aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/sparc/vm/methodHandles_sparc.cpp
blob: 5bdf88e53ba755e055222807f48e5874df55c48d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
/*
 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"

#define __ _masm->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
                                                address interpreted_entry) {
  // Just before the actual machine code entry point, allocate space
  // for a MethodHandleEntry::Data record, so that we can manage everything
  // from one base pointer.
  __ align(wordSize);
  address target = __ pc() + sizeof(Data);
  while (__ pc() < target) {
    __ nop();
    __ align(wordSize);
  }

  MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  me->set_end_address(__ pc());         // set a temporary end_address
  me->set_from_interpreted_entry(interpreted_entry);
  me->set_type_checking_entry(NULL);

  return (address) me;
}

MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
                                                address start_addr) {
  MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  assert(me->end_address() == start_addr, "valid ME");

  // Fill in the real end_address:
  __ align(wordSize);
  me->set_end_address(__ pc());

  return me;
}

// stack walking support

frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
  //RicochetFrame* f = RicochetFrame::from_frame(fr);
  // Cf. is_interpreted_frame path of frame::sender
  intptr_t* younger_sp = fr.sp();
  intptr_t* sp         = fr.sender_sp();
  map->make_integer_regs_unsaved();
  map->shift_window(sp, younger_sp);
  bool this_frame_adjusted_stack = true;  // I5_savedSP is live in this RF
  return frame(sp, younger_sp, this_frame_adjusted_stack);
}

void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
  ResourceMark rm;
  RicochetFrame* f = RicochetFrame::from_frame(fr);

  // pick up the argument type descriptor:
  Thread* thread = Thread::current();
  Handle cookie(thread, f->compute_saved_args_layout(true, true));

  // process fixed part
  blk->do_oop((oop*)f->saved_target_addr());
  blk->do_oop((oop*)f->saved_args_layout_addr());

  // process variable arguments:
  if (cookie.is_null())  return;  // no arguments to describe

  // the cookie is actually the invokeExact method for my target
  // his argument signature is what I'm interested in
  assert(cookie->is_method(), "");
  methodHandle invoker(thread, methodOop(cookie()));
  assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
  assert(!invoker->is_static(), "must have MH argument");
  int slot_count = invoker->size_of_parameters();
  assert(slot_count >= 1, "must include 'this'");
  intptr_t* base = f->saved_args_base();
  intptr_t* retval = NULL;
  if (f->has_return_value_slot())
    retval = f->return_value_slot_addr();
  int slot_num = slot_count - 1;
  intptr_t* loc = &base[slot_num];
  //blk->do_oop((oop*) loc);   // original target, which is irrelevant
  int arg_num = 0;
  for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
    if (ss.at_return_type())  continue;
    BasicType ptype = ss.type();
    if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
    assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
    slot_num -= type2size[ptype];
    loc = &base[slot_num];
    bool is_oop = (ptype == T_OBJECT && loc != retval);
    if (is_oop)  blk->do_oop((oop*)loc);
    arg_num += 1;
  }
  assert(slot_num == 0, "must have processed all the arguments");
}

// Ricochet Frames
const Register MethodHandles::RicochetFrame::L1_continuation      = L1;
const Register MethodHandles::RicochetFrame::L2_saved_target      = L2;
const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3;
const Register MethodHandles::RicochetFrame::L4_saved_args_base   = L4; // cf. Gargs = G4
const Register MethodHandles::RicochetFrame::L5_conversion        = L5;
#ifdef ASSERT
const Register MethodHandles::RicochetFrame::L0_magic_number_1    = L0;
#endif //ASSERT

oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
  if (read_cache) {
    oop cookie = saved_args_layout();
    if (cookie != NULL)  return cookie;
  }
  oop target = saved_target();
  oop mtype  = java_lang_invoke_MethodHandle::type(target);
  oop mtform = java_lang_invoke_MethodType::form(mtype);
  oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
  if (write_cache)  {
    (*saved_args_layout_addr()) = cookie;
  }
  return cookie;
}

void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
                                                          // output params:
                                                          int* bounce_offset,
                                                          int* exception_offset,
                                                          int* frame_size_in_words) {
  (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;

  address start = __ pc();

#ifdef ASSERT
  __ illtrap(0); __ illtrap(0); __ illtrap(0);
  // here's a hint of something special:
  __ set(MAGIC_NUMBER_1, G0);
  __ set(MAGIC_NUMBER_2, G0);
#endif //ASSERT
  __ illtrap(0);  // not reached

  // Return values are in registers.
  // L1_continuation contains a cleanup continuation we must return
  // to.

  (*bounce_offset) = __ pc() - start;
  BLOCK_COMMENT("ricochet_blob.bounce");

  if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  trace_method_handle(_masm, "ricochet_blob.bounce");

  __ JMP(L1_continuation, 0);
  __ delayed()->nop();
  __ illtrap(0);

  DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0));

  (*exception_offset) = __ pc() - start;
  BLOCK_COMMENT("ricochet_blob.exception");

  // compare this to Interpreter::rethrow_exception_entry, which is parallel code
  // for example, see TemplateInterpreterGenerator::generate_throw_exception
  // Live registers in:
  //   Oexception  (O0): exception
  //   Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr)
  __ verify_oop(Oexception);

  // Take down the frame.

  // Cf. InterpreterMacroAssembler::remove_activation.
  leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7);

  // We are done with this activation frame; find out where to go next.
  // The continuation point will be an exception handler, which expects
  // the following registers set up:
  //
  // Oexception: exception
  // Oissuing_pc: the local call that threw exception
  // Other On: garbage
  // In/Ln:  the contents of the caller's register window
  //
  // We do the required restore at the last possible moment, because we
  // need to preserve some state across a runtime call.
  // (Remember that the caller activation is unknown--it might not be
  // interpreted, so things like Lscratch are useless in the caller.)
  __ mov(Oexception,  Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  __ call_VM_leaf(L7_thread_cache,
                  CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
                  G2_thread, Oissuing_pc->after_save());

  // The caller's SP was adjusted upon method entry to accomodate
  // the callee's non-argument locals. Undo that adjustment.
  __ JMP(O0, 0);                         // return exception handler in caller
  __ delayed()->restore(I5_savedSP, G0, SP);

  // (same old exception object is already in Oexception; see above)
  // Note that an "issuing PC" is actually the next PC after the call
}

void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
                                                        Register recv_reg,
                                                        Register argv_reg,
                                                        address return_handler) {
  // does not include the __ save()
  assert(argv_reg == Gargs, "");
  Address G3_mh_vmtarget(   recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
  Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());

  // Create the RicochetFrame.
  // Unlike on x86 we can store all required information in local
  // registers.
  BLOCK_COMMENT("push RicochetFrame {");
  __ set(ExternalAddress(return_handler),          L1_continuation);
  __ load_heap_oop(G3_mh_vmtarget,                 L2_saved_target);
  __ mov(G0,                                       L3_saved_args_layout);
  __ mov(Gargs,                                    L4_saved_args_base);
  __ lduw(G3_amh_conversion,                       L5_conversion);  // 32-bit field
  // I5, I6, I7 are already set up
  DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1,      L0_magic_number_1));
  BLOCK_COMMENT("} RicochetFrame");
}

void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
                                                        Register recv_reg,
                                                        Register new_sp_reg,
                                                        Register sender_pc_reg) {
  assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place");
  assert(sender_pc_reg == I7, "in a fixed place");
  // does not include the __ ret() & __ restore()
  assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg);
  // Take down the frame.
  // Cf. InterpreterMacroAssembler::remove_activation.
  BLOCK_COMMENT("end_ricochet_frame {");
  if (recv_reg->is_valid())
    __ mov(L2_saved_target, recv_reg);
  BLOCK_COMMENT("} end_ricochet_frame");
}

// Emit code to verify that FP is pointing at a valid ricochet frame.
#ifdef ASSERT
enum {
  ARG_LIMIT = 255, SLOP = 45,
  // use this parameter for checking for garbage stack movements:
  UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
  // the slop defends against false alarms due to fencepost errors
};

void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
  // The stack should look like this:
  //    ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF]
  // Check various invariants.

  Register O7_temp = O7, O5_temp = O5;

  Label L_ok_1, L_ok_2, L_ok_3, L_ok_4;
  BLOCK_COMMENT("verify_clean {");
  // Magic numbers must check out:
  __ set((int32_t) MAGIC_NUMBER_1, O7_temp);
  __ cmp_and_br_short(O7_temp, L0_magic_number_1, Assembler::equal, Assembler::pt, L_ok_1);
  __ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found");

  __ BIND(L_ok_1);

  // Arguments pointer must look reasonable:
#ifdef _LP64
  Register FP_temp = O5_temp;
  __ add(FP, STACK_BIAS, FP_temp);
#else
  Register FP_temp = FP;
#endif
  __ cmp_and_brx_short(L4_saved_args_base, FP_temp, Assembler::greaterEqualUnsigned, Assembler::pt, L_ok_2);
  __ stop("damaged ricochet frame: L4 < FP");

  __ BIND(L_ok_2);
  // Disable until we decide on it's fate
  // __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp);
  // __ cmp(O7_temp, FP_temp);
  // __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3);
  // __ delayed()->nop();
  // __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP");

  __ BIND(L_ok_3);
  extract_conversion_dest_type(_masm, L5_conversion, O7_temp);
  __ cmp_and_br_short(O7_temp, T_VOID, Assembler::equal, Assembler::pt, L_ok_4);
  extract_conversion_vminfo(_masm, L5_conversion, O5_temp);
  __ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp);
  assert(Assembler::is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13");
  __ cmp_and_brx_short(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER, Assembler::equal, Assembler::pt, L_ok_4);
  __ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found");
  __ BIND(L_ok_4);
  BLOCK_COMMENT("} verify_clean");
}
#endif //ASSERT

void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) {
  if (VerifyMethodHandles)
    verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg,
                 "AMH argument is a Class");
  __ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg);
}

void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) {
  assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load");
  __ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg);
}

void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
  assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  __ and3(conversion_field_reg, CONV_VMINFO_MASK, reg);
}

void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
  __ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg);
  __ and3(reg, 0x0F, reg);
}

void MethodHandles::load_stack_move(MacroAssembler* _masm,
                                    Address G3_amh_conversion,
                                    Register stack_move_reg) {
  BLOCK_COMMENT("load_stack_move {");
  __ ldsw(G3_amh_conversion, stack_move_reg);
  __ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
#ifdef ASSERT
  if (VerifyMethodHandles) {
    Label L_ok, L_bad;
    int32_t stack_move_limit = 0x0800;  // extra-large
    __ cmp_and_br_short(stack_move_reg, stack_move_limit, Assembler::greaterEqual, Assembler::pn, L_bad);
    __ cmp(stack_move_reg, -stack_move_limit);
    __ br(Assembler::greater, false, Assembler::pt, L_ok);
    __ delayed()->nop();
    __ BIND(L_bad);
    __ stop("load_stack_move of garbage value");
    __ BIND(L_ok);
  }
#endif
  BLOCK_COMMENT("} load_stack_move");
}

#ifdef ASSERT
void MethodHandles::RicochetFrame::verify() const {
  assert(magic_number_1() == MAGIC_NUMBER_1, "");
  if (!Universe::heap()->is_gc_active()) {
    if (saved_args_layout() != NULL) {
      assert(saved_args_layout()->is_method(), "must be valid oop");
    }
    if (saved_target() != NULL) {
      assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
    }
  }
  int conv_op = adapter_conversion_op(conversion());
  assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
         conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
         conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
         "must be a sane conversion");
  if (has_return_value_slot()) {
    assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
  }
}

void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
  // Verify that argslot lies within (Gargs, FP].
  Label L_ok, L_bad;
  BLOCK_COMMENT("verify_argslot {");
  __ cmp_and_brx_short(Gargs, argslot_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
  __ add(FP, STACK_BIAS, temp_reg);  // STACK_BIAS is zero on !_LP64
  __ cmp_and_brx_short(argslot_reg, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
  __ BIND(L_bad);
  __ stop(error_message);
  __ BIND(L_ok);
  BLOCK_COMMENT("} verify_argslot");
}

void MethodHandles::verify_argslots(MacroAssembler* _masm,
                                    RegisterOrConstant arg_slots,
                                    Register arg_slot_base_reg,
                                    Register temp_reg,
                                    Register temp2_reg,
                                    bool negate_argslots,
                                    const char* error_message) {
  // Verify that [argslot..argslot+size) lies within (Gargs, FP).
  Label L_ok, L_bad;
  BLOCK_COMMENT("verify_argslots {");
  if (negate_argslots) {
    if (arg_slots.is_constant()) {
      arg_slots = -1 * arg_slots.as_constant();
    } else {
      __ neg(arg_slots.as_register(), temp_reg);
      arg_slots = temp_reg;
    }
  }
  __ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg);
  __ add(FP, STACK_BIAS, temp2_reg);  // STACK_BIAS is zero on !_LP64
  __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
  // Gargs points to the first word so adjust by BytesPerWord
  __ add(arg_slot_base_reg, BytesPerWord, temp_reg);
  __ cmp_and_brx_short(Gargs, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
  __ BIND(L_bad);
  __ stop(error_message);
  __ BIND(L_ok);
  BLOCK_COMMENT("} verify_argslots");
}

// Make sure that arg_slots has the same sign as the given direction.
// If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
void MethodHandles::verify_stack_move(MacroAssembler* _masm,
                                      RegisterOrConstant arg_slots, int direction) {
  enum { UNREASONABLE_STACK_MOVE = 256 * 4 };  // limit of 255 arguments
  bool allow_zero = arg_slots.is_constant();
  if (direction == 0) { direction = +1; allow_zero = true; }
  assert(stack_move_unit() == -1, "else add extra checks here");
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    BLOCK_COMMENT("verify_stack_move {");
    // __ btst(-stack_move_unit() - 1, arg_slots.as_register());  // no need
    // __ br(Assembler::notZero, false, Assembler::pn, L_bad);
    // __ delayed()->nop();
    __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
    if (direction > 0) {
      __ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad);
      __ delayed()->nop();
      __ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
      __ br(Assembler::less, false, Assembler::pn, L_ok);
      __ delayed()->nop();
    } else {
      __ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad);
      __ delayed()->nop();
      __ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
      __ br(Assembler::greater, false, Assembler::pn, L_ok);
      __ delayed()->nop();
    }
    __ BIND(L_bad);
    if (direction > 0)
      __ stop("assert arg_slots > 0");
    else
      __ stop("assert arg_slots < 0");
    __ BIND(L_ok);
    BLOCK_COMMENT("} verify_stack_move");
  } else {
    intptr_t size = arg_slots.as_constant();
    if (direction < 0)  size = -size;
    assert(size >= 0, "correct direction of constant move");
    assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
  }
}

void MethodHandles::verify_klass(MacroAssembler* _masm,
                                 Register obj_reg, KlassHandle klass,
                                 Register temp_reg, Register temp2_reg,
                                 const char* error_message) {
  oop* klass_addr = klass.raw_value();
  assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
         klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
         "must be one of the SystemDictionaryHandles");
  Label L_ok, L_bad;
  BLOCK_COMMENT("verify_klass {");
  __ verify_oop(obj_reg);
  __ br_null_short(obj_reg, Assembler::pn, L_bad);
  __ load_klass(obj_reg, temp_reg);
  __ set(ExternalAddress(klass_addr), temp2_reg);
  __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
  __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
  intptr_t super_check_offset = klass->super_check_offset();
  __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg);
  __ set(ExternalAddress(klass_addr), temp2_reg);
  __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
  __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
  __ BIND(L_bad);
  __ stop(error_message);
  __ BIND(L_ok);
  BLOCK_COMMENT("} verify_klass");
}
#endif // ASSERT


void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp) {
  assert(method == G5_method, "interpreter calling convention");
  __ verify_oop(method);
  __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
  if (JvmtiExport::can_post_interpreter_events()) {
    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
    // compiled code in threads for which the event is enabled.  Check here for
    // interp_only_mode if these events CAN be enabled.
    __ verify_thread();
    Label skip_compiled_code;

    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
    __ ld(interp_only, temp);
    __ tst(temp);
    __ br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
    __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
    __ bind(skip_compiled_code);
  }
  __ jmp(target, 0);
  __ delayed()->nop();
}


// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
  // I5_savedSP/O5_savedSP: sender SP (must preserve)
  // G4 (Gargs): incoming argument list (must preserve)
  // G5_method:  invoke methodOop
  // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
  // O0, O1, O2, O3, O4: garbage temps, blown away
  Register O0_mtype   = O0;
  Register O1_scratch = O1;
  Register O2_scratch = O2;
  Register O3_scratch = O3;
  Register O4_argslot = O4;
  Register O4_argbase = O4;

  // emit WrongMethodType path first, to enable back-branch from main path
  Label wrong_method_type;
  __ bind(wrong_method_type);
  Label invoke_generic_slow_path;
  assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
  __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
  __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
  __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
  __ delayed()->nop();
  __ mov(O0_mtype, G5_method_type);  // required by throw_WrongMethodType
  __ mov(G3_method_handle, G3_method_handle);  // already in this register
  // O0 will be filled in with JavaThread in stub
  __ jump_to(AddressLiteral(StubRoutines::throw_WrongMethodTypeException_entry()), O3_scratch);
  __ delayed()->nop();

  // here's where control starts out:
  __ align(CodeEntryAlignment);
  address entry_point = __ pc();

  // fetch the MethodType from the method handle
  // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
  // This would simplify several touchy bits of code.
  // See 6984712: JSR 292 method handle calls need a clean argument base pointer
  {
    Register tem = G5_method;
    for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
      __ ld_ptr(Address(tem, *pchase), O0_mtype);
      tem = O0_mtype;          // in case there is another indirection
    }
  }

  // given the MethodType, find out where the MH argument is buried
  __ load_heap_oop(Address(O0_mtype,   __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,        O1_scratch)), O4_argslot);
  __ ldsw(         Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
  __ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase);
  // Note: argument_address uses its input as a scratch register!
  Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize);
  __ ld_ptr(mh_receiver_slot_addr, G3_method_handle);

  trace_method_handle(_masm, "invokeExact");

  __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);

  // Nobody uses the MH receiver slot after this.  Make sure.
  DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr));

  __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);

  // for invokeGeneric (only), apply argument and result conversions on the fly
  __ bind(invoke_generic_slow_path);
#ifdef ASSERT
  if (VerifyMethodHandles) {
    Label L;
    __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
    __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
    __ brx(Assembler::equal, false, Assembler::pt, L);
    __ delayed()->nop();
    __ stop("bad methodOop::intrinsic_id");
    __ bind(L);
  }
#endif //ASSERT

  // make room on the stack for another pointer:
  insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch);
  // load up an adapter from the calling type (Java weaves this)
  Register O2_form    = O2_scratch;
  Register O3_adapter = O3_scratch;
  __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               O1_scratch)), O2_form);
  __ load_heap_oop(Address(O2_form,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
  __ verify_oop(O3_adapter);
  __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
  // As a trusted first argument, pass the type being called, so the adapter knows
  // the actual types of the arguments and return values.
  // (Generic invokers are shared among form-families of method-type.)
  __ st_ptr(O0_mtype,   Address(O4_argbase, 0 * Interpreter::stackElementSize));
  // FIXME: assert that O3_adapter is of the right method-type.
  __ mov(O3_adapter, G3_method_handle);
  trace_method_handle(_masm, "invokeGeneric");
  __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);

  return entry_point;
}

// Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
static RegisterOrConstant constant(int value) {
  return RegisterOrConstant(value);
}

static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) {
  __ ldsw(vmargslot_addr, result);
}

static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm,
                                                            RegisterOrConstant arg_slots,
                                                            Register temp_reg, Register temp2_reg) {
  // Keep the stack pointer 2*wordSize aligned.
  const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
  if (arg_slots.is_constant()) {
    const int        offset = arg_slots.as_constant() << LogBytesPerWord;
    const int masked_offset = round_to(offset, 2 * BytesPerWord);
    const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask;
    assert(masked_offset == masked_offset2, "must agree");
    __ sub(Gargs,        offset, Gargs);
    __ sub(SP,    masked_offset, SP   );
    return offset;
  } else {
#ifdef ASSERT
    {
      Label L_ok;
      __ cmp_and_br_short(arg_slots.as_register(), 0, Assembler::greaterEqual, Assembler::pt, L_ok);
      __ stop("negative arg_slots");
      __ bind(L_ok);
    }
#endif
    __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
    __ add( temp_reg,  1*BytesPerWord,       temp2_reg);
    __ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg);
    __ sub(Gargs, temp_reg,  Gargs);
    __ sub(SP,    temp2_reg, SP   );
    return temp_reg;
  }
}

static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm,
                                                          RegisterOrConstant arg_slots,
                                                          Register temp_reg, Register temp2_reg) {
  // Keep the stack pointer 2*wordSize aligned.
  const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
  if (arg_slots.is_constant()) {
    const int        offset = arg_slots.as_constant() << LogBytesPerWord;
    const int masked_offset = offset & ~TwoWordAlignmentMask;
    __ add(Gargs,        offset, Gargs);
    __ add(SP,    masked_offset, SP   );
    return offset;
  } else {
    __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
    __ andn(temp_reg, TwoWordAlignmentMask, temp2_reg);
    __ add(Gargs, temp_reg,  Gargs);
    __ add(SP,    temp2_reg, SP   );
    return temp_reg;
  }
}

// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and < 0
// argslot_reg is decremented to point to the new (shifted) location of the argslot
// But, temp_reg ends up holding the original value of argslot_reg.
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
                                     RegisterOrConstant arg_slots,
                                     Register argslot_reg,
                                     Register temp_reg, Register temp2_reg, Register temp3_reg) {
  // allow constant zero
  if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
    return;

  assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
                             (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));

  BLOCK_COMMENT("insert_arg_slots {");
  if (VerifyMethodHandles)
    verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
  if (VerifyMethodHandles)
    verify_stack_move(_masm, arg_slots, -1);

  // Make space on the stack for the inserted argument(s).
  // Then pull down everything shallower than argslot_reg.
  // The stacked return address gets pulled down with everything else.
  // That is, copy [sp, argslot) downward by -size words.  In pseudo-code:
  //   sp -= size;
  //   for (temp = sp + size; temp < argslot; temp++)
  //     temp[-size] = temp[0]
  //   argslot -= size;

  // offset is temp3_reg in case of arg_slots being a register.
  RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
  __ sub(Gargs, offset, temp_reg);  // source pointer for copy

  {
    Label loop;
    __ BIND(loop);
    // pull one word down each time through the loop
    __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
    __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
    __ add(temp_reg, wordSize, temp_reg);
    __ cmp_and_brx_short(temp_reg, argslot_reg, Assembler::lessUnsigned, Assembler::pt, loop);
  }

  // Now move the argslot down, to point to the opened-up space.
  __ add(argslot_reg, offset, argslot_reg);
  BLOCK_COMMENT("} insert_arg_slots");
}


// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and > 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
                                     RegisterOrConstant arg_slots,
                                     Register argslot_reg,
                                     Register temp_reg, Register temp2_reg, Register temp3_reg) {
  // allow constant zero
  if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
    return;
  assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
                             (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));

  BLOCK_COMMENT("remove_arg_slots {");
  if (VerifyMethodHandles)
    verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false,
                    "deleted argument(s) must fall within current frame");
  if (VerifyMethodHandles)
    verify_stack_move(_masm, arg_slots, +1);

  // Pull up everything shallower than argslot.
  // Then remove the excess space on the stack.
  // The stacked return address gets pulled up with everything else.
  // That is, copy [sp, argslot) upward by size words.  In pseudo-code:
  //   for (temp = argslot-1; temp >= sp; --temp)
  //     temp[size] = temp[0]
  //   argslot += size;
  //   sp += size;

  RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
  __ sub(argslot_reg, wordSize, temp_reg);  // source pointer for copy

  {
    Label L_loop;
    __ BIND(L_loop);
    // pull one word up each time through the loop
    __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
    __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
    __ sub(temp_reg, wordSize, temp_reg);
    __ cmp_and_brx_short(temp_reg, Gargs, Assembler::greaterEqualUnsigned, Assembler::pt, L_loop);
  }

  // And adjust the argslot address to point at the deletion point.
  __ add(argslot_reg, offset, argslot_reg);

  // We don't need the offset at this point anymore, just adjust SP and Gargs.
  (void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);

  BLOCK_COMMENT("} remove_arg_slots");
}

// Helper to copy argument slots to the top of the stack.
// The sequence starts with argslot_reg and is counted by slot_count
// slot_count must be a multiple of stack_move_unit() and >= 0
// This function blows the temps but does not change argslot_reg.
void MethodHandles::push_arg_slots(MacroAssembler* _masm,
                                   Register argslot_reg,
                                   RegisterOrConstant slot_count,
                                   Register temp_reg, Register temp2_reg) {
  // allow constant zero
  if (slot_count.is_constant() && slot_count.as_constant() == 0)
    return;
  assert_different_registers(argslot_reg, temp_reg, temp2_reg,
                             (!slot_count.is_register() ? Gargs : slot_count.as_register()),
                             SP);
  assert(Interpreter::stackElementSize == wordSize, "else change this code");

  BLOCK_COMMENT("push_arg_slots {");
  if (VerifyMethodHandles)
    verify_stack_move(_masm, slot_count, 0);

  RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg);

  if (slot_count.is_constant()) {
    for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
      __ ld_ptr(          Address(argslot_reg, i * wordSize), temp_reg);
      __ st_ptr(temp_reg, Address(Gargs,       i * wordSize));
    }
  } else {
    Label L_plural, L_loop, L_break;
    // Emit code to dynamically check for the common cases, zero and one slot.
    __ cmp(slot_count.as_register(), (int32_t) 1);
    __ br(Assembler::greater, false, Assembler::pn, L_plural);
    __ delayed()->nop();
    __ br(Assembler::less, false, Assembler::pn, L_break);
    __ delayed()->nop();
    __ ld_ptr(          Address(argslot_reg, 0), temp_reg);
    __ st_ptr(temp_reg, Address(Gargs,       0));
    __ ba_short(L_break);
    __ BIND(L_plural);

    // Loop for 2 or more:
    //   top = &argslot[slot_count]
    //   while (top > argslot)  *(--Gargs) = *(--top)
    Register top_reg = temp_reg;
    __ add(argslot_reg, offset, top_reg);
    __ add(Gargs,       offset, Gargs  );  // move back up again so we can go down
    __ BIND(L_loop);
    __ sub(top_reg, wordSize, top_reg);
    __ sub(Gargs,   wordSize, Gargs  );
    __ ld_ptr(           Address(top_reg, 0), temp2_reg);
    __ st_ptr(temp2_reg, Address(Gargs,   0));
    __ cmp_and_brx_short(top_reg, argslot_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
    __ BIND(L_break);
  }
  BLOCK_COMMENT("} push_arg_slots");
}

// in-place movement; no change to Gargs
// blows temp_reg, temp2_reg
void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
                                      Register bottom_reg,  // invariant
                                      Address  top_addr,    // can use temp_reg
                                      RegisterOrConstant positive_distance_in_slots,  // destroyed if register
                                      Register temp_reg, Register temp2_reg) {
  assert_different_registers(bottom_reg,
                             temp_reg, temp2_reg,
                             positive_distance_in_slots.register_or_noreg());
  BLOCK_COMMENT("move_arg_slots_up {");
  Label L_loop, L_break;
  Register top_reg = temp_reg;
  if (!top_addr.is_same_address(Address(top_reg, 0))) {
    __ add(top_addr, top_reg);
  }
  // Detect empty (or broken) loop:
#ifdef ASSERT
  if (VerifyMethodHandles) {
    // Verify that &bottom < &top (non-empty interval)
    Label L_ok, L_bad;
    if (positive_distance_in_slots.is_register()) {
      __ cmp(positive_distance_in_slots.as_register(), (int32_t) 0);
      __ br(Assembler::lessEqual, false, Assembler::pn, L_bad);
      __ delayed()->nop();
    }
    __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
    __ BIND(L_bad);
    __ stop("valid bounds (copy up)");
    __ BIND(L_ok);
  }
#endif
  __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
  // work top down to bottom, copying contiguous data upwards
  // In pseudo-code:
  //   while (--top >= bottom) *(top + distance) = *(top + 0);
  RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg());
  __ BIND(L_loop);
  __ sub(top_reg, wordSize, top_reg);
  __ ld_ptr(           Address(top_reg, 0     ), temp2_reg);
  __ st_ptr(temp2_reg, Address(top_reg, offset)           );
  __ cmp_and_brx_short(top_reg, bottom_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
  assert(Interpreter::stackElementSize == wordSize, "else change loop");
  __ BIND(L_break);
  BLOCK_COMMENT("} move_arg_slots_up");
}

// in-place movement; no change to rsp
// blows temp_reg, temp2_reg
void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
                                        Address  bottom_addr,  // can use temp_reg
                                        Register top_reg,      // invariant
                                        RegisterOrConstant negative_distance_in_slots,  // destroyed if register
                                        Register temp_reg, Register temp2_reg) {
  assert_different_registers(top_reg,
                             negative_distance_in_slots.register_or_noreg(),
                             temp_reg, temp2_reg);
  BLOCK_COMMENT("move_arg_slots_down {");
  Label L_loop, L_break;
  Register bottom_reg = temp_reg;
  if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) {
    __ add(bottom_addr, bottom_reg);
  }
  // Detect empty (or broken) loop:
#ifdef ASSERT
  assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
  if (VerifyMethodHandles) {
    // Verify that &bottom < &top (non-empty interval)
    Label L_ok, L_bad;
    if (negative_distance_in_slots.is_register()) {
      __ cmp(negative_distance_in_slots.as_register(), (int32_t) 0);
      __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
      __ delayed()->nop();
    }
    __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
    __ BIND(L_bad);
    __ stop("valid bounds (copy down)");
    __ BIND(L_ok);
  }
#endif
  __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
  // work bottom up to top, copying contiguous data downwards
  // In pseudo-code:
  //   while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++;
  RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg());
  __ BIND(L_loop);
  __ ld_ptr(           Address(bottom_reg, 0     ), temp2_reg);
  __ st_ptr(temp2_reg, Address(bottom_reg, offset)           );
  __ add(bottom_reg, wordSize, bottom_reg);
  __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_loop);
  assert(Interpreter::stackElementSize == wordSize, "else change loop");
  __ BIND(L_break);
  BLOCK_COMMENT("} move_arg_slots_down");
}

// Copy from a field or array element to a stacked argument slot.
// is_element (ignored) says whether caller is loading an array element instead of an instance field.
void MethodHandles::move_typed_arg(MacroAssembler* _masm,
                                   BasicType type, bool is_element,
                                   Address value_src, Address slot_dest,
                                   Register temp_reg) {
  assert(!slot_dest.uses(temp_reg), "must be different register");
  BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
  if (type == T_OBJECT || type == T_ARRAY) {
    __ load_heap_oop(value_src, temp_reg);
    __ verify_oop(temp_reg);
    __ st_ptr(temp_reg, slot_dest);
  } else if (type != T_VOID) {
    int  arg_size      = type2aelembytes(type);
    bool arg_is_signed = is_signed_subword_type(type);
    int  slot_size     = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size;  // store int sub-words as int
    __ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed);
    __ store_sized_value(temp_reg, slot_dest, slot_size              );
  }
  BLOCK_COMMENT("} move_typed_arg");
}

// Cf. TemplateInterpreterGenerator::generate_return_entry_for and
// InterpreterMacroAssembler::save_return_value
void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
                                      Address return_slot) {
  BLOCK_COMMENT("move_return_value {");
  // Look at the type and pull the value out of the corresponding register.
  if (type == T_VOID) {
    // nothing to do
  } else if (type == T_OBJECT) {
    __ verify_oop(O0);
    __ st_ptr(O0, return_slot);
  } else if (type == T_INT || is_subword_type(type)) {
    int type_size = type2aelembytes(T_INT);
    __ store_sized_value(O0, return_slot, type_size);
  } else if (type == T_LONG) {
    // store the value by parts
    // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
#if !defined(_LP64) && defined(COMPILER2)
    __ stx(G1, return_slot);
#else
  #ifdef _LP64
    __ stx(O0, return_slot);
  #else
    if (return_slot.has_disp()) {
      // The displacement is a constant
      __ st(O0, return_slot);
      __ st(O1, return_slot.plus_disp(Interpreter::stackElementSize));
    } else {
      __ std(O0, return_slot);
    }
  #endif
#endif
  } else if (type == T_FLOAT) {
    __ stf(FloatRegisterImpl::S, Ftos_f, return_slot);
  } else if (type == T_DOUBLE) {
    __ stf(FloatRegisterImpl::D, Ftos_f, return_slot);
  } else {
    ShouldNotReachHere();
  }
  BLOCK_COMMENT("} move_return_value");
}

#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
                              oopDesc* mh,
                              intptr_t* saved_sp) {
  bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have mh
  tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp);
  if (has_mh)
    print_method_handle(mh);
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  if (!TraceMethodHandles)  return;
  BLOCK_COMMENT("trace_method_handle {");
  // save: Gargs, O5_savedSP
  __ save_frame(16);
  __ set((intptr_t) adaptername, O0);
  __ mov(G3_method_handle, O1);
  __ mov(I5_savedSP, O2);
  __ mov(G3_method_handle, L3);
  __ mov(Gargs, L4);
  __ mov(G5_method_type, L5);
  __ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub));

  __ mov(L3, G3_method_handle);
  __ mov(L4, Gargs);
  __ mov(L5, G5_method_type);
  __ restore();
  BLOCK_COMMENT("} trace_method_handle");
}
#endif // PRODUCT

// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
  return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
          // OP_PRIM_TO_REF is below...
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
          // OP_COLLECT_ARGS is below...
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
         |(!UseRicochetFrames ? 0 :
           java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
           ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
           |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
           |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
           )
          )
         );
}

//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  MethodHandles::EntryKind ek_orig = ek_original_kind(ek);

  // Here is the register state during an interpreted call,
  // as set up by generate_method_handle_interpreter_entry():
  // - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
  // - G3: receiver method handle
  // - O5_savedSP: sender SP (must preserve)

  const Register O0_scratch = O0;
  const Register O1_scratch = O1;
  const Register O2_scratch = O2;
  const Register O3_scratch = O3;
  const Register O4_scratch = O4;
  const Register G5_scratch = G5;

  // Often used names:
  const Register O0_argslot = O0;

  // Argument registers for _raise_exception:
  const Register O0_code     = O0;
  const Register O1_actual   = O1;
  const Register O2_required = O2;

  guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");

  // Some handy addresses:
  Address G3_mh_vmtarget(   G3_method_handle, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());

  Address G3_dmh_vmindex(   G3_method_handle, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes());

  Address G3_bmh_vmargslot( G3_method_handle, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes());
  Address G3_bmh_argument(  G3_method_handle, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes());

  Address G3_amh_vmargslot( G3_method_handle, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes());
  Address G3_amh_argument ( G3_method_handle, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes());
  Address G3_amh_conversion(G3_method_handle, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());

  const int java_mirror_offset = in_bytes(Klass::java_mirror_offset());

  if (have_entry(ek)) {
    __ nop();  // empty stubs make SG sick
    return;
  }

  address interp_entry = __ pc();

  trace_method_handle(_masm, entry_name(ek));

  BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));

  switch ((int) ek) {
  case _raise_exception:
    {
      // Not a real MH entry, but rather shared code for raising an
      // exception.  For sharing purposes the arguments are passed into registers
      // and then placed in the intepreter calling convention here.
      assert(raise_exception_method(), "must be set");
      assert(raise_exception_method()->from_compiled_entry(), "method must be linked");

      __ set(AddressLiteral((address) &_raise_exception_method), G5_method);
      __ ld_ptr(Address(G5_method, 0), G5_method);

      const int jobject_oop_offset = 0;
      __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);

      adjust_SP_and_Gargs_down_by_slots(_masm, 3, noreg, noreg);

      __ st    (O0_code,     __ argument_address(constant(2), noreg, 0));
      __ st_ptr(O1_actual,   __ argument_address(constant(1), noreg, 0));
      __ st_ptr(O2_required, __ argument_address(constant(0), noreg, 0));
      jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
    }
    break;

  case _invokestatic_mh:
  case _invokespecial_mh:
    {
      __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
      // Same as TemplateTable::invokestatic or invokespecial,
      // minus the CP setup and profiling:
      if (ek == _invokespecial_mh) {
        // Must load & check the first argument before entering the target method.
        __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
        __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
        __ null_check(G3_method_handle);
        __ verify_oop(G3_method_handle);
      }
      jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
    }
    break;

  case _invokevirtual_mh:
    {
      // Same as TemplateTable::invokevirtual,
      // minus the CP setup and profiling:

      // Pick out the vtable index and receiver offset from the MH,
      // and then we can discard it:
      Register O2_index = O2_scratch;
      __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
      __ ldsw(G3_dmh_vmindex, O2_index);
      // Note:  The verifier allows us to ignore G3_mh_vmtarget.
      __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
      __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());

      // Get receiver klass:
      Register O0_klass = O0_argslot;
      __ load_klass(G3_method_handle, O0_klass);
      __ verify_oop(O0_klass);

      // Get target methodOop & entry point:
      const int base = instanceKlass::vtable_start_offset() * wordSize;
      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");

      __ sll_ptr(O2_index, LogBytesPerWord, O2_index);
      __ add(O0_klass, O2_index, O0_klass);
      Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
      __ ld_ptr(vtable_entry_addr, G5_method);

      jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
    }
    break;

  case _invokeinterface_mh:
    {
      // Same as TemplateTable::invokeinterface,
      // minus the CP setup and profiling:
      __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
      Register O1_intf  = O1_scratch;
      Register G5_index = G5_scratch;
      __ load_heap_oop(G3_mh_vmtarget, O1_intf);
      __ ldsw(G3_dmh_vmindex, G5_index);
      __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
      __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());

      // Get receiver klass:
      Register O0_klass = O0_argslot;
      __ load_klass(G3_method_handle, O0_klass);
      __ verify_oop(O0_klass);

      // Get interface:
      Label no_such_interface;
      __ verify_oop(O1_intf);
      __ lookup_interface_method(O0_klass, O1_intf,
                                 // Note: next two args must be the same:
                                 G5_index, G5_method,
                                 O2_scratch,
                                 O3_scratch,
                                 no_such_interface);

      jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);

      __ bind(no_such_interface);
      // Throw an exception.
      // For historical reasons, it will be IncompatibleClassChangeError.
      __ unimplemented("not tested yet");
      __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required);  // required interface
      __ mov(   O0_klass,                             O1_actual);    // bad receiver
      __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
      __ delayed()->mov(Bytecodes::_invokeinterface,  O0_code);      // who is complaining?
    }
    break;

  case _bound_ref_mh:
  case _bound_int_mh:
  case _bound_long_mh:
  case _bound_ref_direct_mh:
  case _bound_int_direct_mh:
  case _bound_long_direct_mh:
    {
      const bool direct_to_method = (ek >= _bound_ref_direct_mh);
      BasicType arg_type  = ek_bound_mh_arg_type(ek);
      int       arg_slots = type2size[arg_type];

      // Make room for the new argument:
      load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot);
      __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);

      insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);

      // Store bound argument into the new stack slot:
      __ load_heap_oop(G3_bmh_argument, O1_scratch);
      if (arg_type == T_OBJECT) {
        __ st_ptr(O1_scratch, Address(O0_argslot, 0));
      } else {
        Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
        move_typed_arg(_masm, arg_type, false,
                       prim_value_addr,
                       Address(O0_argslot, 0),
                       O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
      }

      if (direct_to_method) {
        __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
        jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
      } else {
        __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);  // target is a methodOop
        __ verify_oop(G3_method_handle);
        __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
      }
    }
    break;

  case _adapter_opt_profiling:
    if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
      Address G3_mh_vmcount(G3_method_handle, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
      __ ld(G3_mh_vmcount, O1_scratch);
      __ add(O1_scratch, 1, O1_scratch);
      __ st(O1_scratch, G3_mh_vmcount);
    }
    // fall through

  case _adapter_retype_only:
  case _adapter_retype_raw:
    // Immediately jump to the next MH layer:
    __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
    __ verify_oop(G3_method_handle);
    __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    // This is OK when all parameter types widen.
    // It is also OK when a return type narrows.
    break;

  case _adapter_check_cast:
    {
      // Check a reference argument before jumping to the next layer of MH:
      load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
      Address vmarg = __ argument_address(O0_argslot, O0_argslot);

      // What class are we casting to?
      Register O1_klass = O1_scratch;  // Interesting AMH data.
      __ load_heap_oop(G3_amh_argument, O1_klass);  // This is a Class object!
      load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch);

      Label L_done;
      __ ld_ptr(vmarg, O2_scratch);
      __ br_null_short(O2_scratch, Assembler::pn, L_done);  // No cast if null.
      __ load_klass(O2_scratch, O2_scratch);

      // Live at this point:
      // - O0_argslot      :  argslot index in vmarg; may be required in the failing path
      // - O1_klass        :  klass required by the target method
      // - O2_scratch      :  argument klass to test
      // - G3_method_handle:  adapter method handle
      __ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done);

      // If we get here, the type check failed!
      __ load_heap_oop(G3_amh_argument,        O2_required);  // required class
      __ ld_ptr(       vmarg,                  O1_actual);    // bad object
      __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
      __ delayed()->mov(Bytecodes::_checkcast, O0_code);      // who is complaining?

      __ BIND(L_done);
      // Get the new MH:
      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_prim_to_prim:
  case _adapter_ref_to_prim:
    // Handled completely by optimized cases.
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
    {
      // Perform an in-place conversion to int or an int subword.
      load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
      Address value;
      Address vmarg;
      bool value_left_justified = false;

      switch (ek) {
      case _adapter_opt_i2i:
        value = vmarg = __ argument_address(O0_argslot, O0_argslot);
        break;
      case _adapter_opt_l2i:
        {
          // just delete the extra slot
#ifdef _LP64
          // In V9, longs are given 2 64-bit slots in the interpreter, but the
          // data is passed in only 1 slot.
          // Keep the second slot.
          __ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot);
          remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
          value = Address(O0_argslot, 4);  // Get least-significant 32-bit of 64-bit value.
          vmarg = Address(O0_argslot, Interpreter::stackElementSize);
#else
          // Keep the first slot.
          __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
          remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
          value = Address(O0_argslot, 0);
          vmarg = value;
#endif
        }
        break;
      case _adapter_opt_unboxi:
        {
          vmarg = __ argument_address(O0_argslot, O0_argslot);
          // Load the value up from the heap.
          __ ld_ptr(vmarg, O1_scratch);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)))
              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
          }
#endif
          __ null_check(O1_scratch, value_offset);
          value = Address(O1_scratch, value_offset);
#ifdef _BIG_ENDIAN
          // Values stored in objects are packed.
          value_left_justified = true;
#endif
        }
        break;
      default:
        ShouldNotReachHere();
      }

      // This check is required on _BIG_ENDIAN
      Register G5_vminfo = G5_scratch;
      __ ldsw(G3_amh_conversion, G5_vminfo);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");

      // Original 32-bit vmdata word must be of this form:
      // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
      __ lduw(value, O1_scratch);
      if (!value_left_justified)
        __ sll(O1_scratch, G5_vminfo, O1_scratch);
      Label zero_extend, done;
      __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
      __ br(Assembler::zero, false, Assembler::pn, zero_extend);
      __ delayed()->nop();

      // this path is taken for int->byte, int->short
      __ sra(O1_scratch, G5_vminfo, O1_scratch);
      __ ba_short(done);

      __ bind(zero_extend);
      // this is taken for int->char
      __ srl(O1_scratch, G5_vminfo, O1_scratch);

      __ bind(done);
      __ st(O1_scratch, vmarg);

      // Get the new MH:
      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
    {
      // Perform an in-place int-to-long or ref-to-long conversion.
      load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);

      // On big-endian machine we duplicate the slot and store the MSW
      // in the first slot.
      __ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot);

      insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);

      Address arg_lsw(O0_argslot, 0);
      Address arg_msw(O0_argslot, -Interpreter::stackElementSize);

      switch (ek) {
      case _adapter_opt_i2l:
        {
#ifdef _LP64
          __ ldsw(arg_lsw, O2_scratch);                 // Load LSW sign-extended
#else
          __ ldsw(arg_lsw, O3_scratch);                 // Load LSW sign-extended
          __ srlx(O3_scratch, BitsPerInt, O2_scratch);  // Move MSW value to lower 32-bits for std
#endif
          __ st_long(O2_scratch, arg_msw);              // Uses O2/O3 on !_LP64
        }
        break;
      case _adapter_opt_unboxl:
        {
          // Load the value up from the heap.
          __ ld_ptr(arg_lsw, O1_scratch);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
          __ null_check(O1_scratch, value_offset);
          __ ld_long(Address(O1_scratch, value_offset), O2_scratch);  // Uses O2/O3 on !_LP64
          __ st_long(O2_scratch, arg_msw);
        }
        break;
      default:
        ShouldNotReachHere();
      }

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
    {
      // perform an in-place floating primitive conversion
      __ unimplemented(entry_name(ek));
    }
    break;

  case _adapter_prim_to_ref:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_swap_1:
  case _adapter_opt_swap_2:
  case _adapter_opt_rot_1_up:
  case _adapter_opt_rot_1_down:
  case _adapter_opt_rot_2_up:
  case _adapter_opt_rot_2_down:
    {
      int swap_slots = ek_adapter_opt_swap_slots(ek);
      int rotate     = ek_adapter_opt_swap_mode(ek);

      // 'argslot' is the position of the first argument to swap.
      load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
      __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
      if (VerifyMethodHandles)
        verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame");

      // 'vminfo' is the second.
      Register O1_destslot = O1_scratch;
      load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot);
      __ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot);
      if (VerifyMethodHandles)
        verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame");

      assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
      if (!rotate) {
        // simple swap
        for (int i = 0; i < swap_slots; i++) {
          __ ld_ptr(            Address(O0_argslot,  i * wordSize), O2_scratch);
          __ ld_ptr(            Address(O1_destslot, i * wordSize), O3_scratch);
          __ st_ptr(O3_scratch, Address(O0_argslot,  i * wordSize));
          __ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize));
        }
      } else {
        // A rotate is actually pair of moves, with an "odd slot" (or pair)
        // changing place with a series of other slots.
        // First, push the "odd slot", which is going to get overwritten
        switch (swap_slots) {
        case 2 :  __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru
        case 1 :  __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break;
        default:  ShouldNotReachHere();
        }
        if (rotate > 0) {
          // Here is rotate > 0:
          // (low mem)                                          (high mem)
          //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
          // =>
          //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
          // work argslot down to destslot, copying contiguous data upwards
          // pseudo-code:
          //   argslot  = src_addr - swap_bytes
          //   destslot = dest_addr
          //   while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--;
          move_arg_slots_up(_masm,
                            O1_destslot,
                            Address(O0_argslot, 0),
                            swap_slots,
                            O0_argslot, O2_scratch);
        } else {
          // Here is the other direction, rotate < 0:
          // (low mem)                                          (high mem)
          //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
          // =>
          //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
          // work argslot up to destslot, copying contiguous data downwards
          // pseudo-code:
          //   argslot  = src_addr + swap_bytes
          //   destslot = dest_addr
          //   while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++;
          // dest_slot denotes an exclusive upper limit
          int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
          if (limit_bias != 0)
            __ add(O1_destslot, - limit_bias * wordSize, O1_destslot);
          move_arg_slots_down(_masm,
                              Address(O0_argslot, swap_slots * wordSize),
                              O1_destslot,
                              -swap_slots,
                              O0_argslot, O2_scratch);

          __ sub(O1_destslot, swap_slots * wordSize, O1_destslot);
        }
        // pop the original first chunk into the destination slot, now free
        switch (swap_slots) {
        case 2 :  __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru
        case 1 :  __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break;
        default:  ShouldNotReachHere();
        }
      }

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_dup_args:
    {
      // 'argslot' is the position of the first argument to duplicate.
      load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
      __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);

      // 'stack_move' is negative number of words to duplicate.
      Register O1_stack_move = O1_scratch;
      load_stack_move(_masm, G3_amh_conversion, O1_stack_move);

      if (VerifyMethodHandles) {
        verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true,
                        "copied argument(s) must fall within current frame");
      }

      // insert location is always the bottom of the argument list:
      __ neg(O1_stack_move);
      push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch);

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_drop_args:
    {
      // 'argslot' is the position of the first argument to nuke.
      load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
      __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);

      // 'stack_move' is number of words to drop.
      Register O1_stack_move = O1_scratch;
      load_stack_move(_masm, G3_amh_conversion, O1_stack_move);

      remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch);

      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_collect_args:
  case _adapter_fold_args:
  case _adapter_spread_args:
    // Handled completely by optimized cases.
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_collect_ref:
  case _adapter_opt_collect_int:
  case _adapter_opt_collect_long:
  case _adapter_opt_collect_float:
  case _adapter_opt_collect_double:
  case _adapter_opt_collect_void:
  case _adapter_opt_collect_0_ref:
  case _adapter_opt_collect_1_ref:
  case _adapter_opt_collect_2_ref:
  case _adapter_opt_collect_3_ref:
  case _adapter_opt_collect_4_ref:
  case _adapter_opt_collect_5_ref:
  case _adapter_opt_filter_S0_ref:
  case _adapter_opt_filter_S1_ref:
  case _adapter_opt_filter_S2_ref:
  case _adapter_opt_filter_S3_ref:
  case _adapter_opt_filter_S4_ref:
  case _adapter_opt_filter_S5_ref:
  case _adapter_opt_collect_2_S0_ref:
  case _adapter_opt_collect_2_S1_ref:
  case _adapter_opt_collect_2_S2_ref:
  case _adapter_opt_collect_2_S3_ref:
  case _adapter_opt_collect_2_S4_ref:
  case _adapter_opt_collect_2_S5_ref:
  case _adapter_opt_fold_ref:
  case _adapter_opt_fold_int:
  case _adapter_opt_fold_long:
  case _adapter_opt_fold_float:
  case _adapter_opt_fold_double:
  case _adapter_opt_fold_void:
  case _adapter_opt_fold_1_ref:
  case _adapter_opt_fold_2_ref:
  case _adapter_opt_fold_3_ref:
  case _adapter_opt_fold_4_ref:
  case _adapter_opt_fold_5_ref:
    {
      // Given a fresh incoming stack frame, build a new ricochet frame.
      // On entry, TOS points at a return PC, and FP is the callers frame ptr.
      // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
      // RCX contains an AdapterMethodHandle of the indicated kind.

      // Relevant AMH fields:
      // amh.vmargslot:
      //   points to the trailing edge of the arguments
      //   to filter, collect, or fold.  For a boxing operation,
      //   it points just after the single primitive value.
      // amh.argument:
      //   recursively called MH, on |collect| arguments
      // amh.vmtarget:
      //   final destination MH, on return value, etc.
      // amh.conversion.dest:
      //   tells what is the type of the return value
      //   (not needed here, since dest is also derived from ek)
      // amh.conversion.vminfo:
      //   points to the trailing edge of the return value
      //   when the vmtarget is to be called; this is
      //   equal to vmargslot + (retained ? |collect| : 0)

      // Pass 0 or more argument slots to the recursive target.
      int collect_count_constant = ek_adapter_opt_collect_count(ek);

      // The collected arguments are copied from the saved argument list:
      int collect_slot_constant = ek_adapter_opt_collect_slot(ek);

      assert(ek_orig == _adapter_collect_args ||
             ek_orig == _adapter_fold_args, "");
      bool retain_original_args = (ek_orig == _adapter_fold_args);

      // The return value is replaced (or inserted) at the 'vminfo' argslot.
      // Sometimes we can compute this statically.
      int dest_slot_constant = -1;
      if (!retain_original_args)
        dest_slot_constant = collect_slot_constant;
      else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
        // We are preserving all the arguments, and the return value is prepended,
        // so the return slot is to the left (above) the |collect| sequence.
        dest_slot_constant = collect_slot_constant + collect_count_constant;

      // Replace all those slots by the result of the recursive call.
      // The result type can be one of ref, int, long, float, double, void.
      // In the case of void, nothing is pushed on the stack after return.
      BasicType dest = ek_adapter_opt_collect_type(ek);
      assert(dest == type2wfield[dest], "dest is a stack slot type");
      int dest_count = type2size[dest];
      assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");

      // Choose a return continuation.
      EntryKind ek_ret = _adapter_opt_return_any;
      if (dest != T_CONFLICT && OptimizeMethodHandles) {
        switch (dest) {
        case T_INT    : ek_ret = _adapter_opt_return_int;     break;
        case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
        case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
        case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
        case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
        case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
        default       : ShouldNotReachHere();
        }
        if (dest == T_OBJECT && dest_slot_constant >= 0) {
          EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
          if (ek_try <= _adapter_opt_return_LAST &&
              ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
            ek_ret = ek_try;
          }
        }
        assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
      }

      // Already pushed:  ... keep1 | collect | keep2 |

      // Push a few extra argument words, if we need them to store the return value.
      {
        int extra_slots = 0;
        if (retain_original_args) {
          extra_slots = dest_count;
        } else if (collect_count_constant == -1) {
          extra_slots = dest_count;  // collect_count might be zero; be generous
        } else if (dest_count > collect_count_constant) {
          extra_slots = (dest_count - collect_count_constant);
        } else {
          // else we know we have enough dead space in |collect| to repurpose for return values
        }
        if (extra_slots != 0) {
          __ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP);
        }
      }

      // Set up Ricochet Frame.
      __ mov(SP, O5_savedSP);  // record SP for the callee

      // One extra (empty) slot for outgoing target MH (see Gargs computation below).
      __ save_frame(2);  // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23.

      // Note: Gargs is live throughout the following, until we make our recursive call.
      // And the RF saves a copy in L4_saved_args_base.

      RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs,
                                          entry(ek_ret)->from_interpreted_entry());

      // Compute argument base:
      // Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above).
      __ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs);

      // Now pushed:  ... keep1 | collect | keep2 | extra | [RF]

#ifdef ASSERT
      if (VerifyMethodHandles && dest != T_CONFLICT) {
        BLOCK_COMMENT("verify AMH.conv.dest {");
        extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch);
        Label L_dest_ok;
        __ cmp(O1_scratch, (int) dest);
        __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
        __ delayed()->nop();
        if (dest == T_INT) {
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt))) {
              __ cmp(O1_scratch, (int) bt);
              __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
              __ delayed()->nop();
            }
          }
        }
        __ stop("bad dest in AMH.conv");
        __ BIND(L_dest_ok);
        BLOCK_COMMENT("} verify AMH.conv.dest");
      }
#endif //ASSERT

      // Find out where the original copy of the recursive argument sequence begins.
      Register O0_coll = O0_scratch;
      {
        RegisterOrConstant collect_slot = collect_slot_constant;
        if (collect_slot_constant == -1) {
          load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch);
          collect_slot = O1_scratch;
        }
        // collect_slot might be 0, but we need the move anyway.
        __ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll);
        // O0_coll now points at the trailing edge of |collect| and leading edge of |keep2|
      }

      // Replace the old AMH with the recursive MH.  (No going back now.)
      // In the case of a boxing call, the recursive call is to a 'boxer' method,
      // such as Integer.valueOf or Long.valueOf.  In the case of a filter
      // or collect call, it will take one or more arguments, transform them,
      // and return some result, to store back into argument_base[vminfo].
      __ load_heap_oop(G3_amh_argument, G3_method_handle);
      if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch);

      // Calculate |collect|, the number of arguments we are collecting.
      Register O1_collect_count = O1_scratch;
      RegisterOrConstant collect_count;
      if (collect_count_constant < 0) {
        __ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch);
        collect_count = O1_collect_count;
      } else {
        collect_count = collect_count_constant;
#ifdef ASSERT
        if (VerifyMethodHandles) {
          BLOCK_COMMENT("verify collect_count_constant {");
          __ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch);
          Label L_count_ok;
          __ cmp_and_br_short(O3_scratch, collect_count_constant, Assembler::equal, Assembler::pt, L_count_ok);
          __ stop("bad vminfo in AMH.conv");
          __ BIND(L_count_ok);
          BLOCK_COMMENT("} verify collect_count_constant");
        }
#endif //ASSERT
      }

      // copy |collect| slots directly to TOS:
      push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch);
      // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
      // O0_coll still points at the trailing edge of |collect| and leading edge of |keep2|

      // If necessary, adjust the saved arguments to make room for the eventual return value.
      // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
      // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
      // In the non-retaining case, this might move keep2 either up or down.
      // We don't have to copy the whole | RF... collect | complex,
      // but we must adjust RF.saved_args_base.
      // Also, from now on, we will forget about the original copy of |collect|.
      // If we are retaining it, we will treat it as part of |keep2|.
      // For clarity we will define |keep3| = |collect|keep2| or |keep2|.

      BLOCK_COMMENT("adjust trailing arguments {");
      // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
      int                open_count  = dest_count;
      RegisterOrConstant close_count = collect_count_constant;
      Register O1_close_count = O1_collect_count;
      if (retain_original_args) {
        close_count = constant(0);
      } else if (collect_count_constant == -1) {
        close_count = O1_collect_count;
      }

      // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
      RegisterOrConstant keep3_count;
      Register O2_keep3_count = O2_scratch;
      if (dest_slot_constant < 0) {
        extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count);
        keep3_count = O2_keep3_count;
      } else  {
        keep3_count = dest_slot_constant;
#ifdef ASSERT
        if (VerifyMethodHandles && dest_slot_constant < 0) {
          BLOCK_COMMENT("verify dest_slot_constant {");
          extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch);
          Label L_vminfo_ok;
          __ cmp_and_br_short(O3_scratch, dest_slot_constant, Assembler::equal, Assembler::pt, L_vminfo_ok);
          __ stop("bad vminfo in AMH.conv");
          __ BIND(L_vminfo_ok);
          BLOCK_COMMENT("} verify dest_slot_constant");
        }
#endif //ASSERT
      }

      // tasks remaining:
      bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
      bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
      bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());

      // Old and new argument locations (based at slot 0).
      // Net shift (&new_argv - &old_argv) is (close_count - open_count).
      bool zero_open_count = (open_count == 0);  // remember this bit of info
      if (move_keep3 && fix_arg_base) {
        // It will be easier to have everything in one register:
        if (close_count.is_register()) {
          // Deduct open_count from close_count register to get a clean +/- value.
          __ sub(close_count.as_register(), open_count, close_count.as_register());
        } else {
          close_count = close_count.as_constant() - open_count;
        }
        open_count = 0;
      }
      Register L4_old_argv = RicochetFrame::L4_saved_args_base;
      Register O3_new_argv = O3_scratch;
      if (fix_arg_base) {
        __ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv,
               -(open_count * Interpreter::stackElementSize));
      }

      // First decide if any actual data are to be moved.
      // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
      // (As it happens, all movements involve an argument list size change.)

      // If there are variable parameters, use dynamic checks to skip around the whole mess.
      Label L_done;
      if (keep3_count.is_register()) {
        __ cmp_and_br_short(keep3_count.as_register(), 0, Assembler::equal, Assembler::pn, L_done);
      }
      if (close_count.is_register()) {
        __ cmp_and_br_short(close_count.as_register(), open_count, Assembler::equal, Assembler::pn, L_done);
      }

      if (move_keep3 && fix_arg_base) {
        bool emit_move_down = false, emit_move_up = false, emit_guard = false;
        if (!close_count.is_constant()) {
          emit_move_down = emit_guard = !zero_open_count;
          emit_move_up   = true;
        } else if (open_count != close_count.as_constant()) {
          emit_move_down = (open_count > close_count.as_constant());
          emit_move_up   = !emit_move_down;
        }
        Label L_move_up;
        if (emit_guard) {
          __ cmp(close_count.as_register(), open_count);
          __ br(Assembler::greater, false, Assembler::pn, L_move_up);
          __ delayed()->nop();
        }

        if (emit_move_down) {
          // Move arguments down if |+dest+| > |-collect-|
          // (This is rare, except when arguments are retained.)
          // This opens space for the return value.
          if (keep3_count.is_constant()) {
            for (int i = 0; i < keep3_count.as_constant(); i++) {
              __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
              __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
            }
          } else {
            // Live: O1_close_count, O2_keep3_count, O3_new_argv
            Register argv_top = O0_scratch;
            __ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top);
            move_arg_slots_down(_masm,
                                Address(L4_old_argv, 0),  // beginning of old argv
                                argv_top,                 // end of old argv
                                close_count,              // distance to move down (must be negative)
                                O4_scratch, G5_scratch);
          }
        }

        if (emit_guard) {
          __ ba_short(L_done);  // assumes emit_move_up is true also
          __ BIND(L_move_up);
        }

        if (emit_move_up) {
          // Move arguments up if |+dest+| < |-collect-|
          // (This is usual, except when |keep3| is empty.)
          // This closes up the space occupied by the now-deleted collect values.
          if (keep3_count.is_constant()) {
            for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
              __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
              __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
            }
          } else {
            Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch));
            // Live: O1_close_count, O2_keep3_count, O3_new_argv
            move_arg_slots_up(_masm,
                              L4_old_argv,  // beginning of old argv
                              argv_top,     // end of old argv
                              close_count,  // distance to move up (must be positive)
                              O4_scratch, G5_scratch);
          }
        }
      }
      __ BIND(L_done);

      if (fix_arg_base) {
        // adjust RF.saved_args_base
        __ mov(O3_new_argv, RicochetFrame::L4_saved_args_base);
      }

      if (stomp_dest) {
        // Stomp the return slot, so it doesn't hold garbage.
        // This isn't strictly necessary, but it may help detect bugs.
        __ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch);
        __ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base,
                                      __ argument_offset(keep3_count, keep3_count.register_or_noreg())));  // uses O2_keep3_count
      }
      BLOCK_COMMENT("} adjust trailing arguments");

      BLOCK_COMMENT("do_recursive_call");
      __ mov(SP, O5_savedSP);  // record SP for the callee
      __ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7);
      // The globally unique bounce address has two purposes:
      // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
      // 2. When returned to, it cuts back the stack and redirects control flow
      //    to the return handler.
      // The return handler will further cut back the stack when it takes
      // down the RF.  Perhaps there is a way to streamline this further.

      // State during recursive call:
      // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
    }
    break;

  case _adapter_opt_return_ref:
  case _adapter_opt_return_int:
  case _adapter_opt_return_long:
  case _adapter_opt_return_float:
  case _adapter_opt_return_double:
  case _adapter_opt_return_void:
  case _adapter_opt_return_S0_ref:
  case _adapter_opt_return_S1_ref:
  case _adapter_opt_return_S2_ref:
  case _adapter_opt_return_S3_ref:
  case _adapter_opt_return_S4_ref:
  case _adapter_opt_return_S5_ref:
    {
      BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
      int       dest_slot_constant = ek_adapter_opt_return_slot(ek);

      if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);

      if (dest_slot_constant == -1) {
        // The current stub is a general handler for this dest_type.
        // It can be called from _adapter_opt_return_any below.
        // Stash the address in a little table.
        assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
        address return_handler = __ pc();
        _adapter_return_handlers[dest_type_constant] = return_handler;
        if (dest_type_constant == T_INT) {
          // do the subword types too
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)) &&
                _adapter_return_handlers[bt] == NULL) {
              _adapter_return_handlers[bt] = return_handler;
            }
          }
        }
      }

      // On entry to this continuation handler, make Gargs live again.
      __ mov(RicochetFrame::L4_saved_args_base, Gargs);

      Register O7_temp   = O7;
      Register O5_vminfo = O5;

      RegisterOrConstant dest_slot = dest_slot_constant;
      if (dest_slot_constant == -1) {
        extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo);
        dest_slot = O5_vminfo;
      }
      // Store the result back into the argslot.
      // This code uses the interpreter calling sequence, in which the return value
      // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
      // There are certain irregularities with floating point values, which can be seen
      // in TemplateInterpreterGenerator::generate_return_entry_for.
      move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp));

      RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7);

      // Load the final target and go.
      if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch);
      __ restore(I5_savedSP, G0, SP);
      __ jump_to_method_handle_entry(G3_method_handle, O0_scratch);
      __ illtrap(0);
    }
    break;

  case _adapter_opt_return_any:
    {
      Register O7_temp      = O7;
      Register O5_dest_type = O5;

      if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
      extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type);
      __ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp);
      __ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type);
      __ ld_ptr(O7_temp, O5_dest_type, O7_temp);

#ifdef ASSERT
      { Label L_ok;
        __ br_notnull_short(O7_temp, Assembler::pt, L_ok);
        __ stop("bad method handle return");
        __ BIND(L_ok);
      }
#endif //ASSERT
      __ JMP(O7_temp, 0);
      __ delayed()->nop();
    }
    break;

  case _adapter_opt_spread_0:
  case _adapter_opt_spread_1_ref:
  case _adapter_opt_spread_2_ref:
  case _adapter_opt_spread_3_ref:
  case _adapter_opt_spread_4_ref:
  case _adapter_opt_spread_5_ref:
  case _adapter_opt_spread_ref:
  case _adapter_opt_spread_byte:
  case _adapter_opt_spread_char:
  case _adapter_opt_spread_short:
  case _adapter_opt_spread_int:
  case _adapter_opt_spread_long:
  case _adapter_opt_spread_float:
  case _adapter_opt_spread_double:
    {
      // spread an array out into a group of arguments
      int  length_constant    = ek_adapter_opt_spread_count(ek);
      bool length_can_be_zero = (length_constant == 0);
      if (length_constant < 0) {
        // some adapters with variable length must handle the zero case
        if (!OptimizeMethodHandles ||
            ek_adapter_opt_spread_type(ek) != T_OBJECT)
          length_can_be_zero = true;
      }

      // find the address of the array argument
      load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
      __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);

      // O0_argslot points both to the array and to the first output arg
      Address vmarg = Address(O0_argslot, 0);

      // Get the array value.
      Register  O1_array       = O1_scratch;
      Register  O2_array_klass = O2_scratch;
      BasicType elem_type      = ek_adapter_opt_spread_type(ek);
      int       elem_slots     = type2size[elem_type];  // 1 or 2
      int       array_slots    = 1;  // array is always a T_OBJECT
      int       length_offset  = arrayOopDesc::length_offset_in_bytes();
      int       elem0_offset   = arrayOopDesc::base_offset_in_bytes(elem_type);
      __ ld_ptr(vmarg, O1_array);

      Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
      if (length_can_be_zero) {
        // handle the null pointer case, if zero is allowed
        Label L_skip;
        if (length_constant < 0) {
          load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch);
          __ cmp_zero_and_br(Assembler::notZero, O3_scratch, L_skip);
          __ delayed()->nop(); // to avoid back-to-back cbcond instructions
        }
        __ br_null_short(O1_array, Assembler::pn, L_array_is_empty);
        __ BIND(L_skip);
      }
      __ null_check(O1_array, oopDesc::klass_offset_in_bytes());
      __ load_klass(O1_array, O2_array_klass);

      // Check the array type.
      Register O3_klass = O3_scratch;
      __ load_heap_oop(G3_amh_argument, O3_klass);  // this is a Class object!
      load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch);

      Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length;
      __ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass);
      // If we get here, the type check failed!
      __ ba_short(L_bad_array_klass);
      __ BIND(L_ok_array_klass);

      // Check length.
      if (length_constant >= 0) {
        __ ldsw(Address(O1_array, length_offset), O4_scratch);
        __ cmp(O4_scratch, length_constant);
      } else {
        Register O3_vminfo = O3_scratch;
        load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo);
        __ ldsw(Address(O1_array, length_offset), O4_scratch);
        __ cmp(O3_vminfo, O4_scratch);
      }
      __ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length);
      __ delayed()->nop();

      Register O2_argslot_limit = O2_scratch;

      // Array length checks out.  Now insert any required stack slots.
      if (length_constant == -1) {
        // Form a pointer to the end of the affected region.
        __ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit);
        // 'stack_move' is negative number of words to insert
        // This number already accounts for elem_slots.
        Register O3_stack_move = O3_scratch;
        load_stack_move(_masm, G3_amh_conversion, O3_stack_move);
        __ cmp(O3_stack_move, 0);
        assert(stack_move_unit() < 0, "else change this comparison");
        __ br(Assembler::less, false, Assembler::pn, L_insert_arg_space);
        __ delayed()->nop();
        __ br(Assembler::equal, false, Assembler::pn, L_copy_args);
        __ delayed()->nop();
        // single argument case, with no array movement
        __ BIND(L_array_is_empty);
        remove_arg_slots(_masm, -stack_move_unit() * array_slots,
                         O0_argslot, O1_scratch, O2_scratch, O3_scratch);
        __ ba_short(L_args_done);  // no spreading to do
        __ BIND(L_insert_arg_space);
        // come here in the usual case, stack_move < 0 (2 or more spread arguments)
        // Live: O1_array, O2_argslot_limit, O3_stack_move
        insert_arg_slots(_masm, O3_stack_move,
                         O0_argslot, O4_scratch, G5_scratch, O1_scratch);
        // reload from rdx_argslot_limit since rax_argslot is now decremented
        __ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array);
      } else if (length_constant >= 1) {
        int new_slots = (length_constant * elem_slots) - array_slots;
        insert_arg_slots(_masm, new_slots * stack_move_unit(),
                         O0_argslot, O2_scratch, O3_scratch, O4_scratch);
      } else if (length_constant == 0) {
        __ BIND(L_array_is_empty);
        remove_arg_slots(_masm, -stack_move_unit() * array_slots,
                         O0_argslot, O1_scratch, O2_scratch, O3_scratch);
      } else {
        ShouldNotReachHere();
      }

      // Copy from the array to the new slots.
      // Note: Stack change code preserves integrity of O0_argslot pointer.
      // So even after slot insertions, O0_argslot still points to first argument.
      // Beware:  Arguments that are shallow on the stack are deep in the array,
      // and vice versa.  So a downward-growing stack (the usual) has to be copied
      // elementwise in reverse order from the source array.
      __ BIND(L_copy_args);
      if (length_constant == -1) {
        // [O0_argslot, O2_argslot_limit) is the area we are inserting into.
        // Array element [0] goes at O0_argslot_limit[-wordSize].
        Register O1_source = O1_array;
        __ add(Address(O1_array, elem0_offset), O1_source);
        Register O4_fill_ptr = O4_scratch;
        __ mov(O2_argslot_limit, O4_fill_ptr);
        Label L_loop;
        __ BIND(L_loop);
        __ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr);
        move_typed_arg(_masm, elem_type, true,
                       Address(O1_source, 0), Address(O4_fill_ptr, 0),
                       O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
        __ add(O1_source, type2aelembytes(elem_type), O1_source);
        __ cmp_and_brx_short(O4_fill_ptr, O0_argslot, Assembler::greaterUnsigned, Assembler::pt, L_loop);
      } else if (length_constant == 0) {
        // nothing to copy
      } else {
        int elem_offset = elem0_offset;
        int slot_offset = length_constant * Interpreter::stackElementSize;
        for (int index = 0; index < length_constant; index++) {
          slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
          move_typed_arg(_masm, elem_type, true,
                         Address(O1_array, elem_offset), Address(O0_argslot, slot_offset),
                         O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
          elem_offset += type2aelembytes(elem_type);
        }
      }
      __ BIND(L_args_done);

      // Arguments are spread.  Move to next method handle.
      __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
      __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);

      __ BIND(L_bad_array_klass);
      assert(!vmarg.uses(O2_required), "must be different registers");
      __ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required);  // required class
      __ ld_ptr(       vmarg,                                       O1_actual);    // bad object
      __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
      __ delayed()->mov(Bytecodes::_aaload,                         O0_code);      // who is complaining?

      __ bind(L_bad_array_length);
      assert(!vmarg.uses(O2_required), "must be different registers");
      __ mov(   G3_method_handle,                O2_required);  // required class
      __ ld_ptr(vmarg,                           O1_actual);    // bad object
      __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
      __ delayed()->mov(Bytecodes::_arraylength, O0_code);      // who is complaining?
    }
    break;

  default:
    DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek)));
    ShouldNotReachHere();
  }
  BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));

  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI

  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}