aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/services/memSnapshot.cpp
blob: 1a204e7f05bec57686f60884c3f61d0b8f8f063d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/decoder.hpp"
#include "services/memBaseline.hpp"
#include "services/memPtr.hpp"
#include "services/memPtrArray.hpp"
#include "services/memSnapshot.hpp"
#include "services/memTracker.hpp"

#ifdef ASSERT

void decode_pointer_record(MemPointerRecord* rec) {
  tty->print("Pointer: [" PTR_FORMAT " - " PTR_FORMAT  "] size = %d bytes", rec->addr(),
    rec->addr() + rec->size(), (int)rec->size());
  tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags())));
  if (rec->is_vm_pointer()) {
    if (rec->is_allocation_record()) {
      tty->print_cr(" (reserve)");
    } else if (rec->is_commit_record()) {
      tty->print_cr(" (commit)");
    } else if (rec->is_uncommit_record()) {
      tty->print_cr(" (uncommit)");
    } else if (rec->is_deallocation_record()) {
      tty->print_cr(" (release)");
    } else {
      tty->print_cr(" (tag)");
    }
  } else {
    if (rec->is_arena_memory_record()) {
      tty->print_cr(" (arena size)");
    } else if (rec->is_allocation_record()) {
      tty->print_cr(" (malloc)");
    } else {
      tty->print_cr(" (free)");
    }
  }
  if (MemTracker::track_callsite()) {
    char buf[1024];
    address pc = ((MemPointerRecordEx*)rec)->pc();
    if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) {
      tty->print_cr("\tfrom %s", buf);
    } else {
      tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc);
    }
  }
}

void decode_vm_region_record(VMMemRegion* rec) {
  tty->print("VM Region [" PTR_FORMAT " - " PTR_FORMAT "]", rec->addr(),
    rec->addr() + rec->size());
  tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags())));
  if (rec->is_allocation_record()) {
    tty->print_cr(" (reserved)");
  } else if (rec->is_commit_record()) {
    tty->print_cr(" (committed)");
  } else {
    ShouldNotReachHere();
  }
  if (MemTracker::track_callsite()) {
    char buf[1024];
    address pc = ((VMMemRegionEx*)rec)->pc();
    if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) {
      tty->print_cr("\tfrom %s", buf);
    } else {
      tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc);
    }

  }
}

#endif


bool VMMemPointerIterator::insert_record(MemPointerRecord* rec) {
  VMMemRegionEx new_rec;
  assert(rec->is_allocation_record() || rec->is_commit_record(),
    "Sanity check");
  if (MemTracker::track_callsite()) {
    new_rec.init((MemPointerRecordEx*)rec);
  } else {
    new_rec.init(rec);
  }
  return insert(&new_rec);
}

bool VMMemPointerIterator::insert_record_after(MemPointerRecord* rec) {
  VMMemRegionEx new_rec;
  assert(rec->is_allocation_record() || rec->is_commit_record(),
    "Sanity check");
  if (MemTracker::track_callsite()) {
    new_rec.init((MemPointerRecordEx*)rec);
  } else {
    new_rec.init(rec);
  }
  return insert_after(&new_rec);
}

// we don't consolidate reserved regions, since they may be categorized
// in different types.
bool VMMemPointerIterator::add_reserved_region(MemPointerRecord* rec) {
  assert(rec->is_allocation_record(), "Sanity check");
  VMMemRegion* reserved_region = (VMMemRegion*)current();

  // we don't have anything yet
  if (reserved_region == NULL) {
    return insert_record(rec);
  }

  assert(reserved_region->is_reserved_region(), "Sanity check");
  // duplicated records
  if (reserved_region->is_same_region(rec)) {
    return true;
  }
  // Overlapping stack regions indicate that a JNI thread failed to
  // detach from the VM before exiting. This leaks the JavaThread object.
  if (CheckJNICalls)  {
      guarantee(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) != mtThreadStack ||
         !reserved_region->overlaps_region(rec),
         "Attached JNI thread exited without being detached");
  }
  // otherwise, we should not have overlapping reserved regions
  assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack ||
    reserved_region->base() > rec->addr(), "Just check: locate()");
  assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack ||
    !reserved_region->overlaps_region(rec), "overlapping reserved regions");

  return insert_record(rec);
}

// we do consolidate committed regions
bool VMMemPointerIterator::add_committed_region(MemPointerRecord* rec) {
  assert(rec->is_commit_record(), "Sanity check");
  VMMemRegion* reserved_rgn = (VMMemRegion*)current();
  assert(reserved_rgn->is_reserved_region() && reserved_rgn->contains_region(rec),
    "Sanity check");

  // thread's native stack is always marked as "committed", ignore
  // the "commit" operation for creating stack guard pages
  if (FLAGS_TO_MEMORY_TYPE(reserved_rgn->flags()) == mtThreadStack &&
      FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) {
    return true;
  }

  // if the reserved region has any committed regions
  VMMemRegion* committed_rgn  = (VMMemRegion*)next();
  while (committed_rgn != NULL && committed_rgn->is_committed_region()) {
    // duplicated commit records
    if(committed_rgn->contains_region(rec)) {
      return true;
    } else if (committed_rgn->overlaps_region(rec)) {
      // overlaps front part
      if (rec->addr() < committed_rgn->addr()) {
        committed_rgn->expand_region(rec->addr(),
          committed_rgn->addr() - rec->addr());
      } else {
        // overlaps tail part
        address committed_rgn_end = committed_rgn->addr() +
              committed_rgn->size();
        assert(committed_rgn_end < rec->addr() + rec->size(),
             "overlap tail part");
        committed_rgn->expand_region(committed_rgn_end,
          (rec->addr() + rec->size()) - committed_rgn_end);
      }
    } else if (committed_rgn->base() + committed_rgn->size() == rec->addr()) {
      // adjunct each other
      committed_rgn->expand_region(rec->addr(), rec->size());
      VMMemRegion* next_reg = (VMMemRegion*)next();
      // see if we can consolidate next committed region
      if (next_reg != NULL && next_reg->is_committed_region() &&
        next_reg->base() == committed_rgn->base() + committed_rgn->size()) {
          committed_rgn->expand_region(next_reg->base(), next_reg->size());
          // delete merged region
          remove();
      }
      return true;
    } else if (committed_rgn->base() > rec->addr()) {
      // found the location, insert this committed region
      return insert_record(rec);
    }
    committed_rgn = (VMMemRegion*)next();
  }
  return insert_record(rec);
}

bool VMMemPointerIterator::remove_uncommitted_region(MemPointerRecord* rec) {
  assert(rec->is_uncommit_record(), "sanity check");
  VMMemRegion* cur;
  cur = (VMMemRegion*)current();
  assert(cur->is_reserved_region() && cur->contains_region(rec),
    "Sanity check");
  // thread's native stack is always marked as "committed", ignore
  // the "commit" operation for creating stack guard pages
  if (FLAGS_TO_MEMORY_TYPE(cur->flags()) == mtThreadStack &&
      FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) {
    return true;
  }

  cur = (VMMemRegion*)next();
  while (cur != NULL && cur->is_committed_region()) {
    // region already uncommitted, must be due to duplicated record
    if (cur->addr() >= rec->addr() + rec->size()) {
      break;
    } else if (cur->contains_region(rec)) {
      // uncommit whole region
      if (cur->is_same_region(rec)) {
        remove();
        break;
      } else if (rec->addr() == cur->addr() ||
        rec->addr() + rec->size() == cur->addr() + cur->size()) {
        // uncommitted from either end of current memory region.
        cur->exclude_region(rec->addr(), rec->size());
        break;
      } else { // split the committed region and release the middle
        address high_addr = cur->addr() + cur->size();
        size_t sz = high_addr - rec->addr();
        cur->exclude_region(rec->addr(), sz);
        sz = high_addr - (rec->addr() + rec->size());
        if (MemTracker::track_callsite()) {
          MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz,
             ((VMMemRegionEx*)cur)->pc());
          return insert_record_after(&tmp);
        } else {
          MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz);
          return insert_record_after(&tmp);
        }
      }
    }
    cur = (VMMemRegion*)next();
  }

  // we may not find committed record due to duplicated records
  return true;
}

bool VMMemPointerIterator::remove_released_region(MemPointerRecord* rec) {
  assert(rec->is_deallocation_record(), "Sanity check");
  VMMemRegion* cur = (VMMemRegion*)current();
  assert(cur->is_reserved_region() && cur->contains_region(rec),
    "Sanity check");
  if (rec->is_same_region(cur)) {
    // release whole reserved region
#ifdef ASSERT
    VMMemRegion* next_region = (VMMemRegion*)peek_next();
    // should not have any committed memory in this reserved region
    assert(next_region == NULL || !next_region->is_committed_region(), "Sanity check");
#endif
    remove();
  } else if (rec->addr() == cur->addr() ||
    rec->addr() + rec->size() == cur->addr() + cur->size()) {
    // released region is at either end of this region
    cur->exclude_region(rec->addr(), rec->size());
    assert(check_reserved_region(), "Integrity check");
  } else { // split the reserved region and release the middle
    address high_addr = cur->addr() + cur->size();
    size_t sz = high_addr - rec->addr();
    cur->exclude_region(rec->addr(), sz);
    sz = high_addr - rec->addr() - rec->size();
    if (MemTracker::track_callsite()) {
      MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz,
        ((VMMemRegionEx*)cur)->pc());
      bool ret = insert_reserved_region(&tmp);
      assert(!ret || check_reserved_region(), "Integrity check");
      return ret;
    } else {
      MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz);
      bool ret = insert_reserved_region(&tmp);
      assert(!ret || check_reserved_region(), "Integrity check");
      return ret;
    }
  }
  return true;
}

bool VMMemPointerIterator::insert_reserved_region(MemPointerRecord* rec) {
  // skip all 'commit' records associated with previous reserved region
  VMMemRegion* p = (VMMemRegion*)next();
  while (p != NULL && p->is_committed_region() &&
         p->base() + p->size() < rec->addr()) {
    p = (VMMemRegion*)next();
  }
  return insert_record(rec);
}

bool VMMemPointerIterator::split_reserved_region(VMMemRegion* rgn, address new_rgn_addr, size_t new_rgn_size) {
  assert(rgn->contains_region(new_rgn_addr, new_rgn_size), "Not fully contained");
  address pc = (MemTracker::track_callsite() ? ((VMMemRegionEx*)rgn)->pc() : NULL);
  if (rgn->base() == new_rgn_addr) { // new region is at the beginning of the region
    size_t sz = rgn->size() - new_rgn_size;
    // the original region becomes 'new' region
    rgn->exclude_region(new_rgn_addr + new_rgn_size, sz);
     // remaining becomes next region
    MemPointerRecordEx next_rgn(new_rgn_addr + new_rgn_size, rgn->flags(), sz, pc);
    return insert_reserved_region(&next_rgn);
  } else if (rgn->base() + rgn->size() == new_rgn_addr + new_rgn_size) {
    rgn->exclude_region(new_rgn_addr, new_rgn_size);
    MemPointerRecordEx next_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc);
    return insert_reserved_region(&next_rgn);
  } else {
    // the orginal region will be split into three
    address rgn_high_addr = rgn->base() + rgn->size();
    // first region
    rgn->exclude_region(new_rgn_addr, (rgn_high_addr - new_rgn_addr));
    // the second region is the new region
    MemPointerRecordEx new_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc);
    if (!insert_reserved_region(&new_rgn)) return false;
    // the remaining region
    MemPointerRecordEx rem_rgn(new_rgn_addr + new_rgn_size, rgn->flags(),
      rgn_high_addr - (new_rgn_addr + new_rgn_size), pc);
    return insert_reserved_region(&rem_rgn);
  }
}

static int sort_in_seq_order(const void* p1, const void* p2) {
  assert(p1 != NULL && p2 != NULL, "Sanity check");
  const MemPointerRecord* mp1 = (MemPointerRecord*)p1;
  const MemPointerRecord* mp2 = (MemPointerRecord*)p2;
  return (mp1->seq() - mp2->seq());
}

bool StagingArea::init() {
  if (MemTracker::track_callsite()) {
    _malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
    _vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
  } else {
    _malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
    _vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
  }

  if (_malloc_data != NULL && _vm_data != NULL &&
      !_malloc_data->out_of_memory() &&
      !_vm_data->out_of_memory()) {
    return true;
  } else {
    if (_malloc_data != NULL) delete _malloc_data;
    if (_vm_data != NULL) delete _vm_data;
    _malloc_data = NULL;
    _vm_data = NULL;
    return false;
  }
}


VMRecordIterator StagingArea::virtual_memory_record_walker() {
  MemPointerArray* arr = vm_data();
  // sort into seq number order
  arr->sort((FN_SORT)sort_in_seq_order);
  return VMRecordIterator(arr);
}


MemSnapshot::MemSnapshot() {
  if (MemTracker::track_callsite()) {
    _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>();
    _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true);
  } else {
    _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>();
    _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true);
  }

  _staging_area.init();
  _lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock");
  NOT_PRODUCT(_untracked_count = 0;)
  _number_of_classes = 0;
}

MemSnapshot::~MemSnapshot() {
  assert(MemTracker::shutdown_in_progress(), "native memory tracking still on");
  {
    MutexLockerEx locker(_lock);
    if (_alloc_ptrs != NULL) {
      delete _alloc_ptrs;
      _alloc_ptrs = NULL;
    }

    if (_vm_ptrs != NULL) {
      delete _vm_ptrs;
      _vm_ptrs = NULL;
    }
  }

  if (_lock != NULL) {
    delete _lock;
    _lock = NULL;
  }
}


void MemSnapshot::copy_seq_pointer(MemPointerRecord* dest, const MemPointerRecord* src) {
  assert(dest != NULL && src != NULL, "Just check");
  assert(dest->addr() == src->addr(), "Just check");
  assert(dest->seq() > 0 && src->seq() > 0, "not sequenced");

  if (MemTracker::track_callsite()) {
    *(SeqMemPointerRecordEx*)dest = *(SeqMemPointerRecordEx*)src;
  } else {
    *(SeqMemPointerRecord*)dest = *(SeqMemPointerRecord*)src;
  }
}

void MemSnapshot::assign_pointer(MemPointerRecord*dest, const MemPointerRecord* src) {
  assert(src != NULL && dest != NULL, "Just check");
  assert(dest->seq() == 0 && src->seq() >0, "cast away sequence");

  if (MemTracker::track_callsite()) {
    *(MemPointerRecordEx*)dest = *(MemPointerRecordEx*)src;
  } else {
    *(MemPointerRecord*)dest = *(MemPointerRecord*)src;
  }
}

// merge a recorder to the staging area
bool MemSnapshot::merge(MemRecorder* rec) {
  assert(rec != NULL && !rec->out_of_memory(), "Just check");

  SequencedRecordIterator itr(rec->pointer_itr());

  MutexLockerEx lock(_lock, true);
  MemPointerIterator malloc_staging_itr(_staging_area.malloc_data());
  MemPointerRecord* incoming_rec = (MemPointerRecord*) itr.current();
  MemPointerRecord* matched_rec;

  while (incoming_rec != NULL) {
    if (incoming_rec->is_vm_pointer()) {
      // we don't do anything with virtual memory records during merge
      if (!_staging_area.vm_data()->append(incoming_rec)) {
        return false;
      }
    } else {
      // locate matched record and/or also position the iterator to proper
      // location for this incoming record.
      matched_rec = (MemPointerRecord*)malloc_staging_itr.locate(incoming_rec->addr());
      // we have not seen this memory block in this generation,
      // so just add to staging area
      if (matched_rec == NULL) {
        if (!malloc_staging_itr.insert(incoming_rec)) {
          return false;
        }
      } else if (incoming_rec->addr() == matched_rec->addr()) {
        // whoever has higher sequence number wins
        if (incoming_rec->seq() > matched_rec->seq()) {
          copy_seq_pointer(matched_rec, incoming_rec);
        }
      } else if (incoming_rec->addr() < matched_rec->addr()) {
        if (!malloc_staging_itr.insert(incoming_rec)) {
          return false;
        }
      } else {
        ShouldNotReachHere();
      }
    }
    incoming_rec = (MemPointerRecord*)itr.next();
  }
  NOT_PRODUCT(void check_staging_data();)
  return true;
}


// promote data to next generation
bool MemSnapshot::promote(int number_of_classes) {
  assert(_alloc_ptrs != NULL && _vm_ptrs != NULL, "Just check");
  assert(_staging_area.malloc_data() != NULL && _staging_area.vm_data() != NULL,
         "Just check");
  MutexLockerEx lock(_lock, true);

  MallocRecordIterator  malloc_itr = _staging_area.malloc_record_walker();
  bool promoted = false;
  if (promote_malloc_records(&malloc_itr)) {
    VMRecordIterator vm_itr = _staging_area.virtual_memory_record_walker();
    if (promote_virtual_memory_records(&vm_itr)) {
      promoted = true;
    }
  }

  NOT_PRODUCT(check_malloc_pointers();)
  _staging_area.clear();
  _number_of_classes = number_of_classes;
  return promoted;
}

bool MemSnapshot::promote_malloc_records(MemPointerArrayIterator* itr) {
  MemPointerIterator malloc_snapshot_itr(_alloc_ptrs);
  MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
  MemPointerRecord* matched_rec;
  while (new_rec != NULL) {
    matched_rec = (MemPointerRecord*)malloc_snapshot_itr.locate(new_rec->addr());
    // found matched memory block
    if (matched_rec != NULL && new_rec->addr() == matched_rec->addr()) {
      // snapshot already contains 'live' records
      assert(matched_rec->is_allocation_record() || matched_rec->is_arena_memory_record(),
             "Sanity check");
      // update block states
      if (new_rec->is_allocation_record()) {
        assign_pointer(matched_rec, new_rec);
      } else if (new_rec->is_arena_memory_record()) {
        if (new_rec->size() == 0) {
          // remove size record once size drops to 0
          malloc_snapshot_itr.remove();
        } else {
          assign_pointer(matched_rec, new_rec);
        }
      } else {
        // a deallocation record
        assert(new_rec->is_deallocation_record(), "Sanity check");
        // an arena record can be followed by a size record, we need to remove both
        if (matched_rec->is_arena_record()) {
          MemPointerRecord* next = (MemPointerRecord*)malloc_snapshot_itr.peek_next();
          if (next != NULL && next->is_arena_memory_record() &&
              next->is_memory_record_of_arena(matched_rec)) {
            malloc_snapshot_itr.remove();
          }
        }
        // the memory is deallocated, remove related record(s)
        malloc_snapshot_itr.remove();
      }
    } else {
      // don't insert size 0 record
      if (new_rec->is_arena_memory_record() && new_rec->size() == 0) {
        new_rec = NULL;
      }

      if (new_rec != NULL) {
        if  (new_rec->is_allocation_record() || new_rec->is_arena_memory_record()) {
          if (matched_rec != NULL && new_rec->addr() > matched_rec->addr()) {
            if (!malloc_snapshot_itr.insert_after(new_rec)) {
              return false;
            }
          } else {
            if (!malloc_snapshot_itr.insert(new_rec)) {
              return false;
            }
          }
        }
#ifndef PRODUCT
        else if (!has_allocation_record(new_rec->addr())) {
          // NMT can not track some startup memory, which is allocated before NMT is on
          _untracked_count ++;
        }
#endif
      }
    }
    new_rec = (MemPointerRecord*)itr->next();
  }
  return true;
}

bool MemSnapshot::promote_virtual_memory_records(MemPointerArrayIterator* itr) {
  VMMemPointerIterator vm_snapshot_itr(_vm_ptrs);
  MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
  VMMemRegion*  reserved_rec;
  while (new_rec != NULL) {
    assert(new_rec->is_vm_pointer(), "Sanity check");

    // locate a reserved region that contains the specified address, or
    // the nearest reserved region has base address just above the specified
    // address
    reserved_rec = (VMMemRegion*)vm_snapshot_itr.locate(new_rec->addr());
    if (reserved_rec != NULL && reserved_rec->contains_region(new_rec)) {
      // snapshot can only have 'live' records
      assert(reserved_rec->is_reserved_region(), "Sanity check");
      if (new_rec->is_allocation_record()) {
        if (!reserved_rec->is_same_region(new_rec)) {
          // only deal with split a bigger reserved region into smaller regions.
          // So far, CDS is the only use case.
          if (!vm_snapshot_itr.split_reserved_region(reserved_rec, new_rec->addr(), new_rec->size())) {
            return false;
          }
        }
      } else if (new_rec->is_uncommit_record()) {
        if (!vm_snapshot_itr.remove_uncommitted_region(new_rec)) {
          return false;
        }
      } else if (new_rec->is_commit_record()) {
        // insert or expand existing committed region to cover this
        // newly committed region
        if (!vm_snapshot_itr.add_committed_region(new_rec)) {
          return false;
        }
      } else if (new_rec->is_deallocation_record()) {
        // release part or all memory region
        if (!vm_snapshot_itr.remove_released_region(new_rec)) {
          return false;
        }
      } else if (new_rec->is_type_tagging_record()) {
        // tag this reserved virtual memory range to a memory type. Can not re-tag a memory range
        // to different type.
        assert(FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == mtNone ||
               FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == FLAGS_TO_MEMORY_TYPE(new_rec->flags()),
               "Sanity check");
        reserved_rec->tag(new_rec->flags());
    } else {
        ShouldNotReachHere();
          }
        } else {
      /*
       * The assertion failure indicates mis-matched virtual memory records. The likely
       * scenario is, that some virtual memory operations are not going through os::xxxx_memory()
       * api, which have to be tracked manually. (perfMemory is an example).
      */
      assert(new_rec->is_allocation_record(), "Sanity check");
      if (!vm_snapshot_itr.add_reserved_region(new_rec)) {
            return false;
          }
  }
    new_rec = (MemPointerRecord*)itr->next();
  }
  return true;
}

#ifndef PRODUCT
void MemSnapshot::print_snapshot_stats(outputStream* st) {
  st->print_cr("Snapshot:");
  st->print_cr("\tMalloced: %d/%d [%5.2f%%]  %dKB", _alloc_ptrs->length(), _alloc_ptrs->capacity(),
    (100.0 * (float)_alloc_ptrs->length()) / (float)_alloc_ptrs->capacity(), _alloc_ptrs->instance_size()/K);

  st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(),
    (100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K);

  st->print_cr("\tMalloc staging Area:     %d/%d [%5.2f%%] %dKB", _staging_area.malloc_data()->length(),
    _staging_area.malloc_data()->capacity(),
    (100.0 * (float)_staging_area.malloc_data()->length()) / (float)_staging_area.malloc_data()->capacity(),
    _staging_area.malloc_data()->instance_size()/K);

  st->print_cr("\tVirtual memory staging Area:     %d/%d [%5.2f%%] %dKB", _staging_area.vm_data()->length(),
    _staging_area.vm_data()->capacity(),
    (100.0 * (float)_staging_area.vm_data()->length()) / (float)_staging_area.vm_data()->capacity(),
    _staging_area.vm_data()->instance_size()/K);

  st->print_cr("\tUntracked allocation: %d", _untracked_count);
}

void MemSnapshot::check_malloc_pointers() {
  MemPointerArrayIteratorImpl mItr(_alloc_ptrs);
  MemPointerRecord* p = (MemPointerRecord*)mItr.current();
  MemPointerRecord* prev = NULL;
  while (p != NULL) {
    if (prev != NULL) {
      assert(p->addr() >= prev->addr(), "sorting order");
    }
    prev = p;
    p = (MemPointerRecord*)mItr.next();
  }
}

bool MemSnapshot::has_allocation_record(address addr) {
  MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
  MemPointerRecord* cur = (MemPointerRecord*)itr.current();
  while (cur != NULL) {
    if (cur->addr() == addr && cur->is_allocation_record()) {
      return true;
    }
    cur = (MemPointerRecord*)itr.next();
  }
  return false;
}
#endif // PRODUCT

#ifdef ASSERT
void MemSnapshot::check_staging_data() {
  MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
  MemPointerRecord* cur = (MemPointerRecord*)itr.current();
  MemPointerRecord* next = (MemPointerRecord*)itr.next();
  while (next != NULL) {
    assert((next->addr() > cur->addr()) ||
      ((next->flags() & MemPointerRecord::tag_masks) >
       (cur->flags() & MemPointerRecord::tag_masks)),
       "sorting order");
    cur = next;
    next = (MemPointerRecord*)itr.next();
  }

  MemPointerArrayIteratorImpl vm_itr(_staging_area.vm_data());
  cur = (MemPointerRecord*)vm_itr.current();
  while (cur != NULL) {
    assert(cur->is_vm_pointer(), "virtual memory pointer only");
    cur = (MemPointerRecord*)vm_itr.next();
  }
}

void MemSnapshot::dump_all_vm_pointers() {
  MemPointerArrayIteratorImpl itr(_vm_ptrs);
  VMMemRegion* ptr = (VMMemRegion*)itr.current();
  tty->print_cr("dump virtual memory pointers:");
  while (ptr != NULL) {
    if (ptr->is_committed_region()) {
      tty->print("\t");
    }
    tty->print("[" PTR_FORMAT " - " PTR_FORMAT "] [%x]", ptr->addr(),
      (ptr->addr() + ptr->size()), ptr->flags());

    if (MemTracker::track_callsite()) {
      VMMemRegionEx* ex = (VMMemRegionEx*)ptr;
      if (ex->pc() != NULL) {
        char buf[1024];
        if (os::dll_address_to_function_name(ex->pc(), buf, sizeof(buf), NULL)) {
          tty->print_cr("\t%s", buf);
        } else {
          tty->print_cr("");
        }
      }
    }

    ptr = (VMMemRegion*)itr.next();
  }
  tty->flush();
}
#endif // ASSERT