aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/gc_implementation/g1/heapRegion.cpp
blob: bff10363daf7dd5b28bbaa942bd88c5e46819628 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/*
 * Copyright 2001-2010 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_heapRegion.cpp.incl"

int HeapRegion::LogOfHRGrainBytes = 0;
int HeapRegion::LogOfHRGrainWords = 0;
int HeapRegion::GrainBytes        = 0;
int HeapRegion::GrainWords        = 0;
int HeapRegion::CardsPerRegion    = 0;

HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
                                 HeapRegion* hr, OopClosure* cl,
                                 CardTableModRefBS::PrecisionStyle precision,
                                 FilterKind fk) :
  ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  _hr(hr), _fk(fk), _g1(g1)
{}

FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
                                                   OopClosure* oc) :
  _r_bottom(r->bottom()), _r_end(r->end()),
  _oc(oc), _out_of_region(0)
{}

class VerifyLiveClosure: public OopClosure {
private:
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _bs;
  oop _containing_obj;
  bool _failures;
  int _n_failures;
  bool _use_prev_marking;
public:
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyLiveClosure(G1CollectedHeap* g1h, bool use_prev_marking) :
    _g1h(g1h), _bs(NULL), _containing_obj(NULL),
    _failures(false), _n_failures(0), _use_prev_marking(use_prev_marking)
  {
    BarrierSet* bs = _g1h->barrier_set();
    if (bs->is_a(BarrierSet::CardTableModRef))
      _bs = (CardTableModRefBS*)bs;
  }

  void set_containing_obj(oop obj) {
    _containing_obj = obj;
  }

  bool failures() { return _failures; }
  int n_failures() { return _n_failures; }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  void print_object(outputStream* out, oop obj) {
#ifdef PRODUCT
    klassOop k = obj->klass();
    const char* class_name = instanceKlass::cast(k)->external_name();
    out->print_cr("class name %s", class_name);
#else // PRODUCT
    obj->print_on(out);
#endif // PRODUCT
  }

  template <class T> void do_oop_work(T* p) {
    assert(_containing_obj != NULL, "Precondition");
    assert(!_g1h->is_obj_dead_cond(_containing_obj, _use_prev_marking),
           "Precondition");
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      bool failed = false;
      if (!_g1h->is_in_closed_subset(obj) ||
          _g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
        if (!_failures) {
          gclog_or_tty->print_cr("");
          gclog_or_tty->print_cr("----------");
        }
        if (!_g1h->is_in_closed_subset(obj)) {
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
          gclog_or_tty->print_cr("Field "PTR_FORMAT
                                 " of live obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 p, (void*) _containing_obj,
                                 from->bottom(), from->end());
          print_object(gclog_or_tty, _containing_obj);
          gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
                                 (void*) obj);
        } else {
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
          HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
          gclog_or_tty->print_cr("Field "PTR_FORMAT
                                 " of live obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 p, (void*) _containing_obj,
                                 from->bottom(), from->end());
          print_object(gclog_or_tty, _containing_obj);
          gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 (void*) obj, to->bottom(), to->end());
          print_object(gclog_or_tty, obj);
        }
        gclog_or_tty->print_cr("----------");
        _failures = true;
        failed = true;
        _n_failures++;
      }

      if (!_g1h->full_collection()) {
        HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
        HeapRegion* to   = _g1h->heap_region_containing(obj);
        if (from != NULL && to != NULL &&
            from != to &&
            !to->isHumongous()) {
          jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
          jbyte cv_field = *_bs->byte_for_const(p);
          const jbyte dirty = CardTableModRefBS::dirty_card_val();

          bool is_bad = !(from->is_young()
                          || to->rem_set()->contains_reference(p)
                          || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
                              (_containing_obj->is_objArray() ?
                                  cv_field == dirty
                               : cv_obj == dirty || cv_field == dirty));
          if (is_bad) {
            if (!_failures) {
              gclog_or_tty->print_cr("");
              gclog_or_tty->print_cr("----------");
            }
            gclog_or_tty->print_cr("Missing rem set entry:");
            gclog_or_tty->print_cr("Field "PTR_FORMAT
                          " of obj "PTR_FORMAT
                          ", in region %d ["PTR_FORMAT
                          ", "PTR_FORMAT"),",
                          p, (void*) _containing_obj,
                          from->hrs_index(),
                          from->bottom(),
                          from->end());
            _containing_obj->print_on(gclog_or_tty);
            gclog_or_tty->print_cr("points to obj "PTR_FORMAT
                          " in region %d ["PTR_FORMAT
                          ", "PTR_FORMAT").",
                          (void*) obj, to->hrs_index(),
                          to->bottom(), to->end());
            obj->print_on(gclog_or_tty);
            gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
                          cv_obj, cv_field);
            gclog_or_tty->print_cr("----------");
            _failures = true;
            if (!failed) _n_failures++;
          }
        }
      }
    }
  }
};

template<class ClosureType>
HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
                               HeapRegion* hr,
                               HeapWord* cur, HeapWord* top) {
  oop cur_oop = oop(cur);
  int oop_size = cur_oop->size();
  HeapWord* next_obj = cur + oop_size;
  while (next_obj < top) {
    // Keep filtering the remembered set.
    if (!g1h->is_obj_dead(cur_oop, hr)) {
      // Bottom lies entirely below top, so we can call the
      // non-memRegion version of oop_iterate below.
      cur_oop->oop_iterate(cl);
    }
    cur = next_obj;
    cur_oop = oop(cur);
    oop_size = cur_oop->size();
    next_obj = cur + oop_size;
  }
  return cur;
}

void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
                                              HeapWord* bottom,
                                              HeapWord* top,
                                              OopClosure* cl) {
  G1CollectedHeap* g1h = _g1;

  int oop_size;

  OopClosure* cl2 = cl;
  FilterIntoCSClosure intoCSFilt(this, g1h, cl);
  FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
  switch (_fk) {
  case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  }

  // Start filtering what we add to the remembered set. If the object is
  // not considered dead, either because it is marked (in the mark bitmap)
  // or it was allocated after marking finished, then we add it. Otherwise
  // we can safely ignore the object.
  if (!g1h->is_obj_dead(oop(bottom), _hr)) {
    oop_size = oop(bottom)->oop_iterate(cl2, mr);
  } else {
    oop_size = oop(bottom)->size();
  }

  bottom += oop_size;

  if (bottom < top) {
    // We replicate the loop below for several kinds of possible filters.
    switch (_fk) {
    case NoFilterKind:
      bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
      break;
    case IntoCSFilterKind: {
      FilterIntoCSClosure filt(this, g1h, cl);
      bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
      break;
    }
    case OutOfRegionFilterKind: {
      FilterOutOfRegionClosure filt(_hr, cl);
      bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
      break;
    }
    default:
      ShouldNotReachHere();
    }

    // Last object. Need to do dead-obj filtering here too.
    if (!g1h->is_obj_dead(oop(bottom), _hr)) {
      oop(bottom)->oop_iterate(cl2, mr);
    }
  }
}

// Minimum region size; we won't go lower than that.
// We might want to decrease this in the future, to deal with small
// heaps a bit more efficiently.
#define MIN_REGION_SIZE  (      1024 * 1024 )

// Maximum region size; we don't go higher than that. There's a good
// reason for having an upper bound. We don't want regions to get too
// large, otherwise cleanup's effectiveness would decrease as there
// will be fewer opportunities to find totally empty regions after
// marking.
#define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )

// The automatic region size calculation will try to have around this
// many regions in the heap (based on the min heap size).
#define TARGET_REGION_NUMBER          2048

void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
  // region_size in bytes
  uintx region_size = G1HeapRegionSize;
  if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
    // We base the automatic calculation on the min heap size. This
    // can be problematic if the spread between min and max is quite
    // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
    // the max size, the region size might be way too large for the
    // min size. Either way, some users might have to set the region
    // size manually for some -Xms / -Xmx combos.

    region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
                       (uintx) MIN_REGION_SIZE);
  }

  int region_size_log = log2_long((jlong) region_size);
  // Recalculate the region size to make sure it's a power of
  // 2. This means that region_size is the largest power of 2 that's
  // <= what we've calculated so far.
  region_size = 1 << region_size_log;

  // Now make sure that we don't go over or under our limits.
  if (region_size < MIN_REGION_SIZE) {
    region_size = MIN_REGION_SIZE;
  } else if (region_size > MAX_REGION_SIZE) {
    region_size = MAX_REGION_SIZE;
  }

  // And recalculate the log.
  region_size_log = log2_long((jlong) region_size);

  // Now, set up the globals.
  guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
  LogOfHRGrainBytes = region_size_log;

  guarantee(LogOfHRGrainWords == 0, "we should only set it once");
  LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;

  guarantee(GrainBytes == 0, "we should only set it once");
  // The cast to int is safe, given that we've bounded region_size by
  // MIN_REGION_SIZE and MAX_REGION_SIZE.
  GrainBytes = (int) region_size;

  guarantee(GrainWords == 0, "we should only set it once");
  GrainWords = GrainBytes >> LogHeapWordSize;
  guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");

  guarantee(CardsPerRegion == 0, "we should only set it once");
  CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
}

void HeapRegion::reset_after_compaction() {
  G1OffsetTableContigSpace::reset_after_compaction();
  // After a compaction the mark bitmap is invalid, so we must
  // treat all objects as being inside the unmarked area.
  zero_marked_bytes();
  init_top_at_mark_start();
}

DirtyCardToOopClosure*
HeapRegion::new_dcto_closure(OopClosure* cl,
                             CardTableModRefBS::PrecisionStyle precision,
                             HeapRegionDCTOC::FilterKind fk) {
  return new HeapRegionDCTOC(G1CollectedHeap::heap(),
                             this, cl, precision, fk);
}

void HeapRegion::hr_clear(bool par, bool clear_space) {
  _humongous_type = NotHumongous;
  _humongous_start_region = NULL;
  _in_collection_set = false;
  _is_gc_alloc_region = false;

  // Age stuff (if parallel, this will be done separately, since it needs
  // to be sequential).
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  set_young_index_in_cset(-1);
  uninstall_surv_rate_group();
  set_young_type(NotYoung);

  // In case it had been the start of a humongous sequence, reset its end.
  set_end(_orig_end);

  if (!par) {
    // If this is parallel, this will be done later.
    HeapRegionRemSet* hrrs = rem_set();
    if (hrrs != NULL) hrrs->clear();
    _claimed = InitialClaimValue;
  }
  zero_marked_bytes();
  set_sort_index(-1);

  _offsets.resize(HeapRegion::GrainWords);
  init_top_at_mark_start();
  if (clear_space) clear(SpaceDecorator::Mangle);
}

// <PREDICTION>
void HeapRegion::calc_gc_efficiency() {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  _gc_efficiency = (double) garbage_bytes() /
                            g1h->predict_region_elapsed_time_ms(this, false);
}
// </PREDICTION>

void HeapRegion::set_startsHumongous() {
  _humongous_type = StartsHumongous;
  _humongous_start_region = this;
  assert(end() == _orig_end, "Should be normal before alloc.");
}

bool HeapRegion::claimHeapRegion(jint claimValue) {
  jint current = _claimed;
  if (current != claimValue) {
    jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
    if (res == current) {
      return true;
    }
  }
  return false;
}

HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
  HeapWord* low = addr;
  HeapWord* high = end();
  while (low < high) {
    size_t diff = pointer_delta(high, low);
    // Must add one below to bias toward the high amount.  Otherwise, if
  // "high" were at the desired value, and "low" were one less, we
    // would not converge on "high".  This is not symmetric, because
    // we set "high" to a block start, which might be the right one,
    // which we don't do for "low".
    HeapWord* middle = low + (diff+1)/2;
    if (middle == high) return high;
    HeapWord* mid_bs = block_start_careful(middle);
    if (mid_bs < addr) {
      low = middle;
    } else {
      high = mid_bs;
    }
  }
  assert(low == high && low >= addr, "Didn't work.");
  return low;
}

void HeapRegion::set_next_on_unclean_list(HeapRegion* r) {
  assert(r == NULL || r->is_on_unclean_list(), "Malformed unclean list.");
  _next_in_special_set = r;
}

void HeapRegion::set_on_unclean_list(bool b) {
  _is_on_unclean_list = b;
}

void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
  hr_clear(false/*par*/, clear_space);
}
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


HeapRegion::
HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
                     MemRegion mr, bool is_zeroed)
  : G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
    _next_fk(HeapRegionDCTOC::NoFilterKind),
    _hrs_index(-1),
    _humongous_type(NotHumongous), _humongous_start_region(NULL),
    _in_collection_set(false), _is_gc_alloc_region(false),
    _is_on_free_list(false), _is_on_unclean_list(false),
    _next_in_special_set(NULL), _orig_end(NULL),
    _claimed(InitialClaimValue), _evacuation_failed(false),
    _prev_marked_bytes(0), _next_marked_bytes(0), _sort_index(-1),
    _young_type(NotYoung), _next_young_region(NULL),
    _next_dirty_cards_region(NULL),
    _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
    _rem_set(NULL), _zfs(NotZeroFilled),
    _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
    _predicted_bytes_to_copy(0)
{
  _orig_end = mr.end();
  // Note that initialize() will set the start of the unmarked area of the
  // region.
  this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
  set_top(bottom());
  set_saved_mark();

  _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);

  assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
  // In case the region is allocated during a pause, note the top.
  // We haven't done any counting on a brand new region.
  _top_at_conc_mark_count = bottom();
}

class NextCompactionHeapRegionClosure: public HeapRegionClosure {
  const HeapRegion* _target;
  bool _target_seen;
  HeapRegion* _last;
  CompactibleSpace* _res;
public:
  NextCompactionHeapRegionClosure(const HeapRegion* target) :
    _target(target), _target_seen(false), _res(NULL) {}
  bool doHeapRegion(HeapRegion* cur) {
    if (_target_seen) {
      if (!cur->isHumongous()) {
        _res = cur;
        return true;
      }
    } else if (cur == _target) {
      _target_seen = true;
    }
    return false;
  }
  CompactibleSpace* result() { return _res; }
};

CompactibleSpace* HeapRegion::next_compaction_space() const {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  // cast away const-ness
  HeapRegion* r = (HeapRegion*) this;
  NextCompactionHeapRegionClosure blk(r);
  g1h->heap_region_iterate_from(r, &blk);
  return blk.result();
}

void HeapRegion::set_continuesHumongous(HeapRegion* start) {
  // The order is important here.
  start->add_continuingHumongousRegion(this);
  _humongous_type = ContinuesHumongous;
  _humongous_start_region = start;
}

void HeapRegion::add_continuingHumongousRegion(HeapRegion* cont) {
  // Must join the blocks of the current H region seq with the block of the
  // added region.
  offsets()->join_blocks(bottom(), cont->bottom());
  arrayOop obj = (arrayOop)(bottom());
  obj->set_length((int) (obj->length() + cont->capacity()/jintSize));
  set_end(cont->end());
  set_top(cont->end());
}

void HeapRegion::save_marks() {
  set_saved_mark();
}

void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
  HeapWord* p = mr.start();
  HeapWord* e = mr.end();
  oop obj;
  while (p < e) {
    obj = oop(p);
    p += obj->oop_iterate(cl);
  }
  assert(p == e, "bad memregion: doesn't end on obj boundary");
}

#define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
  ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
}
SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)


void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
  oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
}

#ifdef DEBUG
HeapWord* HeapRegion::allocate(size_t size) {
  jint state = zero_fill_state();
  assert(!G1CollectedHeap::heap()->allocs_are_zero_filled() ||
         zero_fill_is_allocated(),
         "When ZF is on, only alloc in ZF'd regions");
  return G1OffsetTableContigSpace::allocate(size);
}
#endif

void HeapRegion::set_zero_fill_state_work(ZeroFillState zfs) {
  assert(top() == bottom() || zfs == Allocated,
         "Region must be empty, or we must be setting it to allocated.");
  assert(ZF_mon->owned_by_self() ||
         Universe::heap()->is_gc_active(),
         "Must hold the lock or be a full GC to modify.");
  _zfs = zfs;
}

void HeapRegion::set_zero_fill_complete() {
  set_zero_fill_state_work(ZeroFilled);
  if (ZF_mon->owned_by_self()) {
    ZF_mon->notify_all();
  }
}


void HeapRegion::ensure_zero_filled() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  ensure_zero_filled_locked();
}

void HeapRegion::ensure_zero_filled_locked() {
  assert(ZF_mon->owned_by_self(), "Precondition");
  bool should_ignore_zf = SafepointSynchronize::is_at_safepoint();
  assert(should_ignore_zf || Heap_lock->is_locked(),
         "Either we're in a GC or we're allocating a region.");
  switch (zero_fill_state()) {
  case HeapRegion::NotZeroFilled:
    set_zero_fill_in_progress(Thread::current());
    {
      ZF_mon->unlock();
      Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
      ZF_mon->lock_without_safepoint_check();
    }
    // A trap.
    guarantee(zero_fill_state() == HeapRegion::ZeroFilling
              && zero_filler() == Thread::current(),
              "AHA!  Tell Dave D if you see this...");
    set_zero_fill_complete();
    // gclog_or_tty->print_cr("Did sync ZF.");
    ConcurrentZFThread::note_sync_zfs();
    break;
  case HeapRegion::ZeroFilling:
    if (should_ignore_zf) {
      // We can "break" the lock and take over the work.
      Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
      set_zero_fill_complete();
      ConcurrentZFThread::note_sync_zfs();
      break;
    } else {
      ConcurrentZFThread::wait_for_ZF_completed(this);
    }
  case HeapRegion::ZeroFilled:
    // Nothing to do.
    break;
  case HeapRegion::Allocated:
    guarantee(false, "Should not call on allocated regions.");
  }
  assert(zero_fill_state() == HeapRegion::ZeroFilled, "Post");
}

HeapWord*
HeapRegion::object_iterate_mem_careful(MemRegion mr,
                                                 ObjectClosure* cl) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
  HeapWord* cur = block_start(mr.start());
  mr = mr.intersection(used_region());
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

  assert(cur <= mr.start()
         && (oop(cur)->klass_or_null() == NULL ||
             cur + oop(cur)->size() > mr.start()),
         "postcondition of block_start");
  oop obj;
  while (cur < mr.end()) {
    obj = oop(cur);
    if (obj->klass_or_null() == NULL) {
      // Ran into an unparseable point.
      return cur;
    } else if (!g1h->is_obj_dead(obj)) {
      cl->do_object(obj);
    }
    if (cl->abort()) return cur;
    // The check above must occur before the operation below, since an
    // abort might invalidate the "size" operation.
    cur += obj->size();
  }
  return NULL;
}

HeapWord*
HeapRegion::
oops_on_card_seq_iterate_careful(MemRegion mr,
                                     FilterOutOfRegionClosure* cl) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If we're within a stop-world GC, then we might look at a card in a
  // GC alloc region that extends onto a GC LAB, which may not be
  // parseable.  Stop such at the "saved_mark" of the region.
  if (G1CollectedHeap::heap()->is_gc_active()) {
    mr = mr.intersection(used_region_at_save_marks());
  } else {
    mr = mr.intersection(used_region());
  }
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
  HeapWord* cur = block_start(mr.start());
  assert(cur <= mr.start(), "Postcondition");

  while (cur <= mr.start()) {
    if (oop(cur)->klass_or_null() == NULL) {
      // Ran into an unparseable point.
      return cur;
    }
    // Otherwise...
    int sz = oop(cur)->size();
    if (cur + sz > mr.start()) break;
    // Otherwise, go on.
    cur = cur + sz;
  }
  oop obj;
  obj = oop(cur);
  // If we finish this loop...
  assert(cur <= mr.start()
         && obj->klass_or_null() != NULL
         && cur + obj->size() > mr.start(),
         "Loop postcondition");
  if (!g1h->is_obj_dead(obj)) {
    obj->oop_iterate(cl, mr);
  }

  HeapWord* next;
  while (cur < mr.end()) {
    obj = oop(cur);
    if (obj->klass_or_null() == NULL) {
      // Ran into an unparseable point.
      return cur;
    };
    // Otherwise:
    next = (cur + obj->size());
    if (!g1h->is_obj_dead(obj)) {
      if (next < mr.end()) {
        obj->oop_iterate(cl);
      } else {
        // this obj spans the boundary.  If it's an array, stop at the
        // boundary.
        if (obj->is_objArray()) {
          obj->oop_iterate(cl, mr);
        } else {
          obj->oop_iterate(cl);
        }
      }
    }
    cur = next;
  }
  return NULL;
}

void HeapRegion::print() const { print_on(gclog_or_tty); }
void HeapRegion::print_on(outputStream* st) const {
  if (isHumongous()) {
    if (startsHumongous())
      st->print(" HS");
    else
      st->print(" HC");
  } else {
    st->print("   ");
  }
  if (in_collection_set())
    st->print(" CS");
  else if (is_gc_alloc_region())
    st->print(" A ");
  else
    st->print("   ");
  if (is_young())
    st->print(is_survivor() ? " SU" : " Y ");
  else
    st->print("   ");
  if (is_empty())
    st->print(" F");
  else
    st->print("  ");
  st->print(" %5d", _gc_time_stamp);
  st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
            prev_top_at_mark_start(), next_top_at_mark_start());
  G1OffsetTableContigSpace::print_on(st);
}

void HeapRegion::verify(bool allow_dirty) const {
  bool dummy = false;
  verify(allow_dirty, /* use_prev_marking */ true, /* failures */ &dummy);
}

#define OBJ_SAMPLE_INTERVAL 0
#define BLOCK_SAMPLE_INTERVAL 100

// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.

void HeapRegion::verify(bool allow_dirty,
                        bool use_prev_marking,
                        bool* failures) const {
  G1CollectedHeap* g1 = G1CollectedHeap::heap();
  *failures = false;
  HeapWord* p = bottom();
  HeapWord* prev_p = NULL;
  int objs = 0;
  int blocks = 0;
  VerifyLiveClosure vl_cl(g1, use_prev_marking);
  while (p < top()) {
    size_t size = oop(p)->size();
    if (blocks == BLOCK_SAMPLE_INTERVAL) {
      HeapWord* res = block_start_const(p + (size/2));
      if (p != res) {
        gclog_or_tty->print_cr("offset computation 1 for "PTR_FORMAT" and "
                               SIZE_FORMAT" returned "PTR_FORMAT,
                               p, size, res);
        *failures = true;
        return;
      }
      blocks = 0;
    } else {
      blocks++;
    }
    if (objs == OBJ_SAMPLE_INTERVAL) {
      oop obj = oop(p);
      if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
        if (obj->is_oop()) {
          klassOop klass = obj->klass();
          if (!klass->is_perm()) {
            gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
                                   "not in perm", klass, obj);
            *failures = true;
            return;
          } else if (!klass->is_klass()) {
            gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
                                   "not a klass", klass, obj);
            *failures = true;
            return;
          } else {
            vl_cl.set_containing_obj(obj);
            obj->oop_iterate(&vl_cl);
            if (vl_cl.failures()) {
              *failures = true;
            }
            if (G1MaxVerifyFailures >= 0 &&
                vl_cl.n_failures() >= G1MaxVerifyFailures) {
              return;
            }
          }
        } else {
          gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
          *failures = true;
          return;
        }
      }
      objs = 0;
    } else {
      objs++;
    }
    prev_p = p;
    p += size;
  }
  HeapWord* rend = end();
  HeapWord* rtop = top();
  if (rtop < rend) {
    HeapWord* res = block_start_const(rtop + (rend - rtop) / 2);
    if (res != rtop) {
        gclog_or_tty->print_cr("offset computation 2 for "PTR_FORMAT" and "
                               PTR_FORMAT" returned "PTR_FORMAT,
                               rtop, rend, res);
        *failures = true;
        return;
    }
  }

  if (p != top()) {
    gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
                           "does not match top "PTR_FORMAT, p, top());
    *failures = true;
    return;
  }
}

// G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
// away eventually.

void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  // false ==> we'll do the clearing if there's clearing to be done.
  ContiguousSpace::initialize(mr, false, mangle_space);
  _offsets.zero_bottom_entry();
  _offsets.initialize_threshold();
  if (clear_space) clear(mangle_space);
}

void G1OffsetTableContigSpace::clear(bool mangle_space) {
  ContiguousSpace::clear(mangle_space);
  _offsets.zero_bottom_entry();
  _offsets.initialize_threshold();
}

void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  Space::set_bottom(new_bottom);
  _offsets.set_bottom(new_bottom);
}

void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  Space::set_end(new_end);
  _offsets.resize(new_end - bottom());
}

void G1OffsetTableContigSpace::print() const {
  print_short();
  gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
                INTPTR_FORMAT ", " INTPTR_FORMAT ")",
                bottom(), top(), _offsets.threshold(), end());
}

HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  return _offsets.initialize_threshold();
}

HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
                                                    HeapWord* end) {
  _offsets.alloc_block(start, end);
  return _offsets.threshold();
}

HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  if (_gc_time_stamp < g1h->get_gc_time_stamp())
    return top();
  else
    return ContiguousSpace::saved_mark_word();
}

void G1OffsetTableContigSpace::set_saved_mark() {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();

  if (_gc_time_stamp < curr_gc_time_stamp) {
    // The order of these is important, as another thread might be
    // about to start scanning this region. If it does so after
    // set_saved_mark and before _gc_time_stamp = ..., then the latter
    // will be false, and it will pick up top() as the high water mark
    // of region. If it does so after _gc_time_stamp = ..., then it
    // will pick up the right saved_mark_word() as the high water mark
    // of the region. Either way, the behaviour will be correct.
    ContiguousSpace::set_saved_mark();
    OrderAccess::storestore();
    _gc_time_stamp = curr_gc_time_stamp;
    // The following fence is to force a flush of the writes above, but
    // is strictly not needed because when an allocating worker thread
    // calls set_saved_mark() it does so under the ParGCRareEvent_lock;
    // when the lock is released, the write will be flushed.
    // OrderAccess::fence();
  }
}

G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
                         MemRegion mr, bool is_zeroed) :
  _offsets(sharedOffsetArray, mr),
  _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  _gc_time_stamp(0)
{
  _offsets.set_space(this);
  initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
}

size_t RegionList::length() {
  size_t len = 0;
  HeapRegion* cur = hd();
  DEBUG_ONLY(HeapRegion* last = NULL);
  while (cur != NULL) {
    len++;
    DEBUG_ONLY(last = cur);
    cur = get_next(cur);
  }
  assert(last == tl(), "Invariant");
  return len;
}

void RegionList::insert_before_head(HeapRegion* r) {
  assert(well_formed(), "Inv");
  set_next(r, hd());
  _hd = r;
  _sz++;
  if (tl() == NULL) _tl = r;
  assert(well_formed(), "Inv");
}

void RegionList::prepend_list(RegionList* new_list) {
  assert(well_formed(), "Precondition");
  assert(new_list->well_formed(), "Precondition");
  HeapRegion* new_tl = new_list->tl();
  if (new_tl != NULL) {
    set_next(new_tl, hd());
    _hd = new_list->hd();
    _sz += new_list->sz();
    if (tl() == NULL) _tl = new_list->tl();
  } else {
    assert(new_list->hd() == NULL && new_list->sz() == 0, "Inv");
  }
  assert(well_formed(), "Inv");
}

void RegionList::delete_after(HeapRegion* r) {
  assert(well_formed(), "Precondition");
  HeapRegion* next = get_next(r);
  assert(r != NULL, "Precondition");
  HeapRegion* next_tl = get_next(next);
  set_next(r, next_tl);
  dec_sz();
  if (next == tl()) {
    assert(next_tl == NULL, "Inv");
    _tl = r;
  }
  assert(well_formed(), "Inv");
}

HeapRegion* RegionList::pop() {
  assert(well_formed(), "Inv");
  HeapRegion* res = hd();
  if (res != NULL) {
    _hd = get_next(res);
    _sz--;
    set_next(res, NULL);
    if (sz() == 0) _tl = NULL;
  }
  assert(well_formed(), "Inv");
  return res;
}