aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/sparc/vm/c1_LIRGenerator_sparc.cpp
blob: 6d941c36866c866984b94084dac6246770fe98dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
/*
 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_c1_LIRGenerator_sparc.cpp.incl"

#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif

void LIRItem::load_byte_item() {
  // byte loads use same registers as other loads
  load_item();
}


void LIRItem::load_nonconstant() {
  LIR_Opr r = value()->operand();
  if (_gen->can_inline_as_constant(value())) {
    if (!r->is_constant()) {
      r = LIR_OprFact::value_type(value()->type());
    }
    _result = r;
  } else {
    load_item();
  }
}


//--------------------------------------------------------------
//               LIRGenerator
//--------------------------------------------------------------

LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_INT); }

LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  LIR_Opr opr;
  switch (type->tag()) {
  case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
  case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
  case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
  case floatTag:   opr = FrameMap::F0_opr;                                        break;
  case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;

  case addressTag:
  default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  }

  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  return opr;
}

LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
  LIR_Opr reg = new_register(type);
  set_vreg_flag(reg, callee_saved);
  return reg;
}


LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  return new_register(T_INT);
}





//--------- loading items into registers --------------------------------

// SPARC cannot inline all constants
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
  if (v->type()->as_IntConstant() != NULL) {
    return v->type()->as_IntConstant()->value() == 0;
  } else if (v->type()->as_LongConstant() != NULL) {
    return v->type()->as_LongConstant()->value() == 0L;
  } else if (v->type()->as_ObjectConstant() != NULL) {
    return v->type()->as_ObjectConstant()->value()->is_null_object();
  } else {
    return false;
  }
}


// only simm13 constants can be inlined
bool LIRGenerator:: can_inline_as_constant(Value i) const {
  if (i->type()->as_IntConstant() != NULL) {
    return Assembler::is_simm13(i->type()->as_IntConstant()->value());
  } else {
    return can_store_as_constant(i, as_BasicType(i->type()));
  }
}


bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
  if (c->type() == T_INT) {
    return Assembler::is_simm13(c->as_jint());
  }
  return false;
}


LIR_Opr LIRGenerator::safepoint_poll_register() {
  return new_register(T_INT);
}



LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
                                            int shift, int disp, BasicType type) {
  assert(base->is_register(), "must be");

  // accumulate fixed displacements
  if (index->is_constant()) {
    disp += index->as_constant_ptr()->as_jint() << shift;
    index = LIR_OprFact::illegalOpr;
  }

  if (index->is_register()) {
    // apply the shift and accumulate the displacement
    if (shift > 0) {
      LIR_Opr tmp = new_register(T_INT);
      __ shift_left(index, shift, tmp);
      index = tmp;
    }
    if (disp != 0) {
      LIR_Opr tmp = new_register(T_INT);
      if (Assembler::is_simm13(disp)) {
        __ add(tmp, LIR_OprFact::intConst(disp), tmp);
        index = tmp;
      } else {
        __ move(LIR_OprFact::intConst(disp), tmp);
        __ add(tmp, index, tmp);
        index = tmp;
      }
      disp = 0;
    }
  } else if (disp != 0 && !Assembler::is_simm13(disp)) {
    // index is illegal so replace it with the displacement loaded into a register
    index = new_register(T_INT);
    __ move(LIR_OprFact::intConst(disp), index);
    disp = 0;
  }

  // at this point we either have base + index or base + displacement
  if (disp == 0) {
    return new LIR_Address(base, index, type);
  } else {
    assert(Assembler::is_simm13(disp), "must be");
    return new LIR_Address(base, disp, type);
  }
}


LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
                                              BasicType type, bool needs_card_mark) {
  int elem_size = type2aelembytes(type);
  int shift = exact_log2(elem_size);

  LIR_Opr base_opr;
  int offset = arrayOopDesc::base_offset_in_bytes(type);

  if (index_opr->is_constant()) {
    int i = index_opr->as_constant_ptr()->as_jint();
    int array_offset = i * elem_size;
    if (Assembler::is_simm13(array_offset + offset)) {
      base_opr = array_opr;
      offset = array_offset + offset;
    } else {
      base_opr = new_pointer_register();
      if (Assembler::is_simm13(array_offset)) {
        __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
      } else {
        __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
        __ add(base_opr, array_opr, base_opr);
      }
    }
  } else {
#ifdef _LP64
    if (index_opr->type() == T_INT) {
      LIR_Opr tmp = new_register(T_LONG);
      __ convert(Bytecodes::_i2l, index_opr, tmp);
      index_opr = tmp;
    }
#endif

    base_opr = new_pointer_register();
    assert (index_opr->is_register(), "Must be register");
    if (shift > 0) {
      __ shift_left(index_opr, shift, base_opr);
      __ add(base_opr, array_opr, base_opr);
    } else {
      __ add(index_opr, array_opr, base_opr);
    }
  }
  if (needs_card_mark) {
    LIR_Opr ptr = new_pointer_register();
    __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
    return new LIR_Address(ptr, 0, type);
  } else {
    return new LIR_Address(base_opr, offset, type);
  }
}


void LIRGenerator::increment_counter(address counter, int step) {
  LIR_Opr pointer = new_pointer_register();
  __ move(LIR_OprFact::intptrConst(counter), pointer);
  LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
  increment_counter(addr, step);
}

void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
  LIR_Opr temp = new_register(T_INT);
  __ move(addr, temp);
  LIR_Opr c = LIR_OprFact::intConst(step);
  if (Assembler::is_simm13(step)) {
    __ add(temp, c, temp);
  } else {
    LIR_Opr temp2 = new_register(T_INT);
    __ move(c, temp2);
    __ add(temp, temp2, temp);
  }
  __ move(temp, addr);
}


void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
  LIR_Opr o7opr = FrameMap::O7_opr;
  __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
  __ cmp(condition, o7opr, c);
}


void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
  LIR_Opr o7opr = FrameMap::O7_opr;
  __ load(new LIR_Address(base, disp, type), o7opr, info);
  __ cmp(condition, reg, o7opr);
}


void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
  LIR_Opr o7opr = FrameMap::O7_opr;
  __ load(new LIR_Address(base, disp, type), o7opr, info);
  __ cmp(condition, reg, o7opr);
}


bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
  assert(left != result, "should be different registers");
  if (is_power_of_2(c + 1)) {
    __ shift_left(left, log2_intptr(c + 1), result);
    __ sub(result, left, result);
    return true;
  } else if (is_power_of_2(c - 1)) {
    __ shift_left(left, log2_intptr(c - 1), result);
    __ add(result, left, result);
    return true;
  }
  return false;
}


void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
  BasicType t = item->type();
  LIR_Opr sp_opr = FrameMap::SP_opr;
  if ((t == T_LONG || t == T_DOUBLE) &&
      ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
    __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
  } else {
    __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
  }
}

//----------------------------------------------------------------------
//             visitor functions
//----------------------------------------------------------------------


void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
  assert(x->is_root(),"");
  bool needs_range_check = true;
  bool use_length = x->length() != NULL;
  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
                                         !get_jobject_constant(x->value())->is_null_object());

  LIRItem array(x->array(), this);
  LIRItem index(x->index(), this);
  LIRItem value(x->value(), this);
  LIRItem length(this);

  array.load_item();
  index.load_nonconstant();

  if (use_length) {
    needs_range_check = x->compute_needs_range_check();
    if (needs_range_check) {
      length.set_instruction(x->length());
      length.load_item();
    }
  }
  if (needs_store_check) {
    value.load_item();
  } else {
    value.load_for_store(x->elt_type());
  }

  set_no_result(x);

  // the CodeEmitInfo must be duplicated for each different
  // LIR-instruction because spilling can occur anywhere between two
  // instructions and so the debug information must be different
  CodeEmitInfo* range_check_info = state_for(x);
  CodeEmitInfo* null_check_info = NULL;
  if (x->needs_null_check()) {
    null_check_info = new CodeEmitInfo(range_check_info);
  }

  // emit array address setup early so it schedules better
  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);

  if (GenerateRangeChecks && needs_range_check) {
    if (use_length) {
      __ cmp(lir_cond_belowEqual, length.result(), index.result());
      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
    } else {
      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
      // range_check also does the null check
      null_check_info = NULL;
    }
  }

  if (GenerateArrayStoreCheck && needs_store_check) {
    LIR_Opr tmp1 = FrameMap::G1_opr;
    LIR_Opr tmp2 = FrameMap::G3_opr;
    LIR_Opr tmp3 = FrameMap::G5_opr;

    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
  }

  __ move(value.result(), array_addr, null_check_info);
  if (obj_store) {
    // Is this precise?
    post_barrier(LIR_OprFact::address(array_addr), value.result());
  }
}


void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
  assert(x->is_root(),"");
  LIRItem obj(x->obj(), this);
  obj.load_item();

  set_no_result(x);

  LIR_Opr lock    = FrameMap::G1_opr;
  LIR_Opr scratch = FrameMap::G3_opr;
  LIR_Opr hdr     = FrameMap::G4_opr;

  CodeEmitInfo* info_for_exception = NULL;
  if (x->needs_null_check()) {
    info_for_exception = state_for(x, x->lock_stack_before());
  }

  // this CodeEmitInfo must not have the xhandlers because here the
  // object is already locked (xhandlers expects object to be unlocked)
  CodeEmitInfo* info = state_for(x, x->state(), true);
  monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
}


void LIRGenerator::do_MonitorExit(MonitorExit* x) {
  assert(x->is_root(),"");
  LIRItem obj(x->obj(), this);
  obj.dont_load_item();

  set_no_result(x);
  LIR_Opr lock      = FrameMap::G1_opr;
  LIR_Opr hdr       = FrameMap::G3_opr;
  LIR_Opr obj_temp  = FrameMap::G4_opr;
  monitor_exit(obj_temp, lock, hdr, x->monitor_no());
}


// _ineg, _lneg, _fneg, _dneg
void LIRGenerator::do_NegateOp(NegateOp* x) {
  LIRItem value(x->x(), this);
  value.load_item();
  LIR_Opr reg = rlock_result(x);
  __ negate(value.result(), reg);
}



// for  _fadd, _fmul, _fsub, _fdiv, _frem
//      _dadd, _dmul, _dsub, _ddiv, _drem
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
  switch (x->op()) {
  case Bytecodes::_fadd:
  case Bytecodes::_fmul:
  case Bytecodes::_fsub:
  case Bytecodes::_fdiv:
  case Bytecodes::_dadd:
  case Bytecodes::_dmul:
  case Bytecodes::_dsub:
  case Bytecodes::_ddiv: {
    LIRItem left(x->x(), this);
    LIRItem right(x->y(), this);
    left.load_item();
    right.load_item();
    rlock_result(x);
    arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
  }
  break;

  case Bytecodes::_frem:
  case Bytecodes::_drem: {
    address entry;
    switch (x->op()) {
    case Bytecodes::_frem:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
      break;
    case Bytecodes::_drem:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
      break;
    default:
      ShouldNotReachHere();
    }
    LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
    set_result(x, result);
  }
  break;

  default: ShouldNotReachHere();
  }
}


// for  _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
  switch (x->op()) {
  case Bytecodes::_lrem:
  case Bytecodes::_lmul:
  case Bytecodes::_ldiv: {

    if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
      LIRItem right(x->y(), this);
      right.load_item();

      CodeEmitInfo* info = state_for(x);
      LIR_Opr item = right.result();
      assert(item->is_register(), "must be");
      __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
      __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
    }

    address entry;
    switch (x->op()) {
    case Bytecodes::_lrem:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
      break; // check if dividend is 0 is done elsewhere
    case Bytecodes::_ldiv:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
      break; // check if dividend is 0 is done elsewhere
    case Bytecodes::_lmul:
      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
      break;
    default:
      ShouldNotReachHere();
    }

    // order of arguments to runtime call is reversed.
    LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
    set_result(x, result);
    break;
  }
  case Bytecodes::_ladd:
  case Bytecodes::_lsub: {
    LIRItem left(x->x(), this);
    LIRItem right(x->y(), this);
    left.load_item();
    right.load_item();
    rlock_result(x);

    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
    break;
  }
  default: ShouldNotReachHere();
  }
}


// Returns if item is an int constant that can be represented by a simm13
static bool is_simm13(LIR_Opr item) {
  if (item->is_constant() && item->type() == T_INT) {
    return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
  } else {
    return false;
  }
}


// for: _iadd, _imul, _isub, _idiv, _irem
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
  bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
  LIRItem left(x->x(), this);
  LIRItem right(x->y(), this);
  // missing test if instr is commutative and if we should swap
  right.load_nonconstant();
  assert(right.is_constant() || right.is_register(), "wrong state of right");
  left.load_item();
  rlock_result(x);
  if (is_div_rem) {
    CodeEmitInfo* info = state_for(x);
    LIR_Opr tmp = FrameMap::G1_opr;
    if (x->op() == Bytecodes::_irem) {
      __ irem(left.result(), right.result(), x->operand(), tmp, info);
    } else if (x->op() == Bytecodes::_idiv) {
      __ idiv(left.result(), right.result(), x->operand(), tmp, info);
    }
  } else {
    arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
  }
}


void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
  ValueTag tag = x->type()->tag();
  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
  switch (tag) {
    case floatTag:
    case doubleTag:  do_ArithmeticOp_FPU(x);  return;
    case longTag:    do_ArithmeticOp_Long(x); return;
    case intTag:     do_ArithmeticOp_Int(x);  return;
  }
  ShouldNotReachHere();
}


// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
  LIRItem value(x->x(), this);
  LIRItem count(x->y(), this);
  // Long shift destroys count register
  if (value.type()->is_long()) {
    count.set_destroys_register();
  }
  value.load_item();
  // the old backend doesn't support this
  if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
    jint c = count.get_jint_constant() & 0x1f;
    assert(c >= 0 && c < 32, "should be small");
    count.dont_load_item();
  } else {
    count.load_item();
  }
  LIR_Opr reg = rlock_result(x);
  shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
}


// _iand, _land, _ior, _lor, _ixor, _lxor
void LIRGenerator::do_LogicOp(LogicOp* x) {
  LIRItem left(x->x(), this);
  LIRItem right(x->y(), this);

  left.load_item();
  right.load_nonconstant();
  LIR_Opr reg = rlock_result(x);

  logic_op(x->op(), reg, left.result(), right.result());
}



// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
void LIRGenerator::do_CompareOp(CompareOp* x) {
  LIRItem left(x->x(), this);
  LIRItem right(x->y(), this);
  left.load_item();
  right.load_item();
  LIR_Opr reg = rlock_result(x);

  if (x->x()->type()->is_float_kind()) {
    Bytecodes::Code code = x->op();
    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
  } else if (x->x()->type()->tag() == longTag) {
    __ lcmp2int(left.result(), right.result(), reg);
  } else {
    Unimplemented();
  }
}


void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
  assert(x->number_of_arguments() == 3, "wrong type");
  LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
  LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
  LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value

  obj.load_item();
  cmp_value.load_item();
  new_value.load_item();

  // generate compare-and-swap and produce zero condition if swap occurs
  int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
  LIR_Opr addr = FrameMap::O7_opr;
  __ add(obj.result(), LIR_OprFact::intConst(value_offset), addr);
  LIR_Opr t1 = FrameMap::G1_opr;  // temp for 64-bit value
  LIR_Opr t2 = FrameMap::G3_opr;  // temp for 64-bit value
  __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);

  // generate conditional move of boolean result
  LIR_Opr result = rlock_result(x);
  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
}


void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
  assert(x->number_of_arguments() == 4, "wrong type");
  LIRItem obj   (x->argument_at(0), this);  // object
  LIRItem offset(x->argument_at(1), this);  // offset of field
  LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
  LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp

  // Use temps to avoid kills
  LIR_Opr t1 = FrameMap::G1_opr;
  LIR_Opr t2 = FrameMap::G3_opr;
  LIR_Opr addr = new_pointer_register();

  // get address of field
  obj.load_item();
  offset.load_item();
  cmp.load_item();
  val.load_item();

  __ add(obj.result(), offset.result(), addr);

  if (type == objectType)
    __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
  else if (type == intType)
    __ cas_int(addr, cmp.result(), val.result(), t1, t2);
  else if (type == longType)
    __ cas_long(addr, cmp.result(), val.result(), t1, t2);
  else {
    ShouldNotReachHere();
  }

  // generate conditional move of boolean result
  LIR_Opr result = rlock_result(x);
  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
  if (type == objectType) {  // Write-barrier needed for Object fields.
    post_barrier(obj.result(), val.result());
  }
}


void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
  switch (x->id()) {
    case vmIntrinsics::_dabs:
    case vmIntrinsics::_dsqrt: {
      assert(x->number_of_arguments() == 1, "wrong type");
      LIRItem value(x->argument_at(0), this);
      value.load_item();
      LIR_Opr dst = rlock_result(x);

      switch (x->id()) {
      case vmIntrinsics::_dsqrt: {
        __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
        break;
      }
      case vmIntrinsics::_dabs: {
        __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
        break;
      }
      }
      break;
    }
    case vmIntrinsics::_dlog10: // fall through
    case vmIntrinsics::_dlog: // fall through
    case vmIntrinsics::_dsin: // fall through
    case vmIntrinsics::_dtan: // fall through
    case vmIntrinsics::_dcos: {
      assert(x->number_of_arguments() == 1, "wrong type");

      address runtime_entry = NULL;
      switch (x->id()) {
      case vmIntrinsics::_dsin:
        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
        break;
      case vmIntrinsics::_dcos:
        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
        break;
      case vmIntrinsics::_dtan:
        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
        break;
      case vmIntrinsics::_dlog:
        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
        break;
      case vmIntrinsics::_dlog10:
        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
        break;
      default:
        ShouldNotReachHere();
      }

      LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
      set_result(x, result);
    }
  }
}


void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
  assert(x->number_of_arguments() == 5, "wrong type");
  // Note: spill caller save before setting the item
  LIRItem src     (x->argument_at(0), this);
  LIRItem src_pos (x->argument_at(1), this);
  LIRItem dst     (x->argument_at(2), this);
  LIRItem dst_pos (x->argument_at(3), this);
  LIRItem length  (x->argument_at(4), this);
  // load all values in callee_save_registers, as this makes the
  // parameter passing to the fast case simpler
  src.load_item_force     (rlock_callee_saved(T_OBJECT));
  src_pos.load_item_force (rlock_callee_saved(T_INT));
  dst.load_item_force     (rlock_callee_saved(T_OBJECT));
  dst_pos.load_item_force (rlock_callee_saved(T_INT));
  length.load_item_force  (rlock_callee_saved(T_INT));

  int flags;
  ciArrayKlass* expected_type;
  arraycopy_helper(x, &flags, &expected_type);

  CodeEmitInfo* info = state_for(x, x->state());
  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
               length.result(), rlock_callee_saved(T_INT),
               expected_type, flags, info);
  set_no_result(x);
}

// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
// _i2b, _i2c, _i2s
void LIRGenerator::do_Convert(Convert* x) {

  switch (x->op()) {
    case Bytecodes::_f2l:
    case Bytecodes::_d2l:
    case Bytecodes::_d2i:
    case Bytecodes::_l2f:
    case Bytecodes::_l2d: {

      address entry;
      switch (x->op()) {
      case Bytecodes::_l2f:
        entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
        break;
      case Bytecodes::_l2d:
        entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
        break;
      case Bytecodes::_f2l:
        entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
        break;
      case Bytecodes::_d2l:
        entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
        break;
      case Bytecodes::_d2i:
        entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
        break;
      default:
        ShouldNotReachHere();
      }
      LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
      set_result(x, result);
      break;
    }

    case Bytecodes::_i2f:
    case Bytecodes::_i2d: {
      LIRItem value(x->value(), this);

      LIR_Opr reg = rlock_result(x);
      // To convert an int to double, we need to load the 32-bit int
      // from memory into a single precision floating point register
      // (even numbered). Then the sparc fitod instruction takes care
      // of the conversion. This is a bit ugly, but is the best way to
      // get the int value in a single precision floating point register
      value.load_item();
      LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
      __ convert(x->op(), tmp, reg);
      break;
    }
    break;

    case Bytecodes::_i2l:
    case Bytecodes::_i2b:
    case Bytecodes::_i2c:
    case Bytecodes::_i2s:
    case Bytecodes::_l2i:
    case Bytecodes::_f2d:
    case Bytecodes::_d2f: { // inline code
      LIRItem value(x->value(), this);

      value.load_item();
      LIR_Opr reg = rlock_result(x);
      __ convert(x->op(), value.result(), reg, false);
    }
    break;

    case Bytecodes::_f2i: {
      LIRItem value (x->value(), this);
      value.set_destroys_register();
      value.load_item();
      LIR_Opr reg = rlock_result(x);
      set_vreg_flag(reg, must_start_in_memory);
      __ convert(x->op(), value.result(), reg, false);
    }
    break;

    default: ShouldNotReachHere();
  }
}


void LIRGenerator::do_NewInstance(NewInstance* x) {
  // This instruction can be deoptimized in the slow path : use
  // O0 as result register.
  const LIR_Opr reg = result_register_for(x->type());

  if (PrintNotLoaded && !x->klass()->is_loaded()) {
    tty->print_cr("   ###class not loaded at new bci %d", x->bci());
  }
  CodeEmitInfo* info = state_for(x, x->state());
  LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  LIR_Opr tmp4 = FrameMap::O1_oop_opr;
  LIR_Opr klass_reg = FrameMap::G5_oop_opr;
  new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
  LIR_Opr result = rlock_result(x);
  __ move(reg, result);
}


void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
  LIRItem length(x->length(), this);
  length.load_item();

  LIR_Opr reg = result_register_for(x->type());
  LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  LIR_Opr tmp4 = FrameMap::O1_oop_opr;
  LIR_Opr klass_reg = FrameMap::G5_oop_opr;
  LIR_Opr len = length.result();
  BasicType elem_type = x->elt_type();

  __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);

  CodeEmitInfo* info = state_for(x, x->state());
  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);

  LIR_Opr result = rlock_result(x);
  __ move(reg, result);
}


void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
  LIRItem length(x->length(), this);
  // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
  // and therefore provide the state before the parameters have been consumed
  CodeEmitInfo* patching_info = NULL;
  if (!x->klass()->is_loaded() || PatchALot) {
    patching_info = state_for(x, x->state_before());
  }

  length.load_item();

  const LIR_Opr reg = result_register_for(x->type());
  LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  LIR_Opr tmp4 = FrameMap::O1_oop_opr;
  LIR_Opr klass_reg = FrameMap::G5_oop_opr;
  LIR_Opr len = length.result();
  CodeEmitInfo* info = state_for(x, x->state());

  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
  ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
  }
  jobject2reg_with_patching(klass_reg, obj, patching_info);
  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);

  LIR_Opr result = rlock_result(x);
  __ move(reg, result);
}


void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  Values* dims = x->dims();
  int i = dims->length();
  LIRItemList* items = new LIRItemList(dims->length(), NULL);
  while (i-- > 0) {
    LIRItem* size = new LIRItem(dims->at(i), this);
    items->at_put(i, size);
  }

  // need to get the info before, as the items may become invalid through item_free
  CodeEmitInfo* patching_info = NULL;
  if (!x->klass()->is_loaded() || PatchALot) {
    patching_info = state_for(x, x->state_before());

    // cannot re-use same xhandlers for multiple CodeEmitInfos, so
    // clone all handlers
    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  }

  i = dims->length();
  while (i-- > 0) {
    LIRItem* size = items->at(i);
    // if a patching_info was generated above then debug information for the state before
    // the call is going to be emitted.  The LIRGenerator calls above may have left some values
    // in registers and that's been recorded in the CodeEmitInfo.  In that case the items
    // for those values can't simply be freed if they are registers because the values
    // might be destroyed by store_stack_parameter.  So in the case of patching, delay the
    // freeing of the items that already were in registers
    size->load_item();
    store_stack_parameter (size->result(),
                           in_ByteSize(STACK_BIAS +
                                       frame::memory_parameter_word_sp_offset * wordSize +
                                       i * sizeof(jint)));
  }

  // This instruction can be deoptimized in the slow path : use
  // O0 as result register.
  const LIR_Opr reg = result_register_for(x->type());
  CodeEmitInfo* info = state_for(x, x->state());

  jobject2reg_with_patching(reg, x->klass(), patching_info);
  LIR_Opr rank = FrameMap::O1_opr;
  __ move(LIR_OprFact::intConst(x->rank()), rank);
  LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
  int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
  __ add(FrameMap::SP_opr,
         LIR_OprFact::intptrConst(offset_from_sp),
         varargs);
  LIR_OprList* args = new LIR_OprList(3);
  args->append(reg);
  args->append(rank);
  args->append(varargs);
  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
                  LIR_OprFact::illegalOpr,
                  reg, args, info);

  LIR_Opr result = rlock_result(x);
  __ move(reg, result);
}


void LIRGenerator::do_BlockBegin(BlockBegin* x) {
}


void LIRGenerator::do_CheckCast(CheckCast* x) {
  LIRItem obj(x->obj(), this);
  CodeEmitInfo* patching_info = NULL;
  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
    // must do this before locking the destination register as an oop register,
    // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
    patching_info = state_for(x, x->state_before());
  }
  obj.load_item();
  LIR_Opr out_reg = rlock_result(x);
  CodeStub* stub;
  CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());

  if (x->is_incompatible_class_change_check()) {
    assert(patching_info == NULL, "can't patch this");
    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  } else {
    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  }
  LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
               x->direct_compare(), info_for_exception, patching_info, stub,
               x->profiled_method(), x->profiled_bci());
}


void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  LIRItem obj(x->obj(), this);
  CodeEmitInfo* patching_info = NULL;
  if (!x->klass()->is_loaded() || PatchALot) {
    patching_info = state_for(x, x->state_before());
  }
  // ensure the result register is not the input register because the result is initialized before the patching safepoint
  obj.load_item();
  LIR_Opr out_reg = rlock_result(x);
  LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,  x->direct_compare(), patching_info);
}


void LIRGenerator::do_If(If* x) {
  assert(x->number_of_sux() == 2, "inconsistency");
  ValueTag tag = x->x()->type()->tag();
  LIRItem xitem(x->x(), this);
  LIRItem yitem(x->y(), this);
  LIRItem* xin = &xitem;
  LIRItem* yin = &yitem;
  If::Condition cond = x->cond();

  if (tag == longTag) {
    // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
    // mirror for other conditions
    if (cond == If::gtr || cond == If::leq) {
      // swap inputs
      cond = Instruction::mirror(cond);
      xin = &yitem;
      yin = &xitem;
    }
    xin->set_destroys_register();
  }

  LIR_Opr left = LIR_OprFact::illegalOpr;
  LIR_Opr right = LIR_OprFact::illegalOpr;

  xin->load_item();
  left = xin->result();

  if (is_simm13(yin->result())) {
    // inline int constants which are small enough to be immediate operands
    right = LIR_OprFact::value_type(yin->value()->type());
  } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
             (cond == If::eql || cond == If::neq)) {
    // inline long zero
    right = LIR_OprFact::value_type(yin->value()->type());
  } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
    right = LIR_OprFact::value_type(yin->value()->type());
  } else {
    yin->load_item();
    right = yin->result();
  }
  set_no_result(x);

  // add safepoint before generating condition code so it can be recomputed
  if (x->is_safepoint()) {
    // increment backedge counter if needed
    increment_backedge_counter(state_for(x, x->state_before()));

    __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
  }

  __ cmp(lir_cond(cond), left, right);
  profile_branch(x, cond);
  move_to_phi(x->state());
  if (x->x()->type()->is_float_kind()) {
    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  } else {
    __ branch(lir_cond(cond), right->type(), x->tsux());
  }
  assert(x->default_sux() == x->fsux(), "wrong destination above");
  __ jump(x->default_sux());
}


LIR_Opr LIRGenerator::getThreadPointer() {
  return FrameMap::as_pointer_opr(G2);
}


void LIRGenerator::trace_block_entry(BlockBegin* block) {
  __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
  LIR_OprList* args = new LIR_OprList(1);
  args->append(FrameMap::O0_opr);
  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
}


void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
                                        CodeEmitInfo* info) {
#ifdef _LP64
  __ store(value, address, info);
#else
  __ volatile_store_mem_reg(value, address, info);
#endif
}

void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
                                       CodeEmitInfo* info) {
#ifdef _LP64
  __ load(address, result, info);
#else
  __ volatile_load_mem_reg(address, result, info);
#endif
}


void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
                                     BasicType type, bool is_volatile) {
  LIR_Opr base_op = src;
  LIR_Opr index_op = offset;

  bool is_obj = (type == T_ARRAY || type == T_OBJECT);
#ifndef _LP64
  if (is_volatile && type == T_LONG) {
    __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
  } else
#endif
    {
      if (type == T_BOOLEAN) {
        type = T_BYTE;
      }
      LIR_Address* addr;
      if (type == T_ARRAY || type == T_OBJECT) {
        LIR_Opr tmp = new_pointer_register();
        __ add(base_op, index_op, tmp);
        addr = new LIR_Address(tmp, 0, type);
      } else {
        addr = new LIR_Address(base_op, index_op, type);
      }

      __ move(data, addr);
      if (is_obj) {
        // This address is precise
        post_barrier(LIR_OprFact::address(addr), data);
      }
    }
}


void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
                                     BasicType type, bool is_volatile) {
#ifndef _LP64
  if (is_volatile && type == T_LONG) {
    __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
  } else
#endif
    {
    LIR_Address* addr = new LIR_Address(src, offset, type);
    __ load(addr, dst);
  }
}