aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/x86/vm/methodHandles_x86.cpp
blob: f92beb4839f8bc85f04edc0326bede94119d83fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
/*
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"

#define __ _masm->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
                                                address interpreted_entry) {
  // Just before the actual machine code entry point, allocate space
  // for a MethodHandleEntry::Data record, so that we can manage everything
  // from one base pointer.
  __ align(wordSize);
  address target = __ pc() + sizeof(Data);
  while (__ pc() < target) {
    __ nop();
    __ align(wordSize);
  }

  MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  me->set_end_address(__ pc());         // set a temporary end_address
  me->set_from_interpreted_entry(interpreted_entry);
  me->set_type_checking_entry(NULL);

  return (address) me;
}

MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
                                                address start_addr) {
  MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  assert(me->end_address() == start_addr, "valid ME");

  // Fill in the real end_address:
  __ align(wordSize);
  me->set_end_address(__ pc());

  return me;
}

#ifdef ASSERT
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
                           const char* error_message) {
  // Verify that argslot lies within (rsp, rbp].
  Label L_ok, L_bad;
  BLOCK_COMMENT("{ verify_argslot");
  __ cmpptr(argslot_reg, rbp);
  __ jccb(Assembler::above, L_bad);
  __ cmpptr(rsp, argslot_reg);
  __ jccb(Assembler::below, L_ok);
  __ bind(L_bad);
  __ stop(error_message);
  __ bind(L_ok);
  BLOCK_COMMENT("} verify_argslot");
}
#endif


// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
  // rbx: methodOop
  // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
  // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  // rdx, rdi: garbage temp, blown away

  Register rbx_method = rbx;
  Register rcx_recv   = rcx;
  Register rax_mtype  = rax;
  Register rdx_temp   = rdx;
  Register rdi_temp   = rdi;

  // emit WrongMethodType path first, to enable jccb back-branch from main path
  Label wrong_method_type;
  __ bind(wrong_method_type);
  Label invoke_generic_slow_path;
  assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
  __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
  __ jcc(Assembler::notEqual, invoke_generic_slow_path);
  __ push(rax_mtype);       // required mtype
  __ push(rcx_recv);        // bad mh (1st stacked argument)
  __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));

  // here's where control starts out:
  __ align(CodeEntryAlignment);
  address entry_point = __ pc();

  // fetch the MethodType from the method handle into rax (the 'check' register)
  {
    Register tem = rbx_method;
    for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
      __ movptr(rax_mtype, Address(tem, *pchase));
      tem = rax_mtype;          // in case there is another indirection
    }
  }

  // given the MethodType, find out where the MH argument is buried
  __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
  Register rdx_vmslots = rdx_temp;
  __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
  __ movptr(rcx_recv, __ argument_address(rdx_vmslots));

  trace_method_handle(_masm, "invokeExact");

  __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
  __ jump_to_method_handle_entry(rcx_recv, rdi_temp);

  // for invokeGeneric (only), apply argument and result conversions on the fly
  __ bind(invoke_generic_slow_path);
#ifdef ASSERT
  { Label L;
    __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
    __ jcc(Assembler::equal, L);
    __ stop("bad methodOop::intrinsic_id");
    __ bind(L);
  }
#endif //ASSERT
  Register rbx_temp = rbx_method;  // don't need it now

  // make room on the stack for another pointer:
  Register rcx_argslot = rcx_recv;
  __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
  insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK,
                   rcx_argslot, rbx_temp, rdx_temp);

  // load up an adapter from the calling type (Java weaves this)
  __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
  Register rdx_adapter = rdx_temp;
  // __ load_heap_oop(rdx_adapter, Address(rdx_temp, java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes()));
  // deal with old JDK versions:
  __ lea(rdi_temp, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
  __ cmpptr(rdi_temp, rdx_temp);
  Label sorry_no_invoke_generic;
  __ jcc(Assembler::below, sorry_no_invoke_generic);

  __ load_heap_oop(rdx_adapter, Address(rdi_temp, 0));
  __ testptr(rdx_adapter, rdx_adapter);
  __ jcc(Assembler::zero, sorry_no_invoke_generic);
  __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
  // As a trusted first argument, pass the type being called, so the adapter knows
  // the actual types of the arguments and return values.
  // (Generic invokers are shared among form-families of method-type.)
  __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
  // FIXME: assert that rdx_adapter is of the right method-type.
  __ mov(rcx, rdx_adapter);
  trace_method_handle(_masm, "invokeGeneric");
  __ jump_to_method_handle_entry(rcx, rdi_temp);

  __ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available!
  __ movptr(rcx_recv, Address(rcx_argslot, -1 * Interpreter::stackElementSize));  // recover original MH
  __ push(rax_mtype);       // required mtype
  __ push(rcx_recv);        // bad mh (1st stacked argument)
  __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));

  return entry_point;
}

// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and <= 0
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
                                     RegisterOrConstant arg_slots,
                                     int arg_mask,
                                     Register rax_argslot,
                                     Register rbx_temp, Register rdx_temp, Register temp3_reg) {
  assert(temp3_reg == noreg, "temp3 not required");
  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));

#ifdef ASSERT
  verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
    __ jccb(Assembler::greater, L_bad);
    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
    __ jccb(Assembler::zero, L_ok);
    __ bind(L_bad);
    __ stop("assert arg_slots <= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() <= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif //ASSERT

#ifdef _LP64
  if (arg_slots.is_register()) {
    // clean high bits of stack motion register (was loaded as an int)
    __ movslq(arg_slots.as_register(), arg_slots.as_register());
  }
#endif

  // Make space on the stack for the inserted argument(s).
  // Then pull down everything shallower than rax_argslot.
  // The stacked return address gets pulled down with everything else.
  // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
  //   rsp -= size;
  //   for (rdx = rsp + size; rdx < argslot; rdx++)
  //     rdx[-size] = rdx[0]
  //   argslot -= size;
  BLOCK_COMMENT("insert_arg_slots {");
  __ mov(rdx_temp, rsp);                        // source pointer for copy
  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
  {
    Label loop;
    __ BIND(loop);
    // pull one word down each time through the loop
    __ movptr(rbx_temp, Address(rdx_temp, 0));
    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
    __ addptr(rdx_temp, wordSize);
    __ cmpptr(rdx_temp, rax_argslot);
    __ jccb(Assembler::less, loop);
  }

  // Now move the argslot down, to point to the opened-up space.
  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
  BLOCK_COMMENT("} insert_arg_slots");
}

// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and >= 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
                                    RegisterOrConstant arg_slots,
                                    Register rax_argslot,
                                     Register rbx_temp, Register rdx_temp, Register temp3_reg) {
  assert(temp3_reg == noreg, "temp3 not required");
  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));

#ifdef ASSERT
  // Verify that [argslot..argslot+size) lies within (rsp, rbp).
  __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
  verify_argslot(_masm, rbx_temp, "deleted argument(s) must fall within current frame");
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
    __ jccb(Assembler::less, L_bad);
    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
    __ jccb(Assembler::zero, L_ok);
    __ bind(L_bad);
    __ stop("assert arg_slots >= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() >= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif //ASSERT

#ifdef _LP64
  if (false) {                  // not needed, since register is positive
    // clean high bits of stack motion register (was loaded as an int)
    if (arg_slots.is_register())
      __ movslq(arg_slots.as_register(), arg_slots.as_register());
  }
#endif

  BLOCK_COMMENT("remove_arg_slots {");
  // Pull up everything shallower than rax_argslot.
  // Then remove the excess space on the stack.
  // The stacked return address gets pulled up with everything else.
  // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
  //   for (rdx = argslot-1; rdx >= rsp; --rdx)
  //     rdx[size] = rdx[0]
  //   argslot += size;
  //   rsp += size;
  __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
  {
    Label loop;
    __ BIND(loop);
    // pull one word up each time through the loop
    __ movptr(rbx_temp, Address(rdx_temp, 0));
    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
    __ addptr(rdx_temp, -wordSize);
    __ cmpptr(rdx_temp, rsp);
    __ jccb(Assembler::greaterEqual, loop);
  }

  // Now move the argslot up, to point to the just-copied block.
  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
  // And adjust the argslot address to point at the deletion point.
  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
  BLOCK_COMMENT("} remove_arg_slots");
}

#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
                              oop mh,
                              intptr_t* saved_regs,
                              intptr_t* entry_sp,
                              intptr_t* saved_sp,
                              intptr_t* saved_bp) {
  // called as a leaf from native code: do not block the JVM!
  intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
  intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
  printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
         adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
  if (last_sp != saved_sp && last_sp != NULL)
    printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
  if (Verbose) {
    printf(" reg dump: ");
    int saved_regs_count = (entry_sp-1) - saved_regs;
    // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
    int i;
    for (i = 0; i <= saved_regs_count; i++) {
      if (i > 0 && i % 4 == 0 && i != saved_regs_count)
        printf("\n   + dump: ");
      printf(" %d: "INTPTR_FORMAT, i, saved_regs[i]);
    }
    printf("\n");
    int stack_dump_count = 16;
    if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
      stack_dump_count = (int)(saved_bp + 2 - saved_sp);
    if (stack_dump_count > 64)  stack_dump_count = 48;
    for (i = 0; i < stack_dump_count; i += 4) {
      printf(" dump at SP[%d] "INTPTR_FORMAT": "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT"\n",
             i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
    }
    print_method_handle(mh);
  }
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  if (!TraceMethodHandles)  return;
  BLOCK_COMMENT("trace_method_handle {");
  __ push(rax);
  __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
  __ pusha();
  // arguments:
  __ push(rbp);               // interpreter frame pointer
  __ push(rsi);               // saved_sp
  __ push(rax);               // entry_sp
  __ push(rcx);               // mh
  __ push(rcx);
  __ movptr(Address(rsp, 0), (intptr_t) adaptername);
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
  __ popa();
  __ pop(rax);
  BLOCK_COMMENT("} trace_method_handle");
}
#endif //PRODUCT

// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
  return ((1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_ONLY)
         |(1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_RAW)
         |(1<<sun_dyn_AdapterMethodHandle::OP_CHECK_CAST)
         |(1<<sun_dyn_AdapterMethodHandle::OP_PRIM_TO_PRIM)
         |(1<<sun_dyn_AdapterMethodHandle::OP_REF_TO_PRIM)
         |(1<<sun_dyn_AdapterMethodHandle::OP_SWAP_ARGS)
         |(1<<sun_dyn_AdapterMethodHandle::OP_ROT_ARGS)
         |(1<<sun_dyn_AdapterMethodHandle::OP_DUP_ARGS)
         |(1<<sun_dyn_AdapterMethodHandle::OP_DROP_ARGS)
         //|(1<<sun_dyn_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
         );
  // FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
}

//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek, TRAPS) {
  // Here is the register state during an interpreted call,
  // as set up by generate_method_handle_interpreter_entry():
  // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  // - rcx: receiver method handle
  // - rax: method handle type (only used by the check_mtype entry point)
  // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  // - rdx: garbage temp, can blow away

  const Register rcx_recv    = rcx;
  const Register rax_argslot = rax;
  const Register rbx_temp    = rbx;
  const Register rdx_temp    = rdx;

  // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  // and gen_c2i_adapter (from compiled calls):
  const Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);

  // Argument registers for _raise_exception.
  // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);

  guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");

  // some handy addresses
  Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );

  Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
  Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );

  Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );

  Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
  Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
  Address vmarg;                // __ argument_address(vmargslot)

  const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();

  if (have_entry(ek)) {
    __ nop();                   // empty stubs make SG sick
    return;
  }

  address interp_entry = __ pc();

  trace_method_handle(_masm, entry_name(ek));

  BLOCK_COMMENT(entry_name(ek));

  switch ((int) ek) {
  case _raise_exception:
    {
      // Not a real MH entry, but rather shared code for raising an
      // exception.  Since we use a C2I adapter to set up the
      // interpreter state, arguments are expected in compiler
      // argument registers.
      methodHandle mh(raise_exception_method());
      address c2i_entry = methodOopDesc::make_adapters(mh, CHECK);

      const Register rdi_pc = rax;
      __ pop(rdi_pc);  // caller PC
      __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started

      Register rbx_method = rbx_temp;
      Label L_no_method;
      // FIXME: fill in _raise_exception_method with a suitable sun.dyn method
      __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
      __ testptr(rbx_method, rbx_method);
      __ jccb(Assembler::zero, L_no_method);

      const int jobject_oop_offset = 0;
      __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
      __ testptr(rbx_method, rbx_method);
      __ jccb(Assembler::zero, L_no_method);
      __ verify_oop(rbx_method);

      // 32-bit: push remaining arguments as if coming from the compiler.
      NOT_LP64(__ push(rarg2_required));

      __ push(rdi_pc);  // restore caller PC
      __ jump(ExternalAddress(c2i_entry));  // do C2I transition

      // If we get here, the Java runtime did not do its job of creating the exception.
      // Do something that is at least causes a valid throw from the interpreter.
      __ bind(L_no_method);
      __ push(rarg2_required);
      __ push(rarg1_actual);
      __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
    }
    break;

  case _invokestatic_mh:
  case _invokespecial_mh:
    {
      Register rbx_method = rbx_temp;
      __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
      __ verify_oop(rbx_method);
      // same as TemplateTable::invokestatic or invokespecial,
      // minus the CP setup and profiling:
      if (ek == _invokespecial_mh) {
        // Must load & check the first argument before entering the target method.
        __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
        __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
        __ null_check(rcx_recv);
        __ verify_oop(rcx_recv);
      }
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokevirtual_mh:
    {
      // same as TemplateTable::invokevirtual,
      // minus the CP setup and profiling:

      // pick out the vtable index and receiver offset from the MH,
      // and then we can discard it:
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rbx_index = rbx_temp;
      __ movl(rbx_index, rcx_dmh_vmindex);
      // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      // get target methodOop & entry point
      const int base = instanceKlass::vtable_start_offset() * wordSize;
      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
      Address vtable_entry_addr(rax_klass,
                                rbx_index, Address::times_ptr,
                                base + vtableEntry::method_offset_in_bytes());
      Register rbx_method = rbx_temp;
      __ movptr(rbx_method, vtable_entry_addr);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokeinterface_mh:
    {
      // same as TemplateTable::invokeinterface,
      // minus the CP setup and profiling:

      // pick out the interface and itable index from the MH.
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rdx_intf  = rdx_temp;
      Register rbx_index = rbx_temp;
      __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
      __ movl(rbx_index, rcx_dmh_vmindex);
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      Register rdi_temp   = rdi;
      Register rbx_method = rbx_index;

      // get interface klass
      Label no_such_interface;
      __ verify_oop(rdx_intf);
      __ lookup_interface_method(rax_klass, rdx_intf,
                                 // note: next two args must be the same:
                                 rbx_index, rbx_method,
                                 rdi_temp,
                                 no_such_interface);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
      __ hlt();

      __ bind(no_such_interface);
      // Throw an exception.
      // For historical reasons, it will be IncompatibleClassChangeError.
      __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
      assert_different_registers(rarg2_required, rbx_temp);
      __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
      __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
      __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
    }
    break;

  case _bound_ref_mh:
  case _bound_int_mh:
  case _bound_long_mh:
  case _bound_ref_direct_mh:
  case _bound_int_direct_mh:
  case _bound_long_direct_mh:
    {
      bool direct_to_method = (ek >= _bound_ref_direct_mh);
      BasicType arg_type  = T_ILLEGAL;
      int       arg_mask  = _INSERT_NO_MASK;
      int       arg_slots = -1;
      get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);

      // make room for the new argument:
      __ movl(rax_argslot, rcx_bmh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));
      insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
                       rax_argslot, rbx_temp, rdx_temp);

      // store bound argument into the new stack slot:
      __ load_heap_oop(rbx_temp, rcx_bmh_argument);
      Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
      if (arg_type == T_OBJECT) {
        __ movptr(Address(rax_argslot, 0), rbx_temp);
      } else {
        __ load_sized_value(rdx_temp, prim_value_addr,
                            type2aelembytes(arg_type), is_signed_subword_type(arg_type));
        __ movptr(Address(rax_argslot, 0), rdx_temp);
#ifndef _LP64
        if (arg_slots == 2) {
          __ movl(rdx_temp, prim_value_addr.plus_disp(wordSize));
          __ movl(Address(rax_argslot, Interpreter::stackElementSize), rdx_temp);
        }
#endif //_LP64
      }

      if (direct_to_method) {
        Register rbx_method = rbx_temp;
        __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
        __ verify_oop(rbx_method);
        __ jmp(rbx_method_fie);
      } else {
        __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
        __ verify_oop(rcx_recv);
        __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
      }
    }
    break;

  case _adapter_retype_only:
  case _adapter_retype_raw:
    // immediately jump to the next MH layer:
    __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
    __ verify_oop(rcx_recv);
    __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    // This is OK when all parameter types widen.
    // It is also OK when a return type narrows.
    break;

  case _adapter_check_cast:
    {
      // temps:
      Register rbx_klass = rbx_temp; // interesting AMH data

      // check a reference argument before jumping to the next layer of MH:
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      // What class are we casting to?
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label done;
      __ movptr(rdx_temp, vmarg);
      __ testptr(rdx_temp, rdx_temp);
      __ jcc(Assembler::zero, done);         // no cast if null
      __ load_klass(rdx_temp, rdx_temp);

      // live at this point:
      // - rbx_klass:  klass required by the target method
      // - rdx_temp:   argument klass to test
      // - rcx_recv:   adapter method handle
      __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);

      // If we get here, the type check failed!
      // Call the wrong_method_type stub, passing the failing argument type in rax.
      Register rax_mtype = rax_argslot;
      __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
      __ movptr(rdx_temp, vmarg);

      assert_different_registers(rarg2_required, rdx_temp);
      __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
      __ mov(          rarg1_actual,   rdx_temp);                     // bad object
      __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

      __ bind(done);
      // get the new MH:
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_prim:
  case _adapter_ref_to_prim:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place conversion to int or an int subword
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      switch (ek) {
      case _adapter_opt_i2i:
        __ movl(rdx_temp, vmarg);
        break;
      case _adapter_opt_l2i:
        {
          // just delete the extra slot; on a little-endian machine we keep the first
          __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
          remove_arg_slots(_masm, -stack_move_unit(),
                           rax_argslot, rbx_temp, rdx_temp);
          vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
          __ movl(rdx_temp, vmarg);
        }
        break;
      case _adapter_opt_unboxi:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)))
              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
          }
#endif
          __ null_check(rdx_temp, value_offset);
          __ movl(rdx_temp, Address(rdx_temp, value_offset));
          // We load this as a word.  Because we are little-endian,
          // the low bits will be correct, but the high bits may need cleaning.
          // The vminfo will guide us to clean those bits.
        }
        break;
      default:
        ShouldNotReachHere();
      }

      // Do the requested conversion and store the value.
      Register rbx_vminfo = rbx_temp;
      __ movl(rbx_vminfo, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");

      // get the new MH:
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      // (now we are done with the old MH)

      // original 32-bit vmdata word must be of this form:
      //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
      __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
      __ shll(rdx_temp /*, rcx*/);
      Label zero_extend, done;
      __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
      __ jccb(Assembler::zero, zero_extend);

      // this path is taken for int->byte, int->short
      __ sarl(rdx_temp /*, rcx*/);
      __ jmpb(done);

      __ bind(zero_extend);
      // this is taken for int->char
      __ shrl(rdx_temp /*, rcx*/);

      __ bind(done);
      __ movl(vmarg, rdx_temp);  // Store the value.
      __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv

      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place int-to-long or ref-to-long conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);

      // on a little-endian machine we keep the first slot and add another after
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                       rax_argslot, rbx_temp, rdx_temp);
      Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
      Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);

      switch (ek) {
      case _adapter_opt_i2l:
        {
#ifdef _LP64
          __ movslq(rdx_temp, vmarg1);  // Load sign-extended
          __ movq(vmarg1, rdx_temp);    // Store into first slot
#else
          __ movl(rdx_temp, vmarg1);
          __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
          __ movl(vmarg2, rdx_temp); // store second word
#endif
        }
        break;
      case _adapter_opt_unboxl:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg1);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
          __ null_check(rdx_temp, value_offset);
#ifdef _LP64
          __ movq(rbx_temp, Address(rdx_temp, value_offset));
          __ movq(vmarg1, rbx_temp);
#else
          __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
          __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
          __ movl(vmarg1, rbx_temp);
          __ movl(vmarg2, rdx_temp);
#endif
        }
        break;
      default:
        ShouldNotReachHere();
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
    {
      // perform an in-place floating primitive conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      if (ek == _adapter_opt_f2d) {
        insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                         rax_argslot, rbx_temp, rdx_temp);
      }
      Address vmarg(rax_argslot, -Interpreter::stackElementSize);

#ifdef _LP64
      if (ek == _adapter_opt_f2d) {
        __ movflt(xmm0, vmarg);
        __ cvtss2sd(xmm0, xmm0);
        __ movdbl(vmarg, xmm0);
      } else {
        __ movdbl(xmm0, vmarg);
        __ cvtsd2ss(xmm0, xmm0);
        __ movflt(vmarg, xmm0);
      }
#else //_LP64
      if (ek == _adapter_opt_f2d) {
        __ fld_s(vmarg);        // load float to ST0
        __ fstp_s(vmarg);       // store single
      } else {
        __ fld_d(vmarg);        // load double to ST0
        __ fstp_s(vmarg);       // store single
      }
#endif //_LP64

      if (ek == _adapter_opt_d2f) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_ref:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_swap_1:
  case _adapter_opt_swap_2:
  case _adapter_opt_rot_1_up:
  case _adapter_opt_rot_1_down:
  case _adapter_opt_rot_2_up:
  case _adapter_opt_rot_2_down:
    {
      int swap_bytes = 0, rotate = 0;
      get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);

      // 'argslot' is the position of the first argument to swap
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'vminfo' is the second
      Register rbx_destslot = rbx_temp;
      __ movl(rbx_destslot, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
      __ andl(rbx_destslot, CONV_VMINFO_MASK);
      __ lea(rbx_destslot, __ argument_address(rbx_destslot));
      DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));

      if (!rotate) {
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ movptr(rdx_temp, Address(rax_argslot , i));
          __ push(rdx_temp);
          __ movptr(rdx_temp, Address(rbx_destslot, i));
          __ movptr(Address(rax_argslot, i), rdx_temp);
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      } else {
        // push the first chunk, which is going to get overwritten
        for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
          __ movptr(rdx_temp, Address(rax_argslot, i));
          __ push(rdx_temp);
        }

        if (rotate > 0) {
          // rotate upward
          __ subptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot > destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
            __ jccb(Assembler::aboveEqual, L_ok);
            __ stop("source must be above destination (upward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot down to destslot, copying contiguous data upwards
          // pseudo-code:
          //   rax = src_addr - swap_bytes
          //   rbx = dest_addr
          //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
          __ addptr(rax_argslot, -wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
          __ jccb(Assembler::aboveEqual, loop);
        } else {
          __ addptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot < destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
            __ jccb(Assembler::belowEqual, L_ok);
            __ stop("source must be below destination (downward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot up to destslot, copying contiguous data downwards
          // pseudo-code:
          //   rax = src_addr + swap_bytes
          //   rbx = dest_addr
          //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
          __ addptr(rax_argslot, wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
          __ jccb(Assembler::belowEqual, loop);
        }

        // pop the original first chunk into the destination slot, now free
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_dup_args:
    {
      // 'argslot' is the position of the first argument to duplicate
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'stack_move' is negative number of words to duplicate
      Register rdx_stack_move = rdx_temp;
      __ movl2ptr(rdx_stack_move, rcx_amh_conversion);
      __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);

      int argslot0_num = 0;
      Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
      assert(argslot0.base() == rsp, "");
      int pre_arg_size = argslot0.disp();
      assert(pre_arg_size % wordSize == 0, "");
      assert(pre_arg_size > 0, "must include PC");

      // remember the old rsp+1 (argslot[0])
      Register rbx_oldarg = rbx_temp;
      __ lea(rbx_oldarg, argslot0);

      // move rsp down to make room for dups
      __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));

      // compute the new rsp+1 (argslot[0])
      Register rdx_newarg = rdx_temp;
      __ lea(rdx_newarg, argslot0);

      __ push(rdi);             // need a temp
      // (preceding push must be done after arg addresses are taken!)

      // pull down the pre_arg_size data (PC)
      for (int i = -pre_arg_size; i < 0; i += wordSize) {
        __ movptr(rdi, Address(rbx_oldarg, i));
        __ movptr(Address(rdx_newarg, i), rdi);
      }

      // copy from rax_argslot[0...] down to new_rsp[1...]
      // pseudo-code:
      //   rbx = old_rsp+1
      //   rdx = new_rsp+1
      //   rax = argslot
      //   while (rdx < rbx) *rdx++ = *rax++
      Label loop;
      __ bind(loop);
      __ movptr(rdi, Address(rax_argslot, 0));
      __ movptr(Address(rdx_newarg, 0), rdi);
      __ addptr(rax_argslot, wordSize);
      __ addptr(rdx_newarg, wordSize);
      __ cmpptr(rdx_newarg, rbx_oldarg);
      __ jccb(Assembler::less, loop);

      __ pop(rdi);              // restore temp

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_drop_args:
    {
      // 'argslot' is the position of the first argument to nuke
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      __ push(rdi);             // need a temp
      // (must do previous push after argslot address is taken)

      // 'stack_move' is number of words to drop
      Register rdi_stack_move = rdi;
      __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
      __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
      remove_arg_slots(_masm, rdi_stack_move,
                       rax_argslot, rbx_temp, rdx_temp);

      __ pop(rdi);              // restore temp

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_collect_args:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_spread_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_spread_0:
  case _adapter_opt_spread_1:
  case _adapter_opt_spread_more:
    {
      // spread an array out into a group of arguments
      int length_constant = get_ek_adapter_opt_spread_info(ek);

      // find the address of the array argument
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // grab some temps
      { __ push(rsi); __ push(rdi); }
      // (preceding pushes must be done after argslot address is taken!)
#define UNPUSH_RSI_RDI \
      { __ pop(rdi); __ pop(rsi); }

      // arx_argslot points both to the array and to the first output arg
      vmarg = Address(rax_argslot, 0);

      // Get the array value.
      Register  rsi_array       = rsi;
      Register  rdx_array_klass = rdx_temp;
      BasicType elem_type       = T_OBJECT;
      int       length_offset   = arrayOopDesc::length_offset_in_bytes();
      int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
      __ movptr(rsi_array, vmarg);
      Label skip_array_check;
      if (length_constant == 0) {
        __ testptr(rsi_array, rsi_array);
        __ jcc(Assembler::zero, skip_array_check);
      }
      __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
      __ load_klass(rdx_array_klass, rsi_array);

      // Check the array type.
      Register rbx_klass = rbx_temp;
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label ok_array_klass, bad_array_klass, bad_array_length;
      __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
      // If we get here, the type check failed!
      __ jmp(bad_array_klass);
      __ bind(ok_array_klass);

      // Check length.
      if (length_constant >= 0) {
        __ cmpl(Address(rsi_array, length_offset), length_constant);
      } else {
        Register rbx_vminfo = rbx_temp;
        __ movl(rbx_vminfo, rcx_amh_conversion);
        assert(CONV_VMINFO_SHIFT == 0, "preshifted");
        __ andl(rbx_vminfo, CONV_VMINFO_MASK);
        __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
      }
      __ jcc(Assembler::notEqual, bad_array_length);

      Register rdx_argslot_limit = rdx_temp;

      // Array length checks out.  Now insert any required stack slots.
      if (length_constant == -1) {
        // Form a pointer to the end of the affected region.
        __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
        // 'stack_move' is negative number of words to insert
        Register rdi_stack_move = rdi;
        __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
        __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
        Register rsi_temp = rsi_array;  // spill this
        insert_arg_slots(_masm, rdi_stack_move, -1,
                         rax_argslot, rbx_temp, rsi_temp);
        // reload the array (since rsi was killed)
        __ movptr(rsi_array, vmarg);
      } else if (length_constant > 1) {
        int arg_mask = 0;
        int new_slots = (length_constant - 1);
        for (int i = 0; i < new_slots; i++) {
          arg_mask <<= 1;
          arg_mask |= _INSERT_REF_MASK;
        }
        insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
                         rax_argslot, rbx_temp, rdx_temp);
      } else if (length_constant == 1) {
        // no stack resizing required
      } else if (length_constant == 0) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      // Copy from the array to the new slots.
      // Note: Stack change code preserves integrity of rax_argslot pointer.
      // So even after slot insertions, rax_argslot still points to first argument.
      if (length_constant == -1) {
        // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
        Register rsi_source = rsi_array;
        __ lea(rsi_source, Address(rsi_array, elem0_offset));
        Label loop;
        __ bind(loop);
        __ movptr(rbx_temp, Address(rsi_source, 0));
        __ movptr(Address(rax_argslot, 0), rbx_temp);
        __ addptr(rsi_source, type2aelembytes(elem_type));
        __ addptr(rax_argslot, Interpreter::stackElementSize);
        __ cmpptr(rax_argslot, rdx_argslot_limit);
        __ jccb(Assembler::less, loop);
      } else if (length_constant == 0) {
        __ bind(skip_array_check);
        // nothing to copy
      } else {
        int elem_offset = elem0_offset;
        int slot_offset = 0;
        for (int index = 0; index < length_constant; index++) {
          __ movptr(rbx_temp, Address(rsi_array, elem_offset));
          __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
          elem_offset += type2aelembytes(elem_type);
           slot_offset += Interpreter::stackElementSize;
        }
      }

      // Arguments are spread.  Move to next method handle.
      UNPUSH_RSI_RDI;
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);

      __ bind(bad_array_klass);
      UNPUSH_RSI_RDI;
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ movptr(rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
      __ movptr(rarg1_actual,   vmarg);                                         // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

      __ bind(bad_array_length);
      UNPUSH_RSI_RDI;
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ mov   (rarg2_required, rcx_recv);                       // AMH requiring a certain length
      __ movptr(rarg1_actual,   vmarg);                          // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

#undef UNPUSH_RSI_RDI
    }
    break;

  case _adapter_flyby:
  case _adapter_ricochet:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  default:  ShouldNotReachHere();
  }
  __ hlt();

  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI

  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}