return_value
//                              exc_handler_unwind [optional word]
//
//  Then REG_GENERATOR_STATE points to:
//  0=emit->code_state_start:   mp_code_state_native_t
//  emit->stack_start:          Python object stack             | emit->n_state
//                              locals (reversed, L0 at end)    |
//
// C stack layout for viper functions:
//  0:                          nlr_buf_t [optional]
//                              return_value [optional word]
//                              exc_handler_unwind [optional word]
//  emit->code_state_start:     fun_obj, old_globals [optional]
//  emit->stack_start:          Python object stack             | emit->n_state
//                              locals (reversed, L0 at end)    |
//                              (L0-L2 may be in regs instead)

// Native emitter needs to know the following sizes and offsets of C structs (on the target):
#if MICROPY_DYNAMIC_COMPILER
#define SIZEOF_NLR_BUF (2 + mp_dynamic_compiler.nlr_buf_num_regs + 1) // the +1 is conservative in case MICROPY_ENABLE_PYSTACK enabled
#else
#define SIZEOF_NLR_BUF (sizeof(nlr_buf_t) / sizeof(uintptr_t))
#endif
#define SIZEOF_CODE_STATE (sizeof(mp_code_state_native_t) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_STATE (offsetof(mp_code_state_native_t, state) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_FUN_BC (offsetof(mp_code_state_native_t, fun_bc) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_IP (offsetof(mp_code_state_native_t, ip) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_SP (offsetof(mp_code_state_native_t, sp) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_N_STATE (offsetof(mp_code_state_native_t, n_state) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_CONTEXT (offsetof(mp_obj_fun_bc_t, context) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_CHILD_TABLE (offsetof(mp_obj_fun_bc_t, child_table) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_BYTECODE (offsetof(mp_obj_fun_bc_t, bytecode) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_QSTR_TABLE (offsetof(mp_module_context_t, constants.qstr_table) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_OBJ_TABLE (offsetof(mp_module_context_t, constants.obj_table) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_GLOBALS (offsetof(mp_module_context_t, module.globals) / sizeof(uintptr_t))

// If not already defined, set parent args to same as child call registers
#ifndef REG_PARENT_RET
#define REG_PARENT_RET REG_RET
#define REG_PARENT_ARG_1 REG_ARG_1
#define REG_PARENT_ARG_2 REG_ARG_2
#define REG_PARENT_ARG_3 REG_ARG_3
#define REG_PARENT_ARG_4 REG_ARG_4
#endif

// Word index of nlr_buf_t.ret_val
#define NLR_BUF_IDX_RET_VAL (1)

// Whether the viper function needs access to fun_obj
#define NEED_FUN_OBJ(emit) ((emit)->scope->exc_stack_size > 0 \
    || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS)))

// Whether the native/viper function needs to be wrapped in an exception handler
#define NEED_GLOBAL_EXC_HANDLER(emit) ((emit)->scope->exc_stack_size > 0 \
    || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_REFGLOBALS)))

// Whether a slot is needed to store LOCAL_IDX_EXC_HANDLER_UNWIND
#define NEED_EXC_HANDLER_UNWIND(emit) ((emit)->scope->exc_stack_size > 0)

// Whether registers can be used to store locals (only true if there are no
// exception handlers, because otherwise an nlr_jump will restore registers to
// their state at the start of the function and updates to locals will be lost)
#define CAN_USE_REGS_FOR_LOCALS(emit) ((emit)->scope->exc_stack_size == 0 && !(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR))

// Indices within the local C stack for various variables
#define LOCAL_IDX_EXC_VAL(emit) (NLR_BUF_IDX_RET_VAL)
#define LOCAL_IDX_EXC_HANDLER_PC(emit) (NLR_BUF_IDX_LOCAL_1)
#define LOCAL_IDX_EXC_HANDLER_UNWIND(emit) (SIZEOF_NLR_BUF + 1) // this needs a dedicated variable outside nlr_buf_t
#define LOCAL_IDX_RET_VAL(emit) (SIZEOF_NLR_BUF) // needed when NEED_GLOBAL_EXC_HANDLER is true
#define LOCAL_IDX_FUN_OBJ(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_FUN_BC)
#define LOCAL_IDX_OLD_GLOBALS(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP)
#define LOCAL_IDX_GEN_PC(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP)
#define LOCAL_IDX_LOCAL_VAR(emit, local_num) ((emit)->stack_start + (emit)->n_state - 1 - (local_num))

#if MICROPY_PERSISTENT_CODE_SAVE

// When building with the ability to save native code to .mpy files:
//  - Qstrs are indirect via qstr_table, and REG_LOCAL_3 always points to qstr_table.
//  - In a generator no registers are used to store locals, and REG_LOCAL_2 points to the generator state.
//  - At most 2 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible).

#define REG_GENERATOR_STATE (REG_LOCAL_2)
#define REG_QSTR_TABLE (REG_LOCAL_3)
#define MAX_REGS_FOR_LOCAL_VARS (2)

STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2};

#else

// When building without the ability to save native code to .mpy files:
//  - Qstrs values are written directly into the machine code.
//  - In a generator no registers are used to store locals, and REG_LOCAL_3 points to the generator state.
//  - At most 3 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible).

#define REG_GENERATOR_STATE (REG_LOCAL_3)
#define MAX_REGS_FOR_LOCAL_VARS (3)

STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2, REG_LOCAL_3};

#endif

#define REG_LOCAL_LAST (reg_local_table[MAX_REGS_FOR_LOCAL_VARS - 1])

#define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \
        *emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \
} while (0)

typedef enum {
    STACK_VALUE,
    STACK_REG,
    STACK_IMM,
} stack_info_kind_t;

// these enums must be distinct and the bottom 4 bits
// must correspond to the correct MP_NATIVE_TYPE_xxx value
typedef enum {
    VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ,
    VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL,
    VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT,
    VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT,
    VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR,
    VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8,
    VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16,
    VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32,

    VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR,

    VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ,
    VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ,
} vtype_kind_t;

STATIC qstr vtype_to_qstr(vtype_kind_t vtype) {
    switch (vtype) {
        case VTYPE_PYOBJ:
            return MP_QSTR_object;
        case VTYPE_BOOL:
            return MP_QSTR_bool;
        case VTYPE_INT:
            return MP_QSTR_int;
        case VTYPE_UINT:
            return MP_QSTR_uint;
        case VTYPE_PTR:
            return MP_QSTR_ptr;
        case VTYPE_PTR8:
            return MP_QSTR_ptr8;
        case VTYPE_PTR16:
            return MP_QSTR_ptr16;
        case VTYPE_PTR32:
            return MP_QSTR_ptr32;
        case VTYPE_PTR_NONE:
        default:
            return MP_QSTR_None;
    }
}

typedef struct _stack_info_t {
    vtype_kind_t vtype;
    stack_info_kind_t kind;
    union {
        int u_reg;
        mp_int_t u_imm;
    } data;
} stack_info_t;

#define UNWIND_LABEL_UNUSED (0x7fff)
#define UNWIND_LABEL_DO_FINAL_UNWIND (0x7ffe)

typedef struct _exc_stack_entry_t {
    uint16_t label : 15;
    uint16_t is_finally : 1;
    uint16_t unwind_label : 15;
    uint16_t is_active : 1;
} exc_stack_entry_t;

struct _emit_t {
    mp_emit_common_t *emit_common;
    mp_obj_t *error_slot;
    uint *label_slot;
    uint exit_label;
    int pass;

    bool do_viper_types;
    bool prelude_offset_uses_u16_encoding;

    mp_uint_t local_vtype_alloc;
    vtype_kind_t *local_vtype;

    mp_uint_t stack_info_alloc;
    stack_info_t *stack_info;
    vtype_kind_t saved_stack_vtype;

    size_t exc_stack_alloc;
    size_t exc_stack_size;
    exc_stack_entry_t *exc_stack;

    int prelude_offset;
    int prelude_ptr_index;
    int start_offset;
    int n_state;
    uint16_t code_state_start;
    uint16_t stack_start;
    int stack_size;
    uint16_t n_info;
    uint16_t n_cell;

    bool last_emit_was_return_value;

    scope_t *scope;

    ASM_T *as;
};

STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj);
STATIC void emit_native_global_exc_entry(emit_t *emit);
STATIC void emit_native_global_exc_exit(emit_t *emit);
STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj);

emit_t *EXPORT_FUN(new)(mp_emit_common_t * emit_common, mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels) {
    emit_t *emit = m_new0(emit_t, 1);
    emit->emit_common = emit_common;
    emit->error_slot = error_slot;
    emit->label_slot = label_slot;
    emit->stack_info_alloc = 8;
    emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc);
    emit->exc_stack_alloc = 8;
    emit->exc_stack = m_new(exc_stack_entry_t, emit->exc_stack_alloc);
    emit->as = m_new0(ASM_T, 1);
    mp_asm_base_init(&emit->as->base, max_num_labels);
    return emit;
}

void EXPORT_FUN(free)(emit_t * emit) {
    mp_asm_base_deinit(&emit->as->base, false);
    m_del_obj(ASM_T, emit->as);
    m_del(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc);
    m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc);
    m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc);
    m_del_obj(emit_t, emit);
}

STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg);

STATIC void emit_native_mov_reg_const(emit_t *emit, int reg_dest, int const_val) {
    ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_FUN_TABLE, const_val);
}

STATIC void emit_native_mov_state_reg(emit_t *emit, int local_num, int reg_src) {
    if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
        ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, REG_GENERATOR_STATE, local_num);
    } else {
        ASM_MOV_LOCAL_REG(emit->as, local_num, reg_src);
    }
}

STATIC void emit_native_mov_reg_state(emit_t *emit, int reg_dest, int local_num) {
    if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
        ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_GENERATOR_STATE, local_num);
    } else {
        ASM_MOV_REG_LOCAL(emit->as, reg_dest, local_num);
    }
}

STATIC void emit_native_mov_reg_state_addr(emit_t *emit, int reg_dest, int local_num) {
    if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
        ASM_MOV_REG_IMM(emit->as, reg_dest, local_num * ASM_WORD_SIZE);
        ASM_ADD_REG_REG(emit->as, reg_dest, REG_GENERATOR_STATE);
    } else {
        ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, local_num);
    }
}

STATIC void emit_native_mov_reg_qstr(emit_t *emit, int arg_reg, qstr qst) {
    #if MICROPY_PERSISTENT_CODE_SAVE
    ASM_LOAD16_REG_REG_OFFSET(emit->as, arg_reg, REG_QSTR_TABLE, mp_emit_common_use_qstr(emit->emit_common, qst));
    #else
    ASM_MOV_REG_IMM(emit->as, arg_reg, qst);
    #endif
}

STATIC void emit_native_mov_reg_qstr_obj(emit_t *emit, int reg_dest, qstr qst) {
    #if MICROPY_PERSISTENT_CODE_SAVE
    emit_load_reg_with_object(emit, reg_dest, MP_OBJ_NEW_QSTR(qst));
    #else
    ASM_MOV_REG_IMM(emit->as, reg_dest, (mp_uint_t)MP_OBJ_NEW_QSTR(qst));
    #endif
}

#define emit_native_mov_state_imm_via(emit, local_num, imm, reg_temp) \
    do { \
        ASM_MOV_REG_IMM((emit)->as, (reg_temp), (imm)); \
        emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \
    } while (false)

STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
    DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope);

    emit->pass = pass;
    emit->do_viper_types = scope->emit_options == MP_EMIT_OPT_VIPER;
    emit->stack_size = 0;
    emit->last_emit_was_return_value = false;
    emit->scope = scope;

    // allocate memory for keeping track of the types of locals
    if (emit->local_vtype_alloc < scope->num_locals) {
        emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals);
        emit->local_vtype_alloc = scope->num_locals;
    }

    // set default type for arguments
    mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args;
    if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
        num_args += 1;
    }
    if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) {
        num_args += 1;
    }
    for (mp_uint_t i = 0; i < num_args; i++) {
        emit->local_vtype[i] = VTYPE_PYOBJ;
    }

    // Set viper type for arguments
    if (emit->do_viper_types) {
        for (int i = 0; i < emit->scope->id_info_len; ++i) {
            id_info_t *id = &emit->scope->id_info[i];
            if (id->flags & ID_FLAG_IS_PARAM) {
                assert(id->local_num < emit->local_vtype_alloc);
                emit->local_vtype[id->local_num] = id->flags >> ID_FLAG_VIPER_TYPE_POS;
            }
        }
    }

    // local variables begin unbound, and have unknown type
    for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) {
        emit->local_vtype[i] = VTYPE_UNBOUND;
    }

    // values on stack begin unbound
    for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) {
        emit->stack_info[i].kind = STACK_VALUE;
        emit->stack_info[i].vtype = VTYPE_UNBOUND;
    }

    mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE);

    // generate code for entry to function

    // Work out start of code state (mp_code_state_native_t or reduced version for viper)
    emit->code_state_start = 0;
    if (NEED_GLOBAL_EXC_HANDLER(emit)) {
        emit->code_state_start = SIZEOF_NLR_BUF; // for nlr_buf_t
        emit->code_state_start += 1;  // for return_value
        if (NEED_EXC_HANDLER_UNWIND(emit)) {
            emit->code_state_start += 1;
        }
    }

    size_t fun_table_off = mp_emit_common_use_const_obj(emit->emit_common, MP_OBJ_FROM_PTR(&mp_fun_table));

    if (emit->do_viper_types) {
        // Work out size of state (locals plus stack)
        // n_state counts all stack and locals, even those in registers
        emit->n_state = scope->num_locals + scope->stack_size;
        int num_locals_in_regs = 0;
        if (CAN_USE_REGS_FOR_LOCALS(emit)) {
            num_locals_in_regs = scope->num_locals;
            if (num_locals_in_regs > MAX_REGS_FOR_LOCAL_VARS) {
                num_locals_in_regs = MAX_REGS_FOR_LOCAL_VARS;
            }
            // Need a spot for REG_LOCAL_LAST (see below)
            if (scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1) {
                --num_locals_in_regs;
            }
        }

        // Work out where the locals and Python stack start within the C stack
        if (NEED_GLOBAL_EXC_HANDLER(emit)) {
            // Reserve 2 words for function object and old globals
            emit->stack_start = emit->code_state_start + 2;
        } else if (scope->scope_flags & MP_SCOPE_FLAG_HASCONSTS) {
            // Reserve 1 word for function object, to access const table
            emit->stack_start = emit->code_state_start + 1;
        } else {
            emit->stack_start = emit->code_state_start + 0;
        }

        // Entry to function
        ASM_ENTRY(emit->as, emit->stack_start + emit->n_state - num_locals_in_regs);

        #if N_X86
        asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1);
        #endif

        // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
        ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
        #if MICROPY_PERSISTENT_CODE_SAVE
        ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
        #endif
        ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
        ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off);

        // Store function object (passed as first arg) to stack if needed
        if (NEED_FUN_OBJ(emit)) {
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1);
        }

        // Put n_args in REG_ARG_1, n_kw in REG_ARG_2, args array in REG_LOCAL_LAST
        #if N_X86
        asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_1);
        asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_2);
        asm_x86_mov_arg_to_r32(emit->as, 3, REG_LOCAL_LAST);
        #else
        ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_PARENT_ARG_2);
        ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_3);
        ASM_MOV_REG_REG(emit->as, REG_LOCAL_LAST, REG_PARENT_ARG_4);
        #endif

        // Check number of args matches this function, and call mp_arg_check_num_sig if not
        ASM_JUMP_IF_REG_NONZERO(emit->as, REG_ARG_2, *emit->label_slot + 4, true);
        ASM_MOV_REG_IMM(emit->as, REG_ARG_3, scope->num_pos_args);
        ASM_JUMP_IF_REG_EQ(emit->as, REG_ARG_1, REG_ARG_3, *emit->label_slot + 5);
        mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 4);
        ASM_MOV_REG_IMM(emit->as, REG_ARG_3, MP_OBJ_FUN_MAKE_SIG(scope->num_pos_args, scope->num_pos_args, false));
        ASM_CALL_IND(emit->as, MP_F_ARG_CHECK_NUM_SIG);
        mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 5);

        // Store arguments into locals (reg or stack), converting to native if needed
        for (int i = 0; i < emit->scope->num_pos_args; i++) {
            int r = REG_ARG_1;
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_LOCAL_LAST, i);
            if (emit->local_vtype[i] != VTYPE_PYOBJ) {
                emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, emit->local_vtype[i], REG_ARG_2);
                r = REG_RET;
            }
            // REG_LOCAL_LAST points to the args array so be sure not to overwrite it if it's still needed
            if (i < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit) && (i != MAX_REGS_FOR_LOCAL_VARS - 1 || emit->scope->num_pos_args == MAX_REGS_FOR_LOCAL_VARS)) {
                ASM_MOV_REG_REG(emit->as, reg_local_table[i], r);
            } else {
                emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, i), r);
            }
        }
        // Get local from the stack back into REG_LOCAL_LAST if this reg couldn't be written to above
        if (emit->scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1 && CAN_USE_REGS_FOR_LOCALS(emit)) {
            ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_LAST, LOCAL_IDX_LOCAL_VAR(emit, MAX_REGS_FOR_LOCAL_VARS - 1));
        }

        emit_native_global_exc_entry(emit);

    } else {
        // work out size of state (locals plus stack)
        emit->n_state = scope->num_locals + scope->stack_size;

        if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
            mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->prelude_ptr_index);
            mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->start_offset);
            ASM_ENTRY(emit->as, emit->code_state_start);

            // Reset the state size for the state pointed to by REG_GENERATOR_STATE
            emit->code_state_start = 0;
            emit->stack_start = SIZEOF_CODE_STATE;

            // Put address of code_state into REG_GENERATOR_STATE
            #if N_X86
            asm_x86_mov_arg_to_r32(emit->as, 0, REG_GENERATOR_STATE);
            #else
            ASM_MOV_REG_REG(emit->as, REG_GENERATOR_STATE, REG_PARENT_ARG_1);
            #endif

            // Put throw value into LOCAL_IDX_EXC_VAL slot, for yield/yield-from
            #if N_X86
            asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2);
            #endif
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_PARENT_ARG_2);

            // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, LOCAL_IDX_FUN_OBJ(emit));
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT);
            #if MICROPY_PERSISTENT_CODE_SAVE
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
            #endif
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_TEMP0, fun_table_off);
        } else {
            // The locals and stack start after the code_state structure
            emit->stack_start = emit->code_state_start + SIZEOF_CODE_STATE;

            // Allocate space on C-stack for code_state structure, which includes state
            ASM_ENTRY(emit->as, emit->stack_start + emit->n_state);

            // Prepare incoming arguments for call to mp_setup_code_state

            #if N_X86
            asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1);
            asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2);
            asm_x86_mov_arg_to_r32(emit->as, 2, REG_PARENT_ARG_3);
            asm_x86_mov_arg_to_r32(emit->as, 3, REG_PARENT_ARG_4);
            #endif

            // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
            #if MICROPY_PERSISTENT_CODE_SAVE
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
            #endif
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off);

            // Set code_state.fun_bc
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1);

            // Set code_state.ip, a pointer to the beginning of the prelude.  This pointer is found
            // either directly in mp_obj_fun_bc_t.child_table (if there are no children), or in
            // mp_obj_fun_bc_t.child_table[num_children] (if num_children > 0).
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE);
            if (emit->prelude_ptr_index != 0) {
                ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, emit->prelude_ptr_index);
            }
            emit_native_mov_state_reg(emit, emit->code_state_start + OFFSETOF_CODE_STATE_IP, REG_PARENT_ARG_1);

            // Set code_state.n_state (only works on little endian targets due to n_state being uint16_t)
            emit_native_mov_state_imm_via(emit, emit->code_state_start + OFFSETOF_CODE_STATE_N_STATE, emit->n_state, REG_ARG_1);

            // Put address of code_state into first arg
            ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, emit->code_state_start);

            // Copy next 3 args if needed
            #if REG_ARG_2 != REG_PARENT_ARG_2
            ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_2);
            #endif
            #if REG_ARG_3 != REG_PARENT_ARG_3
            ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_PARENT_ARG_3);
            #endif
            #if REG_ARG_4 != REG_PARENT_ARG_4
            ASM_MOV_REG_REG(emit->as, REG_ARG_4, REG_PARENT_ARG_4);
            #endif

            // Call mp_setup_code_state to prepare code_state structure
            #if N_THUMB
            asm_thumb_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4);
            #elif N_ARM
            asm_arm_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4);
            #else
            ASM_CALL_IND(emit->as, MP_F_SETUP_CODE_STATE);
            #endif
        }

        emit_native_global_exc_entry(emit);

        // cache some locals in registers, but only if no exception handlers
        if (CAN_USE_REGS_FOR_LOCALS(emit)) {
            for (int i = 0; i < MAX_REGS_FOR_LOCAL_VARS && i < scope->num_locals; ++i) {
                ASM_MOV_REG_LOCAL(emit->as, reg_local_table[i], LOCAL_IDX_LOCAL_VAR(emit, i));
            }
        }

        // set the type of closed over variables
        for (mp_uint_t i = 0; i < scope->id_info_len; i++) {
            id_info_t *id = &scope->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL) {
                emit->local_vtype[id->local_num] = VTYPE_PYOBJ;
            }
        }
    }
}

static inline void emit_native_write_code_info_byte(emit_t *emit, byte val) {
    mp_asm_base_data(&emit->as->base, 1, val);
}

static inline void emit_native_write_code_info_qstr(emit_t *emit, qstr qst) {
    mp_encode_uint(&emit->as->base, mp_asm_base_get_cur_to_write_bytes, mp_emit_common_use_qstr(emit->emit_common, qst));
}

STATIC bool emit_native_end_pass(emit_t *emit) {
    emit_native_global_exc_exit(emit);

    if (!emit->do_viper_types) {
        emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base);
        emit->prelude_ptr_index = emit->emit_common->ct_cur_child;

        size_t n_state = emit->n_state;
        size_t n_exc_stack = 0; // exc-stack not needed for native code
        MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, emit->scope, emit_native_write_code_info_byte, emit);

        size_t n_info = emit->n_info;
        size_t n_cell = emit->n_cell;
        MP_BC_PRELUDE_SIZE_ENCODE(n_info, n_cell, emit_native_write_code_info_byte, emit);

        // bytecode prelude: source info (function and argument qstrs)
        size_t info_start = mp_asm_base_get_code_pos(&emit->as->base);
        emit_native_write_code_info_qstr(emit, emit->scope->simple_name);
        for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) {
            qstr qst = MP_QSTR__star_;
            for (int j = 0; j < emit->scope->id_info_len; ++j) {
                id_info_t *id = &emit->scope->id_info[j];
                if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
                    qst = id->qst;
                    break;
                }
            }
            emit_native_write_code_info_qstr(emit, qst);
        }
        emit->n_info = mp_asm_base_get_code_pos(&emit->as->base) - info_start;

        // bytecode prelude: initialise closed over variables
        size_t cell_start = mp_asm_base_get_code_pos(&emit->as->base);
        for (int i = 0; i < emit->scope->id_info_len; i++) {
            id_info_t *id = &emit->scope->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL) {
                assert(id->local_num <= 255);
                mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell
            }
        }
        emit->n_cell = mp_asm_base_get_code_pos(&emit->as->base) - cell_start;

    }

    ASM_END_PASS(emit->as);

    // check stack is back to zero size
    assert(emit->stack_size == 0);
    assert(emit->exc_stack_size == 0);

    if (emit->pass == MP_PASS_EMIT) {
        void *f = mp_asm_base_get_code(&emit->as->base);
        mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base);

        mp_raw_code_t **children = emit->emit_common->children;
        if (!emit->do_viper_types) {
            #if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE
            // Executable code cannot be accessed byte-wise on this architecture, so copy
            // the prelude to a separate memory region that is byte-wise readable.
            void *buf = emit->as->base.code_base + emit->prelude_offset;
            size_t n = emit->as->base.code_offset - emit->prelude_offset;
            const uint8_t *prelude_ptr = memcpy(m_new(uint8_t, n), buf, n);
            #else
            // Point to the prelude directly, at the end of the machine code data.
            const uint8_t *prelude_ptr = (const uint8_t *)f + emit->prelude_offset;
            #endif

            // Store the pointer to the prelude using the child_table.
            assert(emit->prelude_ptr_index == emit->emit_common->ct_cur_child);
            if (emit->prelude_ptr_index == 0) {
                children = (void *)prelude_ptr;
            } else {
                children = m_renew(mp_raw_code_t *, children, emit->prelude_ptr_index, emit->prelude_ptr_index + 1);
                children[emit->prelude_ptr_index] = (void *)prelude_ptr;
            }
        }

        mp_emit_glue_assign_native(emit->scope->raw_code,
            emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY,
            f, f_len,
            children,
            #if MICROPY_PERSISTENT_CODE_SAVE
            emit->emit_common->ct_cur_child,
            emit->prelude_offset,
            #endif
            emit->scope->scope_flags, 0, 0);
    }

    return true;
}

STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) {
    return emit->last_emit_was_return_value;
}

STATIC void ensure_extra_stack(emit_t *emit, size_t delta) {
    if (emit->stack_size + delta > emit->stack_info_alloc) {
        size_t new_alloc = (emit->stack_size + delta + 8) & ~3;
        emit->stack_info = m_renew(stack_info_t, emit->stack_info, emit->stack_info_alloc, new_alloc);
        emit->stack_info_alloc = new_alloc;
    }
}

STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) {
    assert((mp_int_t)emit->stack_size + stack_size_delta >= 0);
    assert((mp_int_t)emit->stack_size + stack_size_delta <= (mp_int_t)emit->stack_info_alloc);
    emit->stack_size += stack_size_delta;
    if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) {
        emit->scope->stack_size = emit->stack_size;
    }
    #ifdef DEBUG_PRINT
    DEBUG_printf("  adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta);
    for (int i = 0; i < emit->stack_size; i++) {
        stack_info_t *si = &emit->stack_info[i];
        DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg);
    }
    DEBUG_printf("\n");
    #endif
}

STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) {
    DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta);
    if (delta > 0) {
        ensure_extra_stack(emit, delta);
    }
    // If we are adjusting the stack in a positive direction (pushing) then we
    // need to fill in values for the stack kind and vtype of the newly-pushed
    // entries.  These should be set to "value" (ie not reg or imm) because we
    // should only need to adjust the stack due to a jump to this part in the
    // code (and hence we have settled the stack before the jump).
    for (mp_int_t i = 0; i < delta; i++) {
        stack_info_t *si = &emit->stack_info[emit->stack_size + i];
        si->kind = STACK_VALUE;
        // TODO we don't know the vtype to use here.  At the moment this is a
        // hack to get the case of multi comparison working.
        if (delta == 1) {
            si->vtype = emit->saved_stack_vtype;
        } else {
            si->vtype = VTYPE_PYOBJ;
        }
    }
    adjust_stack(emit, delta);
}

STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) {
    (void)emit;
    (void)source_line;
}

// this must be called at start of emit functions
STATIC void emit_native_pre(emit_t *emit) {
    emit->last_emit_was_return_value = false;
}

// depth==0 is top, depth==1 is before top, etc
STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) {
    return &emit->stack_info[emit->stack_size - 1 - depth];
}

// depth==0 is top, depth==1 is before top, etc
STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) {
    if (emit->do_viper_types) {
        return peek_stack(emit, depth)->vtype;
    } else {
        // Type is always PYOBJ even if the intermediate stored value is not
        return VTYPE_PYOBJ;
    }
}

// pos=1 is TOS, pos=2 is next, etc
// use pos=0 for no skipping
STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) {
    skip_stack_pos = emit->stack_size - skip_stack_pos;
    for (int i = 0; i < emit->stack_size; i++) {
        if (i != skip_stack_pos) {
            stack_info_t *si = &emit->stack_info[i];
            if (si->kind == STACK_REG && si->data.u_reg == reg_needed) {
                si->kind = STACK_VALUE;
                emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg);
            }
        }
    }
}

// Ensures all unsettled registers that hold Python values are copied to the
// concrete Python stack.  All registers are then free to use.
STATIC void need_reg_all(emit_t *emit) {
    for (int i = 0; i < emit->stack_size; i++) {
        stack_info_t *si = &emit->stack_info[i];
        if (si->kind == STACK_REG) {
            DEBUG_printf("    reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i);
            si->kind = STACK_VALUE;
            emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg);
        }
    }
}

STATIC vtype_kind_t load_reg_stack_imm(emit_t *emit, int reg_dest, const stack_info_t *si, bool convert_to_pyobj) {
    if (!convert_to_pyobj && emit->do_viper_types) {
        ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm);
        return si->vtype;
    } else {
        if (si->vtype == VTYPE_PYOBJ) {
            ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm);
        } else if (si->vtype == VTYPE_BOOL) {
            emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_FALSE_OBJ + si->data.u_imm);
        } else if (si->vtype == VTYPE_INT || si->vtype == VTYPE_UINT) {
            ASM_MOV_REG_IMM(emit->as, reg_dest, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm));
        } else if (si->vtype == VTYPE_PTR_NONE) {
            emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_NONE_OBJ);
        } else {
            mp_raise_NotImplementedError(MP_ERROR_TEXT("conversion to object"));
        }
        return VTYPE_PYOBJ;
    }
}

// Copies all unsettled registers and immediates that are Python values into the
// concrete Python stack.  This ensures the concrete Python stack holds valid
// values for the current stack_size.
// This function may clobber REG_TEMP1.
STATIC void need_stack_settled(emit_t *emit) {
    DEBUG_printf("  need_stack_settled; stack_size=%d\n", emit->stack_size);
    need_reg_all(emit);
    for (int i = 0; i < emit->stack_size; i++) {
        stack_info_t *si = &emit->stack_info[i];
        if (si->kind == STACK_IMM) {
            DEBUG_printf("    imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i);
            si->kind = STACK_VALUE;
            // using REG_TEMP1 to avoid clobbering REG_TEMP0 (aka REG_RET)
            si->vtype = load_reg_stack_imm(emit, REG_TEMP1, si, false);
            emit_native_mov_state_reg(emit, emit->stack_start + i, REG_TEMP1);
        }
    }
}

// pos=1 is TOS, pos=2 is next, etc
STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) {
    need_reg_single(emit, reg_dest, pos);
    stack_info_t *si = &emit->stack_info[emit->stack_size - pos];
    *vtype = si->vtype;
    switch (si->kind) {
        case STACK_VALUE:
            emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - pos);
            break;

        case STACK_REG:
            if (si->data.u_reg != reg_dest) {
                ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg);
            }
            break;

        case STACK_IMM:
            *vtype = load_reg_stack_imm(emit, reg_dest, si, false);
            break;
    }
}

// does an efficient X=pop(); discard(); push(X)
// needs a (non-temp) register in case the poped element was stored in the stack
STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) {
    stack_info_t *si = &emit->stack_info[emit->stack_size - 2];
    si[0] = si[1];
    if (si->kind == STACK_VALUE) {
        // if folded element was on the stack we need to put it in a register
        emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - 1);
        si->kind = STACK_REG;
        si->data.u_reg = reg_dest;
    }
    adjust_stack(emit, -1);
}

// If stacked value is in a register and the register is not r1 or r2, then
// *reg_dest is set to that register.  Otherwise the value is put in *reg_dest.
STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) {
    emit->last_emit_was_return_value = false;
    stack_info_t *si = peek_stack(emit, 0);
    if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) {
        *vtype = si->vtype;
        *reg_dest = si->data.u_reg;
        need_reg_single(emit, *reg_dest, 1);
    } else {
        emit_access_stack(emit, 1, vtype, *reg_dest);
    }
    adjust_stack(emit, -1);
}

STATIC void emit_pre_pop_discard(emit_t *emit) {
    emit->last_emit_was_return_value = false;
    adjust_stack(emit, -1);
}

STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) {
    emit->last_emit_was_return_value = false;
    emit_access_stack(emit, 1, vtype, reg_dest);
    adjust_stack(emit, -1);
}

STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) {
    emit_pre_pop_reg(emit, vtypea, rega);
    emit_pre_pop_reg(emit, vtypeb, regb);
}

STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) {
    emit_pre_pop_reg(emit, vtypea, rega);
    emit_pre_pop_reg(emit, vtypeb, regb);
    emit_pre_pop_reg(emit, vtypec, regc);
}

STATIC void emit_post(emit_t *emit) {
    (void)emit;
}

STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) {
    stack_info_t *si = &emit->stack_info[emit->stack_size - 1];
    si->vtype = new_vtype;
}

STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) {
    ensure_extra_stack(emit, 1);
    stack_info_t *si = &emit->stack_info[emit->stack_size];
    si->vtype = vtype;
    si->kind = STACK_REG;
    si->data.u_reg = reg;
    adjust_stack(emit, 1);
}

STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) {
    ensure_extra_stack(emit, 1);
    stack_info_t *si = &emit->stack_info[emit->stack_size];
    si->vtype = vtype;
    si->kind = STACK_IMM;
    si->data.u_imm = imm;
    adjust_stack(emit, 1);
}

STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) {
    emit_post_push_reg(emit, vtypea, rega);
    emit_post_push_reg(emit, vtypeb, regb);
}

STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) {
    emit_post_push_reg(emit, vtypea, rega);
    emit_post_push_reg(emit, vtypeb, regb);
    emit_post_push_reg(emit, vtypec, regc);
}

STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) {
    emit_post_push_reg(emit, vtypea, rega);
    emit_post_push_reg(emit, vtypeb, regb);
    emit_post_push_reg(emit, vtypec, regc);
    emit_post_push_reg(emit, vtyped, regd);
}

STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) {
    need_reg_all(emit);
    ASM_CALL_IND(emit->as, fun_kind);
}

STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
    need_reg_all(emit);
    ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val);
    ASM_CALL_IND(emit->as, fun_kind);
}

STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) {
    need_reg_all(emit);
    ASM_MOV_REG_IMM(emit->as, arg_reg1, arg_val1);
    ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2);
    ASM_CALL_IND(emit->as, fun_kind);
}

STATIC void emit_call_with_qstr_arg(emit_t *emit, mp_fun_kind_t fun_kind, qstr qst, int arg_reg) {
    need_reg_all(emit);
    emit_native_mov_reg_qstr(emit, arg_reg, qst);
    ASM_CALL_IND(emit->as, fun_kind);
}

// vtype of all n_pop objects is VTYPE_PYOBJ
// Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack.
// If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET.
// Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer).
STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) {
    need_reg_all(emit);

    // First, store any immediate values to their respective place on the stack.
    for (mp_uint_t i = 0; i < n_pop; i++) {
        stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
        // must push any imm's to stack
        // must convert them to VTYPE_PYOBJ for viper code
        if (si->kind == STACK_IMM) {
            si->kind = STACK_VALUE;
            si->vtype = load_reg_stack_imm(emit, reg_dest, si, true);
            emit_native_mov_state_reg(emit, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
        }

        // verify that this value is on the stack
        assert(si->kind == STACK_VALUE);
    }

    // Second, convert any non-VTYPE_PYOBJ to that type.
    for (mp_uint_t i = 0; i < n_pop; i++) {
        stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
        if (si->vtype != VTYPE_PYOBJ) {
            mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i;
            emit_native_mov_reg_state(emit, REG_ARG_1, local_num);
            emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type
            emit_native_mov_state_reg(emit, local_num, REG_RET);
            si->vtype = VTYPE_PYOBJ;
            DEBUG_printf("  convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num);
        }
    }

    // Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest.
    adjust_stack(emit, -n_pop);
    emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size);
}

// vtype of all n_push objects is VTYPE_PYOBJ
STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) {
    need_reg_all(emit);
    ensure_extra_stack(emit, n_push);
    for (mp_uint_t i = 0; i < n_push; i++) {
        emit->stack_info[emit->stack_size + i].kind = STACK_VALUE;
        emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ;
    }
    emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size);
    adjust_stack(emit, n_push);
}

STATIC void emit_native_push_exc_stack(emit_t *emit, uint label, bool is_finally) {
    if (emit->exc_stack_size + 1 > emit->exc_stack_alloc) {
        size_t new_alloc = emit->exc_stack_alloc + 4;
        emit->exc_stack = m_renew(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc, new_alloc);
        emit->exc_stack_alloc = new_alloc;
    }

    exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size++];
    e->label = label;
    e->is_finally = is_finally;
    e->unwind_label = UNWIND_LABEL_UNUSED;
    e->is_active = true;

    ASM_MOV_REG_PCREL(emit->as, REG_RET, label);
    ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
}

STATIC void emit_native_leave_exc_stack(emit_t *emit, bool start_of_handler) {
    assert(emit->exc_stack_size > 0);

    // Get current exception handler and deactivate it
    exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
    e->is_active = false;

    // Find next innermost active exception handler, to restore as current handler
    for (--e; e >= emit->exc_stack && !e->is_active; --e) {
    }

    // Update the PC of the new exception handler
    if (e < emit->exc_stack) {
        // No active handler, clear handler PC to zero
        if (start_of_handler) {
            // Optimisation: PC is already cleared by global exc handler
            return;
        }
        ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET);
    } else {
        // Found new active handler, get its PC
        ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label);
    }
    ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
}

STATIC exc_stack_entry_t *emit_native_pop_exc_stack(emit_t *emit) {
    assert(emit->exc_stack_size > 0);
    exc_stack_entry_t *e = &emit->exc_stack[--emit->exc_stack_size];
    assert(e->is_active == false);
    return e;
}

STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj) {
    emit->scope->scope_flags |= MP_SCOPE_FLAG_HASCONSTS;
    size_t table_off = mp_emit_common_use_const_obj(emit->emit_common, obj);
    emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit));
    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT);
    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
    ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off);
}

STATIC void emit_load_reg_with_child(emit_t *emit, int reg, mp_raw_code_t *rc) {
    size_t table_off = mp_emit_common_alloc_const_child(emit->emit_common, rc);
    emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit));
    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE);
    ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off);
}

STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) {
    DEBUG_printf("label_assign(" UINT_FMT ")\n", l);

    bool is_finally = false;
    if (emit->exc_stack_size > 0) {
        exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
        is_finally = e->is_finally && e->label == l;
    }

    if (is_finally) {
        // Label is at start of finally handler: store TOS into exception slot
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
        ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0);
    }

    emit_native_pre(emit);
    // need to commit stack because we can jump here from elsewhere
    need_stack_settled(emit);
    mp_asm_base_label_assign(&emit->as->base, l);
    emit_post(emit);

    if (is_finally) {
        // Label is at start of finally handler: pop exception stack
        emit_native_leave_exc_stack(emit, false);
    }
}

STATIC void emit_native_global_exc_entry(emit_t *emit) {
    // Note: 4 labels are reserved for this function, starting at *emit->label_slot

    emit->exit_label = *emit->label_slot;

    if (NEED_GLOBAL_EXC_HANDLER(emit)) {
        mp_uint_t nlr_label = *emit->label_slot + 1;
        mp_uint_t start_label = *emit->label_slot + 2;
        mp_uint_t global_except_label = *emit->label_slot + 3;

        if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
            // Set new globals
            emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_FUN_OBJ(emit));
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
            ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_MODULE_CONTEXT_GLOBALS);
            emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS);

            // Save old globals (or NULL if globals didn't change)
            emit_native_mov_state_reg(emit, LOCAL_IDX_OLD_GLOBALS(emit), REG_RET);
        }

        if (emit->scope->exc_stack_size == 0) {
            if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
                // Optimisation: if globals didn't change don't push the nlr context
                ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, false);
            }

            // Wrap everything in an nlr context
            ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0);
            emit_call(emit, MP_F_NLR_PUSH);
            #if N_NLR_SETJMP
            ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2);
            emit_call(emit, MP_F_SETJMP);
            #endif
            ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, true);
        } else {
            // Clear the unwind state
            ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0);
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_TEMP0);

            // Put PC of start code block into REG_LOCAL_1
            ASM_MOV_REG_PCREL(emit->as, REG_LOCAL_1, start_label);

            // Wrap everything in an nlr context
            emit_native_label_assign(emit, nlr_label);
            ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0);
            emit_call(emit, MP_F_NLR_PUSH);
            #if N_NLR_SETJMP
            ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2);
            emit_call(emit, MP_F_SETJMP);
            #endif
            ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, global_except_label, true);

            // Clear PC of current code block, and jump there to resume execution
            ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0);
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_TEMP0);
            ASM_JUMP_REG(emit->as, REG_LOCAL_1);

            // Global exception handler: check for valid exception handler
            emit_native_label_assign(emit, global_except_label);
            ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_1, LOCAL_IDX_EXC_HANDLER_PC(emit));
            ASM_JUMP_IF_REG_NONZERO(emit->as, REG_LOCAL_1, nlr_label, false);
        }

        if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
            // Restore old globals
            emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit));
            emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS);
        }

        if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
            // Store return value in state[0]
            ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit));
            ASM_STORE_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, OFFSETOF_CODE_STATE_STATE);

            // Load return kind
            ASM_MOV_REG_IMM(emit->as, REG_PARENT_RET, MP_VM_RETURN_EXCEPTION);

            ASM_EXIT(emit->as);
        } else {
            // Re-raise exception out to caller
            ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
            emit_call(emit, MP_F_NATIVE_RAISE);
        }

        // Label for start of function
        emit_native_label_assign(emit, start_label);

        if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
            emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_GEN_PC(emit));
            ASM_JUMP_REG(emit->as, REG_TEMP0);
            emit->start_offset = mp_asm_base_get_code_pos(&emit->as->base);

            // This is the first entry of the generator

            // Check LOCAL_IDX_EXC_VAL for any injected value
            ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
            emit_call(emit, MP_F_NATIVE_RAISE);
        }
    }
}

STATIC void emit_native_global_exc_exit(emit_t *emit) {
    // Label for end of function
    emit_native_label_assign(emit, emit->exit_label);

    if (NEED_GLOBAL_EXC_HANDLER(emit)) {
        // Get old globals
        if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
            emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit));

            if (emit->scope->exc_stack_size == 0) {
                // Optimisation: if globals didn't change then don't restore them and don't do nlr_pop
                ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, emit->exit_label + 1, false);
            }

            // Restore old globals
            emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS);
        }

        // Pop the nlr context
        emit_call(emit, MP_F_NLR_POP);

        if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
            if (emit->scope->exc_stack_size == 0) {
                // Destination label for above optimisation
                emit_native_label_assign(emit, emit->exit_label + 1);
            }
        }

        // Load return value
        ASM_MOV_REG_LOCAL(emit->as, REG_PARENT_RET, LOCAL_IDX_RET_VAL(emit));
    }

    ASM_EXIT(emit->as);
}

STATIC void emit_native_import_name(emit_t *emit, qstr qst) {
    DEBUG_printf("import_name %s\n", qstr_str(qst));

    // get arguments from stack: arg2 = fromlist, arg3 = level
    // If using viper types these arguments must be converted to proper objects, and
    // to accomplish this viper types are turned off for the emit_pre_pop_reg_reg call.
    bool orig_do_viper_types = emit->do_viper_types;
    emit->do_viper_types = false;
    vtype_kind_t vtype_fromlist;
    vtype_kind_t vtype_level;
    emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3);
    assert(vtype_fromlist == VTYPE_PYOBJ);
    assert(vtype_level == VTYPE_PYOBJ);
    emit->do_viper_types = orig_do_viper_types;

    emit_call_with_qstr_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_import_from(emit_t *emit, qstr qst) {
    DEBUG_printf("import_from %s\n", qstr_str(qst));
    emit_native_pre(emit);
    vtype_kind_t vtype_module;
    emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module
    assert(vtype_module == VTYPE_PYOBJ);
    emit_call_with_qstr_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_import_star(emit_t *emit) {
    DEBUG_printf("import_star\n");
    vtype_kind_t vtype_module;
    emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module
    assert(vtype_module == VTYPE_PYOBJ);
    emit_call(emit, MP_F_IMPORT_ALL);
    emit_post(emit);
}

STATIC void emit_native_import(emit_t *emit, qstr qst, int kind) {
    if (kind == MP_EMIT_IMPORT_NAME) {
        emit_native_import_name(emit, qst);
    } else if (kind == MP_EMIT_IMPORT_FROM) {
        emit_native_import_from(emit, qst);
    } else {
        emit_native_import_star(emit);
    }
}

STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
    DEBUG_printf("load_const_tok(tok=%u)\n", tok);
    if (tok == MP_TOKEN_ELLIPSIS) {
        emit_native_load_const_obj(emit, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj));
    } else {
        emit_native_pre(emit);
        if (tok == MP_TOKEN_KW_NONE) {
            emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
        } else {
            emit_post_push_imm(emit, VTYPE_BOOL, tok == MP_TOKEN_KW_FALSE ? 0 : 1);
        }
    }
}

STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) {
    DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg);
    emit_native_pre(emit);
    emit_post_push_imm(emit, VTYPE_INT, arg);
}

STATIC void emit_native_load_const_str(emit_t *emit, qstr qst) {
    emit_native_pre(emit);
    // TODO: Eventually we want to be able to work with raw pointers in viper to
    // do native array access.  For now we just load them as any other object.
    /*
    if (emit->do_viper_types) {
        // load a pointer to the asciiz string?
        emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst));
    } else
    */
    {
        need_reg_single(emit, REG_TEMP0, 0);
        emit_native_mov_reg_qstr_obj(emit, REG_TEMP0, qst);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0);
    }
}

STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) {
    emit_native_pre(emit);
    need_reg_single(emit, REG_RET, 0);
    emit_load_reg_with_object(emit, REG_RET, obj);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_null(emit_t *emit) {
    emit_native_pre(emit);
    emit_post_push_imm(emit, VTYPE_PYOBJ, 0);
}

STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
    DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
    vtype_kind_t vtype = emit->local_vtype[local_num];
    if (vtype == VTYPE_UNBOUND) {
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("local '%q' used before type known"), qst);
    }
    emit_native_pre(emit);
    if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) {
        emit_post_push_reg(emit, vtype, reg_local_table[local_num]);
    } else {
        need_reg_single(emit, REG_TEMP0, 0);
        emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_LOCAL_VAR(emit, local_num));
        emit_post_push_reg(emit, vtype, REG_TEMP0);
    }
}

STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
    DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
    need_reg_single(emit, REG_RET, 0);
    emit_native_load_fast(emit, qst, local_num);
    vtype_kind_t vtype;
    int reg_base = REG_RET;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1);
    // closed over vars are always Python objects
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
        emit_native_load_fast(emit, qst, local_num);
    } else {
        emit_native_load_deref(emit, qst, local_num);
    }
}

STATIC void emit_native_load_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_LOAD_NAME);
    MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_LOAD_GLOBAL);
    emit_native_pre(emit);
    if (kind == MP_EMIT_IDOP_GLOBAL_NAME) {
        DEBUG_printf("load_name(%s)\n", qstr_str(qst));
    } else {
        DEBUG_printf("load_global(%s)\n", qstr_str(qst));
        if (emit->do_viper_types) {
            // check for builtin casting operators
            int native_type = mp_native_type_from_qstr(qst);
            if (native_type >= MP_NATIVE_TYPE_BOOL) {
                emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, native_type);
                return;
            }
        }
    }
    emit_call_with_qstr_arg(emit, MP_F_LOAD_NAME + kind, qst, REG_ARG_1);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_attr(emit_t *emit, qstr qst) {
    // depends on type of subject:
    //  - integer, function, pointer to integers: error
    //  - pointer to structure: get member, quite easy
    //  - Python object: call mp_load_attr, and needs to be typed to convert result
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
    assert(vtype_base == VTYPE_PYOBJ);
    emit_call_with_qstr_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) {
    if (is_super) {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr
        emit_call_with_qstr_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name
    } else {
        vtype_kind_t vtype_base;
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
        assert(vtype_base == VTYPE_PYOBJ);
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
        emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name
    }
}

STATIC void emit_native_load_build_class(emit_t *emit) {
    emit_native_pre(emit);
    emit_call(emit, MP_F_LOAD_BUILD_CLASS);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_load_subscr(emit_t *emit) {
    DEBUG_printf("load_subscr\n");
    // need to compile: base[index]

    // pop: index, base
    // optimise case where index is an immediate
    vtype_kind_t vtype_base = peek_vtype(emit, 1);

    if (vtype_base == VTYPE_PYOBJ) {
        // standard Python subscr
        // TODO factor this implicit cast code with other uses of it
        vtype_kind_t vtype_index = peek_vtype(emit, 0);
        if (vtype_index == VTYPE_PYOBJ) {
            emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2);
        } else {
            emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1);
            emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type
            ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
        }
        emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
        emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        // viper load
        // TODO The different machine architectures have very different
        // capabilities and requirements for loads, so probably best to
        // write a completely separate load-optimiser for each one.
        stack_info_t *top = peek_stack(emit, 0);
        if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
            // index is an immediate
            mp_int_t index_value = top->data.u_imm;
            emit_pre_pop_discard(emit); // discard index
            int reg_base = REG_ARG_1;
            int reg_index = REG_ARG_2;
            emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_index);
            need_reg_single(emit, REG_RET, 0);
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb ldrb r1, [r2, r3]
                    if (index_value != 0) {
                        // index is non-zero
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
                        reg_base = reg_index;
                    }
                    ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
                        reg_base = reg_index;
                    }
                    ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to 32-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
                        reg_base = reg_index;
                    }
                    ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base));
            }
        } else {
            // index is not an immediate
            vtype_kind_t vtype_index;
            int reg_index = REG_ARG_2;
            emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, REG_ARG_1);
            emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
            need_reg_single(emit, REG_RET, 0);
            if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    MP_ERROR_TEXT("can't load with '%q' index"), vtype_to_qstr(vtype_index));
            }
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb ldrb r1, [r2, r3]
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to word-size memory
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base));
            }
        }
        emit_post_push_reg(emit, VTYPE_INT, REG_RET);
    }
}

STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
    vtype_kind_t vtype;
    if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) {
        emit_pre_pop_reg(emit, &vtype, reg_local_table[local_num]);
    } else {
        emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
        emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, local_num), REG_TEMP0);
    }
    emit_post(emit);

    // check types
    if (emit->local_vtype[local_num] == VTYPE_UNBOUND) {
        // first time this local is assigned, so give it a type of the object stored in it
        emit->local_vtype[local_num] = vtype;
    } else if (emit->local_vtype[local_num] != vtype) {
        // type of local is not the same as object stored in it
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
            MP_ERROR_TEXT("local '%q' has type '%q' but source is '%q'"),
            qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype));
    }
}

STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
    DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
    need_reg_single(emit, REG_TEMP0, 0);
    need_reg_single(emit, REG_TEMP1, 0);
    emit_native_load_fast(emit, qst, local_num);
    vtype_kind_t vtype;
    int reg_base = REG_TEMP0;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
    int reg_src = REG_TEMP1;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg_src, reg_base, reg_base);
    ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1);
    emit_post(emit);
}

STATIC void emit_native_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
        emit_native_store_fast(emit, qst, local_num);
    } else {
        emit_native_store_deref(emit, qst, local_num);
    }
}

STATIC void emit_native_store_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_STORE_NAME);
    MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_STORE_GLOBAL);
    if (kind == MP_EMIT_IDOP_GLOBAL_NAME) {
        // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type))
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
        assert(vtype == VTYPE_PYOBJ);
    } else {
        vtype_kind_t vtype = peek_vtype(emit, 0);
        if (vtype == VTYPE_PYOBJ) {
            emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
        } else {
            emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
            emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type
            ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
        }
    }
    emit_call_with_qstr_arg(emit, MP_F_STORE_NAME + kind, qst, REG_ARG_1); // arg1 = name
    emit_post(emit);
}

STATIC void emit_native_store_attr(emit_t *emit, qstr qst) {
    vtype_kind_t vtype_base, vtype_val;
    emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value
    assert(vtype_base == VTYPE_PYOBJ);
    assert(vtype_val == VTYPE_PYOBJ);
    emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name
    emit_post(emit);
}

STATIC void emit_native_store_subscr(emit_t *emit) {
    DEBUG_printf("store_subscr\n");
    // need to compile: base[index] = value

    // pop: index, base, value
    // optimise case where index is an immediate
    vtype_kind_t vtype_base = peek_vtype(emit, 1);

    if (vtype_base == VTYPE_PYOBJ) {
        // standard Python subscr
        vtype_kind_t vtype_index = peek_vtype(emit, 0);
        vtype_kind_t vtype_value = peek_vtype(emit, 2);
        if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) {
            // need to implicitly convert non-objects to objects
            // TODO do this properly
            emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3);
            adjust_stack(emit, 3);
        }
        emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3);
        emit_call(emit, MP_F_OBJ_SUBSCR);
    } else {
        // viper store
        // TODO The different machine architectures have very different
        // capabilities and requirements for stores, so probably best to
        // write a completely separate store-optimiser for each one.
        stack_info_t *top = peek_stack(emit, 0);
        if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
            // index is an immediate
            mp_int_t index_value = top->data.u_imm;
            emit_pre_pop_discard(emit); // discard index
            vtype_kind_t vtype_value;
            int reg_base = REG_ARG_1;
            int reg_index = REG_ARG_2;
            int reg_value = REG_ARG_3;
            emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_value);
            #if N_X64 || N_X86
            // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
            emit_pre_pop_reg(emit, &vtype_value, reg_value);
            #else
            emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, reg_base, reg_index);
            #endif
            if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value));
            }
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb strb r1, [r2, r3]
                    if (index_value != 0) {
                        // index is non-zero
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
                        #if N_ARM
                        asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
                        return;
                        #endif
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
                        reg_base = reg_index;
                    }
                    ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
                            break;
                        }
                        #endif
                        ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
                        reg_base = reg_index;
                    }
                    ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to 32-bit memory
                    if (index_value != 0) {
                        // index is a non-zero immediate
                        #if N_THUMB
                        if (index_value > 0 && index_value < 32) {
                            asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
                            break;
                        }
                        #endif
                        #if N_ARM
                        ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
                        asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
                        return;
                        #endif
                        ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2);
                        ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
                        reg_base = reg_index;
                    }
                    ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base));
            }
        } else {
            // index is not an immediate
            vtype_kind_t vtype_index, vtype_value;
            int reg_index = REG_ARG_2;
            int reg_value = REG_ARG_3;
            emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, reg_value);
            emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
            if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    MP_ERROR_TEXT("can't store with '%q' index"), vtype_to_qstr(vtype_index));
            }
            #if N_X64 || N_X86
            // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
            emit_pre_pop_reg(emit, &vtype_value, reg_value);
            #else
            emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, REG_ARG_1, reg_index);
            #endif
            if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value));
            }
            switch (vtype_base) {
                case VTYPE_PTR8: {
                    // pointer to 8-bit memory
                    // TODO optimise to use thumb strb r1, [r2, r3]
                    #if N_ARM
                    asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
                    break;
                    #endif
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index)
                    break;
                }
                case VTYPE_PTR16: {
                    // pointer to 16-bit memory
                    #if N_ARM
                    asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
                    break;
                    #endif
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index)
                    break;
                }
                case VTYPE_PTR32: {
                    // pointer to 32-bit memory
                    #if N_ARM
                    asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
                    break;
                    #endif
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
                    ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index)
                    break;
                }
                default:
                    EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                        MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base));
            }
        }

    }
}

STATIC void emit_native_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
        // TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL
        // to mark deleted vars but then every var would need to be checked on
        // each access. Very inefficient, so just set value to None to enable GC.
        emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE);
        emit_native_store_fast(emit, qst, local_num);
    } else {
        // TODO implement me!
    }
}

STATIC void emit_native_delete_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_DELETE_NAME);
    MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_DELETE_GLOBAL);
    emit_native_pre(emit);
    emit_call_with_qstr_arg(emit, MP_F_DELETE_NAME + kind, qst, REG_ARG_1);
    emit_post(emit);
}

STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) {
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
    assert(vtype_base == VTYPE_PYOBJ);
    ASM_XOR_REG_REG(emit->as, REG_ARG_3, REG_ARG_3); // arg3 = value (null for delete)
    emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name
    emit_post(emit);
}

STATIC void emit_native_delete_subscr(emit_t *emit) {
    vtype_kind_t vtype_index, vtype_base;
    emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base
    assert(vtype_index == VTYPE_PYOBJ);
    assert(vtype_base == VTYPE_PYOBJ);
    emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
}

STATIC void emit_native_subscr(emit_t *emit, int kind) {
    if (kind == MP_EMIT_SUBSCR_LOAD) {
        emit_native_load_subscr(emit);
    } else if (kind == MP_EMIT_SUBSCR_STORE) {
        emit_native_store_subscr(emit);
    } else {
        emit_native_delete_subscr(emit);
    }
}

STATIC void emit_native_attr(emit_t *emit, qstr qst, int kind) {
    if (kind == MP_EMIT_ATTR_LOAD) {
        emit_native_load_attr(emit, qst);
    } else if (kind == MP_EMIT_ATTR_STORE) {
        emit_native_store_attr(emit, qst);
    } else {
        emit_native_delete_attr(emit, qst);
    }
}

STATIC void emit_native_dup_top(emit_t *emit) {
    DEBUG_printf("dup_top\n");
    vtype_kind_t vtype;
    int reg = REG_TEMP0;
    emit_pre_pop_reg_flexible(emit, &vtype, &reg, -1, -1);
    emit_post_push_reg_reg(emit, vtype, reg, vtype, reg);
}

STATIC void emit_native_dup_top_two(emit_t *emit) {
    vtype_kind_t vtype0, vtype1;
    emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
    emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0);
}

STATIC void emit_native_pop_top(emit_t *emit) {
    DEBUG_printf("pop_top\n");
    emit_pre_pop_discard(emit);
    emit_post(emit);
}

STATIC void emit_native_rot_two(emit_t *emit) {
    DEBUG_printf("rot_two\n");
    vtype_kind_t vtype0, vtype1;
    emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
    emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1);
}

STATIC void emit_native_rot_three(emit_t *emit) {
    DEBUG_printf("rot_three\n");
    vtype_kind_t vtype0, vtype1, vtype2;
    emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2);
    emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1);
}

STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) {
    DEBUG_printf("jump(label=" UINT_FMT ")\n", label);
    emit_native_pre(emit);
    // need to commit stack because we are jumping elsewhere
    need_stack_settled(emit);
    ASM_JUMP(emit->as, label);
    emit_post(emit);
}

STATIC void emit_native_jump_helper(emit_t *emit, bool cond, mp_uint_t label, bool pop) {
    vtype_kind_t vtype = peek_vtype(emit, 0);
    if (vtype == VTYPE_PYOBJ) {
        emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
        if (!pop) {
            adjust_stack(emit, 1);
        }
        emit_call(emit, MP_F_OBJ_IS_TRUE);
    } else {
        emit_pre_pop_reg(emit, &vtype, REG_RET);
        if (!pop) {
            adjust_stack(emit, 1);
        }
        if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) {
            EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                MP_ERROR_TEXT("can't implicitly convert '%q' to 'bool'"), vtype_to_qstr(vtype));
        }
    }
    // For non-pop need to save the vtype so that emit_native_adjust_stack_size
    // can use it.  This is a bit of a hack.
    if (!pop) {
        emit->saved_stack_vtype = vtype;
    }
    // need to commit stack because we may jump elsewhere
    need_stack_settled(emit);
    // Emit the jump
    if (cond) {
        ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ);
    } else {
        ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ);
    }
    if (!pop) {
        adjust_stack(emit, -1);
    }
    emit_post(emit);
}

STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
    DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label);
    emit_native_jump_helper(emit, cond, label, true);
}

STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
    DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label);
    emit_native_jump_helper(emit, cond, label, false);
}

STATIC void emit_native_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
    if (except_depth > 0) {
        exc_stack_entry_t *first_finally = NULL;
        exc_stack_entry_t *prev_finally = NULL;
        exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
        for (; except_depth > 0; --except_depth, --e) {
            if (e->is_finally && e->is_active) {
                // Found an active finally handler
                if (first_finally == NULL) {
                    first_finally = e;
                }
                if (prev_finally != NULL) {
                    // Mark prev finally as needed to unwind a jump
                    prev_finally->unwind_label = e->label;
                }
                prev_finally = e;
            }
        }
        if (prev_finally == NULL) {
            // No finally, handle the jump ourselves
            // First, restore the exception handler address for the jump
            if (e < emit->exc_stack) {
                ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET);
            } else {
                ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label);
            }
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
        } else {
            // Last finally should do our jump for us
            // Mark finally as needing to decide the type of jump
            prev_finally->unwind_label = UNWIND_LABEL_DO_FINAL_UNWIND;
            ASM_MOV_REG_PCREL(emit->as, REG_RET, label & ~MP_EMIT_BREAK_FROM_FOR);
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_RET);
            // Cancel any active exception (see also emit_native_pop_except_jump)
            ASM_MOV_REG_IMM(emit->as, REG_RET, (mp_uint_t)MP_OBJ_NULL);
            ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_RET);
            // Jump to the innermost active finally
            label = first_finally->label;
        }
    }
    emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR);
}

STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) {
    // the context manager is on the top of the stack
    // stack: (..., ctx_mgr)

    // get __exit__ method
    vtype_kind_t vtype;
    emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr
    assert(vtype == VTYPE_PYOBJ);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
    emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2);
    // stack: (..., ctx_mgr, __exit__, self)

    emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self
    emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__
    emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr
    emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__
    emit_post_push_reg(emit, vtype, REG_ARG_3); // self
    // stack: (..., __exit__, self)
    // REG_ARG_1=ctx_mgr

    // get __enter__ method
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
    emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name
    // stack: (..., __exit__, self, __enter__, self)

    // call __enter__ method
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self
    emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__
    // stack: (..., __exit__, self, as_value)

    // need to commit stack because we may jump elsewhere
    need_stack_settled(emit);
    emit_native_push_exc_stack(emit, label, true);

    emit_native_dup_top(emit);
    // stack: (..., __exit__, self, as_value, as_value)
}

STATIC void emit_native_setup_block(emit_t *emit, mp_uint_t label, int kind) {
    if (kind == MP_EMIT_SETUP_BLOCK_WITH) {
        emit_native_setup_with(emit, label);
    } else {
        // Set up except and finally
        emit_native_pre(emit);
        need_stack_settled(emit);
        emit_native_push_exc_stack(emit, label, kind == MP_EMIT_SETUP_BLOCK_FINALLY);
        emit_post(emit);
    }
}

STATIC void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) {
    // Note: 3 labels are reserved for this function, starting at *emit->label_slot

    // stack: (..., __exit__, self, as_value)
    emit_native_pre(emit);
    emit_native_leave_exc_stack(emit, false);
    adjust_stack(emit, -1);
    // stack: (..., __exit__, self)

    // Label for case where __exit__ is called from an unwind jump
    emit_native_label_assign(emit, *emit->label_slot + 2);

    // call __exit__
    emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
    emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
    emit_post_push_imm(emit, VTYPE_PTR_NONE, 0);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
    emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);

    // Replace exc with None and finish
    emit_native_jump(emit, *emit->label_slot);

    // nlr_catch
    // Don't use emit_native_label_assign because this isn't a real finally label
    mp_asm_base_label_assign(&emit->as->base, label);

    // Leave with's exception handler
    emit_native_leave_exc_stack(emit, true);

    // Adjust stack counter for: __exit__, self (implicitly discard as_value which is above self)
    emit_native_adjust_stack_size(emit, 2);
    // stack: (..., __exit__, self)

    ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); // get exc

    // Check if exc is MP_OBJ_NULL (i.e. zero) and jump to non-exc handler if it is
    ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, *emit->label_slot + 2, false);

    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc)
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc)
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value
    emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); // traceback info
    // Stack: (..., __exit__, self, type(exc), exc, traceback)

    // call __exit__ method
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
    emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);
    // Stack: (...)

    // If REG_RET is true then we need to replace exception with None (swallow exception)
    if (REG_ARG_1 != REG_RET) {
        ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET);
    }
    emit_call(emit, MP_F_OBJ_IS_TRUE);
    ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot + 1, true);

    // Replace exception with MP_OBJ_NULL.
    emit_native_label_assign(emit, *emit->label_slot);
    ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL);
    ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0);

    // end of with cleanup nlr_catch block
    emit_native_label_assign(emit, *emit->label_slot + 1);

    // Exception is in nlr_buf.ret_val slot
}

STATIC void emit_native_end_finally(emit_t *emit) {
    // logic:
    //   exc = pop_stack
    //   if exc == None: pass
    //   else: raise exc
    // the check if exc is None is done in the MP_F_NATIVE_RAISE stub
    emit_native_pre(emit);
    ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
    emit_call(emit, MP_F_NATIVE_RAISE);

    // Get state for this finally and see if we need to unwind
    exc_stack_entry_t *e = emit_native_pop_exc_stack(emit);
    if (e->unwind_label != UNWIND_LABEL_UNUSED) {
        ASM_MOV_REG_LOCAL(emit->as, REG_RET, LOCAL_IDX_EXC_HANDLER_UNWIND(emit));
        ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot, false);
        if (e->unwind_label == UNWIND_LABEL_DO_FINAL_UNWIND) {
            ASM_JUMP_REG(emit->as, REG_RET);
        } else {
            emit_native_jump(emit, e->unwind_label);
        }
        emit_native_label_assign(emit, *emit->label_slot);
    }

    emit_post(emit);
}

STATIC void emit_native_get_iter(emit_t *emit, bool use_stack) {
    // perhaps the difficult one, as we want to rewrite for loops using native code
    // in cases where we iterate over a Python object, can we use normal runtime calls?

    vtype_kind_t vtype;
    emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
    assert(vtype == VTYPE_PYOBJ);
    if (use_stack) {
        emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS);
        emit_call(emit, MP_F_NATIVE_GETITER);
    } else {
        // mp_getiter will allocate the iter_buf on the heap
        ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0);
        emit_call(emit, MP_F_NATIVE_GETITER);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
}

STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) {
    emit_native_pre(emit);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS);
    adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS);
    emit_call(emit, MP_F_NATIVE_ITERNEXT);
    #if MICROPY_DEBUG_MP_OBJ_SENTINELS
    ASM_MOV_REG_IMM(emit->as, REG_TEMP1, (mp_uint_t)MP_OBJ_STOP_ITERATION);
    ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label);
    #else
    MP_STATIC_ASSERT(MP_OBJ_STOP_ITERATION == 0);
    ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, false);
    #endif
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_for_iter_end(emit_t *emit) {
    // adjust stack counter (we get here from for_iter ending, which popped the value for us)
    emit_native_pre(emit);
    adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS);
    emit_post(emit);
}

STATIC void emit_native_pop_except_jump(emit_t *emit, mp_uint_t label, bool within_exc_handler) {
    if (within_exc_handler) {
        // Cancel any active exception so subsequent handlers don't see it
        ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL);
        ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0);
    } else {
        emit_native_leave_exc_stack(emit, false);
    }
    emit_native_jump(emit, label);
}

STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
    vtype_kind_t vtype;
    emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
    if (vtype == VTYPE_PYOBJ) {
        emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        adjust_stack(emit, 1);
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
            MP_ERROR_TEXT("unary op %q not implemented"), mp_unary_op_method_name[op]);
    }
}

STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) {
    DEBUG_printf("binary_op(" UINT_FMT ")\n", op);
    vtype_kind_t vtype_lhs = peek_vtype(emit, 1);
    vtype_kind_t vtype_rhs = peek_vtype(emit, 0);
    if ((vtype_lhs == VTYPE_INT || vtype_lhs == VTYPE_UINT)
        && (vtype_rhs == VTYPE_INT || vtype_rhs == VTYPE_UINT)) {
        // for integers, inplace and normal ops are equivalent, so use just normal ops
        if (MP_BINARY_OP_INPLACE_OR <= op && op <= MP_BINARY_OP_INPLACE_POWER) {
            op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR;
        }

        #if N_X64 || N_X86
        // special cases for x86 and shifting
        if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) {
            #if N_X64
            emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET);
            #else
            emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET);
            #endif
            if (op == MP_BINARY_OP_LSHIFT) {
                ASM_LSL_REG(emit->as, REG_RET);
            } else {
                if (vtype_lhs == VTYPE_UINT) {
                    ASM_LSR_REG(emit->as, REG_RET);
                } else {
                    ASM_ASR_REG(emit->as, REG_RET);
                }
            }
            emit_post_push_reg(emit, vtype_lhs, REG_RET);
            return;
        }
        #endif

        // special cases for floor-divide and module because we dispatch to helper functions
        if (op == MP_BINARY_OP_FLOOR_DIVIDE || op == MP_BINARY_OP_MODULO) {
            emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1);
            if (vtype_lhs != VTYPE_INT) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    MP_ERROR_TEXT("div/mod not implemented for uint"), mp_binary_op_method_name[op]);
            }
            if (op == MP_BINARY_OP_FLOOR_DIVIDE) {
                emit_call(emit, MP_F_SMALL_INT_FLOOR_DIVIDE);
            } else {
                emit_call(emit, MP_F_SMALL_INT_MODULO);
            }
            emit_post_push_reg(emit, VTYPE_INT, REG_RET);
            return;
        }

        int reg_rhs = REG_ARG_3;
        emit_pre_pop_reg_flexible(emit, &vtype_rhs, &reg_rhs, REG_RET, REG_ARG_2);
        emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2);

        #if !(N_X64 || N_X86)
        if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) {
            if (op == MP_BINARY_OP_LSHIFT) {
                ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            } else {
                if (vtype_lhs == VTYPE_UINT) {
                    ASM_LSR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
                } else {
                    ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
                }
            }
            emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
            return;
        }
        #endif

        if (op == MP_BINARY_OP_OR) {
            ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
        } else if (op == MP_BINARY_OP_XOR) {
            ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
        } else if (op == MP_BINARY_OP_AND) {
            ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
        } else if (op == MP_BINARY_OP_ADD) {
            ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
        } else if (op == MP_BINARY_OP_SUBTRACT) {
            ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
        } else if (op == MP_BINARY_OP_MULTIPLY) {
            ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
            emit_post_push_reg(emit, vtype_lhs, REG_ARG_2);
        } else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) {
            // comparison ops are (in enum order):
            //  MP_BINARY_OP_LESS
            //  MP_BINARY_OP_MORE
            //  MP_BINARY_OP_EQUAL
            //  MP_BINARY_OP_LESS_EQUAL
            //  MP_BINARY_OP_MORE_EQUAL
            //  MP_BINARY_OP_NOT_EQUAL

            if (vtype_lhs != vtype_rhs) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("comparison of int and uint"));
            }

            size_t op_idx = op - MP_BINARY_OP_LESS + (vtype_lhs == VTYPE_UINT ? 0 : 6);

            need_reg_single(emit, REG_RET, 0);
            #if N_X64
            asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET);
            asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2);
            static byte ops[6 + 6] = {
                // unsigned
                ASM_X64_CC_JB,
                ASM_X64_CC_JA,
                ASM_X64_CC_JE,
                ASM_X64_CC_JBE,
                ASM_X64_CC_JAE,
                ASM_X64_CC_JNE,
                // signed
                ASM_X64_CC_JL,
                ASM_X64_CC_JG,
                ASM_X64_CC_JE,
                ASM_X64_CC_JLE,
                ASM_X64_CC_JGE,
                ASM_X64_CC_JNE,
            };
            asm_x64_setcc_r8(emit->as, ops[op_idx], REG_RET);
            #elif N_X86
            asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET);
            asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2);
            static byte ops[6 + 6] = {
                // unsigned
                ASM_X86_CC_JB,
                ASM_X86_CC_JA,
                ASM_X86_CC_JE,
                ASM_X86_CC_JBE,
                ASM_X86_CC_JAE,
                ASM_X86_CC_JNE,
                // signed
                ASM_X86_CC_JL,
                ASM_X86_CC_JG,
                ASM_X86_CC_JE,
                ASM_X86_CC_JLE,
                ASM_X86_CC_JGE,
                ASM_X86_CC_JNE,
            };
            asm_x86_setcc_r8(emit->as, ops[op_idx], REG_RET);
            #elif N_THUMB
            asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs);
            if (asm_thumb_allow_armv7m(emit->as)) {
                static uint16_t ops[6 + 6] = {
                    // unsigned
                    ASM_THUMB_OP_ITE_CC,
                    ASM_THUMB_OP_ITE_HI,
                    ASM_THUMB_OP_ITE_EQ,
                    ASM_THUMB_OP_ITE_LS,
                    ASM_THUMB_OP_ITE_CS,
                    ASM_THUMB_OP_ITE_NE,
                    // signed
                    ASM_THUMB_OP_ITE_LT,
                    ASM_THUMB_OP_ITE_GT,
                    ASM_THUMB_OP_ITE_EQ,
                    ASM_THUMB_OP_ITE_LE,
                    ASM_THUMB_OP_ITE_GE,
                    ASM_THUMB_OP_ITE_NE,
                };
                asm_thumb_op16(emit->as, ops[op_idx]);
                asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1);
                asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0);
            } else {
                static uint16_t ops[6 + 6] = {
                    // unsigned
                    ASM_THUMB_CC_CC,
                    ASM_THUMB_CC_HI,
                    ASM_THUMB_CC_EQ,
                    ASM_THUMB_CC_LS,
                    ASM_THUMB_CC_CS,
                    ASM_THUMB_CC_NE,
                    // signed
                    ASM_THUMB_CC_LT,
                    ASM_THUMB_CC_GT,
                    ASM_THUMB_CC_EQ,
                    ASM_THUMB_CC_LE,
                    ASM_THUMB_CC_GE,
                    ASM_THUMB_CC_NE,
                };
                asm_thumb_bcc_rel9(emit->as, ops[op_idx], 6);
                asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0);
                asm_thumb_b_rel12(emit->as, 4);
                asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1);
            }
            #elif N_ARM
            asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs);
            static uint ccs[6 + 6] = {
                // unsigned
                ASM_ARM_CC_CC,
                ASM_ARM_CC_HI,
                ASM_ARM_CC_EQ,
                ASM_ARM_CC_LS,
                ASM_ARM_CC_CS,
                ASM_ARM_CC_NE,
                // signed
                ASM_ARM_CC_LT,
                ASM_ARM_CC_GT,
                ASM_ARM_CC_EQ,
                ASM_ARM_CC_LE,
                ASM_ARM_CC_GE,
                ASM_ARM_CC_NE,
            };
            asm_arm_setcc_reg(emit->as, REG_RET, ccs[op_idx]);
            #elif N_XTENSA || N_XTENSAWIN
            static uint8_t ccs[6 + 6] = {
                // unsigned
                ASM_XTENSA_CC_LTU,
                0x80 | ASM_XTENSA_CC_LTU, // for GTU we'll swap args
                ASM_XTENSA_CC_EQ,
                0x80 | ASM_XTENSA_CC_GEU, // for LEU we'll swap args
                ASM_XTENSA_CC_GEU,
                ASM_XTENSA_CC_NE,
                // signed
                ASM_XTENSA_CC_LT,
                0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args
                ASM_XTENSA_CC_EQ,
                0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args
                ASM_XTENSA_CC_GE,
                ASM_XTENSA_CC_NE,
            };
            uint8_t cc = ccs[op_idx];
            if ((cc & 0x80) == 0) {
                asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs);
            } else {
                asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2);
            }
            #else
            #error not implemented
            #endif
            emit_post_push_reg(emit, VTYPE_BOOL, REG_RET);
        } else {
            // TODO other ops not yet implemented
            adjust_stack(emit, 1);
            EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                MP_ERROR_TEXT("binary op %q not implemented"), mp_binary_op_method_name[op]);
        }
    } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) {
        emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2);
        bool invert = false;
        if (op == MP_BINARY_OP_NOT_IN) {
            invert = true;
            op = MP_BINARY_OP_IN;
        } else if (op == MP_BINARY_OP_IS_NOT) {
            invert = true;
            op = MP_BINARY_OP_IS;
        }
        emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1);
        if (invert) {
            ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
            emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1);
        }
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        adjust_stack(emit, -1);
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
            MP_ERROR_TEXT("can't do binary op between '%q' and '%q'"),
            vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs));
    }
}

#if MICROPY_PY_BUILTINS_SLICE
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args);
#endif

STATIC void emit_native_build(emit_t *emit, mp_uint_t n_args, int kind) {
    // for viper: call runtime, with types of args
    //   if wrapped in byte_array, or something, allocates memory and fills it
    MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_F_BUILD_TUPLE);
    MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_F_BUILD_LIST);
    MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_F_BUILD_MAP);
    MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_F_BUILD_SET);
    #if MICROPY_PY_BUILTINS_SLICE
    if (kind == MP_EMIT_BUILD_SLICE) {
        emit_native_build_slice(emit, n_args);
        return;
    }
    #endif
    emit_native_pre(emit);
    if (kind == MP_EMIT_BUILD_TUPLE || kind == MP_EMIT_BUILD_LIST || kind == MP_EMIT_BUILD_SET) {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
    }
    emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE + kind, n_args, REG_ARG_1);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple/list/map/set
}

STATIC void emit_native_store_map(emit_t *emit) {
    vtype_kind_t vtype_key, vtype_value, vtype_map;
    emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map
    assert(vtype_key == VTYPE_PYOBJ);
    assert(vtype_value == VTYPE_PYOBJ);
    assert(vtype_map == VTYPE_PYOBJ);
    emit_call(emit, MP_F_STORE_MAP);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map
}

#if MICROPY_PY_BUILTINS_SLICE
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) {
    DEBUG_printf("build_slice %d\n", n_args);
    if (n_args == 2) {
        vtype_kind_t vtype_start, vtype_stop;
        emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop
        assert(vtype_start == VTYPE_PYOBJ);
        assert(vtype_stop == VTYPE_PYOBJ);
        emit_native_mov_reg_const(emit, REG_ARG_3, MP_F_CONST_NONE_OBJ); // arg3 = step
    } else {
        assert(n_args == 3);
        vtype_kind_t vtype_start, vtype_stop, vtype_step;
        emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step
        assert(vtype_start == VTYPE_PYOBJ);
        assert(vtype_stop == VTYPE_PYOBJ);
        assert(vtype_step == VTYPE_PYOBJ);
    }
    emit_call(emit, MP_F_NEW_SLICE);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
#endif

STATIC void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) {
    mp_fun_kind_t f;
    if (kind == SCOPE_LIST_COMP) {
        vtype_kind_t vtype_item;
        emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
        assert(vtype_item == VTYPE_PYOBJ);
        f = MP_F_LIST_APPEND;
    #if MICROPY_PY_BUILTINS_SET
    } else if (kind == SCOPE_SET_COMP) {
        vtype_kind_t vtype_item;
        emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
        assert(vtype_item == VTYPE_PYOBJ);
        f = MP_F_STORE_SET;
    #endif
    } else {
        // SCOPE_DICT_COMP
        vtype_kind_t vtype_key, vtype_value;
        emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3);
        assert(vtype_key == VTYPE_PYOBJ);
        assert(vtype_value == VTYPE_PYOBJ);
        f = MP_F_STORE_MAP;
    }
    vtype_kind_t vtype_collection;
    emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1);
    assert(vtype_collection == VTYPE_PYOBJ);
    emit_call(emit, f);
    emit_post(emit);
}

STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
    DEBUG_printf("unpack_sequence %d\n", n_args);
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
    assert(vtype_base == VTYPE_PYOBJ);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr
    emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args
}

STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
    DEBUG_printf("unpack_ex %d %d\n", n_left, n_right);
    vtype_kind_t vtype_base;
    emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
    assert(vtype_base == VTYPE_PYOBJ);
    emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr
    emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right
}

STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them
    emit_native_pre(emit);
    emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit));
    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT);
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        need_reg_all(emit);
        ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0);
    } else {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2);
        need_reg_all(emit);
    }
    emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code);
    ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_RAW_CODE);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    // make function
    emit_native_pre(emit);
    emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit));
    ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT);
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        need_reg_all(emit);
        ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0);
    } else {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_closed_over);
        adjust_stack(emit, 2 + n_closed_over);
        need_reg_all(emit);
    }
    emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code);
    ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_RAW_CODE);

    // make closure
    #if REG_ARG_1 != REG_RET
    ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET);
    #endif
    ASM_MOV_REG_IMM(emit->as, REG_ARG_2, n_closed_over);
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over);
    if (n_pos_defaults != 0 || n_kw_defaults != 0) {
        adjust_stack(emit, -2);
    }
    ASM_CALL_IND(emit->as, MP_F_NEW_CLOSURE);
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}

STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags);

    // TODO: in viper mode, call special runtime routine with type info for args,
    // and wanted type info for return, to remove need for boxing/unboxing

    emit_native_pre(emit);
    vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword);
    if (vtype_fun == VTYPE_BUILTIN_CAST) {
        // casting operator
        assert(n_positional == 1 && n_keyword == 0);
        assert(!star_flags);
        DEBUG_printf("  cast to %d\n", vtype_fun);
        vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm;
        switch (peek_vtype(emit, 0)) {
            case VTYPE_PYOBJ: {
                vtype_kind_t vtype;
                emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
                emit_pre_pop_discard(emit);
                emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type
                emit_post_push_reg(emit, vtype_cast, REG_RET);
                break;
            }
            case VTYPE_BOOL:
            case VTYPE_INT:
            case VTYPE_UINT:
            case VTYPE_PTR:
            case VTYPE_PTR8:
            case VTYPE_PTR16:
            case VTYPE_PTR32:
            case VTYPE_PTR_NONE:
                emit_fold_stack_top(emit, REG_ARG_1);
                emit_post_top_set_vtype(emit, vtype_cast);
                break;
            default:
                // this can happen when casting a cast: int(int)
                mp_raise_NotImplementedError(MP_ERROR_TEXT("casting"));
        }
    } else {
        assert(vtype_fun == VTYPE_PYOBJ);
        if (star_flags) {
            emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 2); // pointer to args
            emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
            emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
        } else {
            if (n_positional != 0 || n_keyword != 0) {
                emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args
            }
            emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
            emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2);
            emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
        }
    }
}

STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    if (star_flags) {
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args
        emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    } else {
        emit_native_pre(emit);
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self
        emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2);
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
    }
}

STATIC void emit_native_return_value(emit_t *emit) {
    DEBUG_printf("return_value\n");

    if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
        // Save pointer to current stack position for caller to access return value
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1);
        emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0);

        // Put return type in return value slot
        ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_NORMAL);
        ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0);

        // Do the unwinding jump to get to the return handler
        emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size);
        emit->last_emit_was_return_value = true;
        return;
    }

    if (emit->do_viper_types) {
        vtype_kind_t return_vtype = emit->scope->scope_flags >> MP_SCOPE_FLAG_VIPERRET_POS;
        if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) {
            emit_pre_pop_discard(emit);
            if (return_vtype == VTYPE_PYOBJ) {
                emit_native_mov_reg_const(emit, REG_PARENT_RET, MP_F_CONST_NONE_OBJ);
            } else {
                ASM_MOV_REG_IMM(emit->as, REG_ARG_1, 0);
            }
        } else {
            vtype_kind_t vtype;
            emit_pre_pop_reg(emit, &vtype, return_vtype == VTYPE_PYOBJ ? REG_PARENT_RET : REG_ARG_1);
            if (vtype != return_vtype) {
                EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
                    MP_ERROR_TEXT("return expected '%q' but got '%q'"),
                    vtype_to_qstr(return_vtype), vtype_to_qstr(vtype));
            }
        }
        if (return_vtype != VTYPE_PYOBJ) {
            emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, return_vtype, REG_ARG_2);
            #if REG_RET != REG_PARENT_RET
            ASM_MOV_REG_REG(emit->as, REG_PARENT_RET, REG_RET);
            #endif
        }
    } else {
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_PARENT_RET);
        assert(vtype == VTYPE_PYOBJ);
    }
    if (NEED_GLOBAL_EXC_HANDLER(emit)) {
        // Save return value for the global exception handler to use
        ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_PARENT_RET);
    }
    emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size);
    emit->last_emit_was_return_value = true;
}

STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) {
    (void)n_args;
    assert(n_args == 1);
    vtype_kind_t vtype_exc;
    emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise
    if (vtype_exc != VTYPE_PYOBJ) {
        EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("must raise an object"));
    }
    // TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type))
    emit_call(emit, MP_F_NATIVE_RAISE);
}

STATIC void emit_native_yield(emit_t *emit, int kind) {
    // Note: 1 (yield) or 3 (yield from) labels are reserved for this function, starting at *emit->label_slot

    if (emit->do_viper_types) {
        mp_raise_NotImplementedError(MP_ERROR_TEXT("native yield"));
    }
    emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;

    need_stack_settled(emit);

    if (kind == MP_EMIT_YIELD_FROM) {

        // Top of yield-from loop, conceptually implementing:
        //     for item in generator:
        //         yield item

        // Jump to start of loop
        emit_native_jump(emit, *emit->label_slot + 2);

        // Label for top of loop
        emit_native_label_assign(emit, *emit->label_slot + 1);
    }

    // Save pointer to current stack position for caller to access yielded value
    emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1);
    emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0);

    // Put return type in return value slot
    ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_YIELD);
    ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0);

    // Save re-entry PC
    ASM_MOV_REG_PCREL(emit->as, REG_TEMP0, *emit->label_slot);
    emit_native_mov_state_reg(emit, LOCAL_IDX_GEN_PC(emit), REG_TEMP0);

    // Jump to exit handler
    ASM_JUMP(emit->as, emit->exit_label);

    // Label re-entry point
    mp_asm_base_label_assign(&emit->as->base, *emit->label_slot);

    // Re-open any active exception handler
    if (emit->exc_stack_size > 0) {
        // Find innermost active exception handler, to restore as current handler
        exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1];
        for (; e >= emit->exc_stack; --e) {
            if (e->is_active) {
                // Found active handler, get its PC
                ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label);
                ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET);
                break;
            }
        }
    }

    emit_native_adjust_stack_size(emit, 1); // send_value

    if (kind == MP_EMIT_YIELD_VALUE) {
        // Check LOCAL_IDX_EXC_VAL for any injected value
        ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit));
        emit_call(emit, MP_F_NATIVE_RAISE);
    } else {
        // Label loop entry
        emit_native_label_assign(emit, *emit->label_slot + 2);

        // Get the next item from the delegate generator
        vtype_kind_t vtype;
        emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // send_value
        emit_access_stack(emit, 1, &vtype, REG_ARG_1); // generator
        ASM_MOV_REG_LOCAL(emit->as, REG_ARG_3, LOCAL_IDX_EXC_VAL(emit)); // throw_value
        emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_3);
        emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 1); // ret_value
        emit_call(emit, MP_F_NATIVE_YIELD_FROM);

        // If returned non-zero then generator continues
        ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, *emit->label_slot + 1, true);

        // Pop exhausted gen, replace with ret_value
        emit_native_adjust_stack_size(emit, 1); // ret_value
        emit_fold_stack_top(emit, REG_ARG_1);
    }
}

STATIC void emit_native_start_except_handler(emit_t *emit) {
    // Protected block has finished so leave the current exception handler
    emit_native_leave_exc_stack(emit, true);

    // Get and push nlr_buf.ret_val
    ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit));
    emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0);
}

STATIC void emit_native_end_except_handler(emit_t *emit) {
    adjust_stack(emit, -1); // pop the exception (end_finally didn't use it)
}

const emit_method_table_t EXPORT_FUN(method_table) = {
    #if MICROPY_DYNAMIC_COMPILER
    EXPORT_FUN(new),
    EXPORT_FUN(free),
    #endif

    emit_native_start_pass,
    emit_native_end_pass,
    emit_native_last_emit_was_return_value,
    emit_native_adjust_stack_size,
    emit_native_set_source_line,

    {
        emit_native_load_local,
        emit_native_load_global,
    },
    {
        emit_native_store_local,
        emit_native_store_global,
    },
    {
        emit_native_delete_local,
        emit_native_delete_global,
    },

    emit_native_label_assign,
    emit_native_import,
    emit_native_load_const_tok,
    emit_native_load_const_small_int,
    emit_native_load_const_str,
    emit_native_load_const_obj,
    emit_native_load_null,
    emit_native_load_method,
    emit_native_load_build_class,
    emit_native_subscr,
    emit_native_attr,
    emit_native_dup_top,
    emit_native_dup_top_two,
    emit_native_pop_top,
    emit_native_rot_two,
    emit_native_rot_three,
    emit_native_jump,
    emit_native_pop_jump_if,
    emit_native_jump_if_or_pop,
    emit_native_unwind_jump,
    emit_native_setup_block,
    emit_native_with_cleanup,
    emit_native_end_finally,
    emit_native_get_iter,
    emit_native_for_iter,
    emit_native_for_iter_end,
    emit_native_pop_except_jump,
    emit_native_unary_op,
    emit_native_binary_op,
    emit_native_build,
    emit_native_store_map,
    emit_native_store_comp,
    emit_native_unpack_sequence,
    emit_native_unpack_ex,
    emit_native_make_function,
    emit_native_make_closure,
    emit_native_call_function,
    emit_native_call_method,
    emit_native_return_value,
    emit_native_raise_varargs,
    emit_native_yield,

    emit_native_start_except_handler,
    emit_native_end_except_handler,
};

#endif