aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/x86/vm/assembler_x86.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/x86/vm/assembler_x86.hpp')
-rw-r--r--src/cpu/x86/vm/assembler_x86.hpp2044
1 files changed, 2044 insertions, 0 deletions
diff --git a/src/cpu/x86/vm/assembler_x86.hpp b/src/cpu/x86/vm/assembler_x86.hpp
new file mode 100644
index 000000000..d9637ffc9
--- /dev/null
+++ b/src/cpu/x86/vm/assembler_x86.hpp
@@ -0,0 +1,2044 @@
+/*
+ * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+class BiasedLockingCounters;
+
+// Contains all the definitions needed for x86 assembly code generation.
+
+// Calling convention
+class Argument VALUE_OBJ_CLASS_SPEC {
+ public:
+ enum {
+#ifdef _LP64
+#ifdef _WIN64
+ n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
+ n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
+#else
+ n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
+ n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
+#endif // _WIN64
+ n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
+ n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
+#else
+ n_register_parameters = 0 // 0 registers used to pass arguments
+#endif // _LP64
+ };
+};
+
+
+#ifdef _LP64
+// Symbolically name the register arguments used by the c calling convention.
+// Windows is different from linux/solaris. So much for standards...
+
+#ifdef _WIN64
+
+REGISTER_DECLARATION(Register, c_rarg0, rcx);
+REGISTER_DECLARATION(Register, c_rarg1, rdx);
+REGISTER_DECLARATION(Register, c_rarg2, r8);
+REGISTER_DECLARATION(Register, c_rarg3, r9);
+
+REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
+REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
+REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
+REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
+
+#else
+
+REGISTER_DECLARATION(Register, c_rarg0, rdi);
+REGISTER_DECLARATION(Register, c_rarg1, rsi);
+REGISTER_DECLARATION(Register, c_rarg2, rdx);
+REGISTER_DECLARATION(Register, c_rarg3, rcx);
+REGISTER_DECLARATION(Register, c_rarg4, r8);
+REGISTER_DECLARATION(Register, c_rarg5, r9);
+
+REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
+REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
+REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
+REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
+REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
+REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
+REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
+REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
+
+#endif // _WIN64
+
+// Symbolically name the register arguments used by the Java calling convention.
+// We have control over the convention for java so we can do what we please.
+// What pleases us is to offset the java calling convention so that when
+// we call a suitable jni method the arguments are lined up and we don't
+// have to do little shuffling. A suitable jni method is non-static and a
+// small number of arguments (two fewer args on windows)
+//
+// |-------------------------------------------------------|
+// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
+// |-------------------------------------------------------|
+// | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
+// | rdi rsi rdx rcx r8 r9 | solaris/linux
+// |-------------------------------------------------------|
+// | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
+// |-------------------------------------------------------|
+
+REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
+REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
+REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
+// Windows runs out of register args here
+#ifdef _WIN64
+REGISTER_DECLARATION(Register, j_rarg3, rdi);
+REGISTER_DECLARATION(Register, j_rarg4, rsi);
+#else
+REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
+REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
+#endif /* _WIN64 */
+REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
+
+REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
+REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
+REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
+REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
+REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
+REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
+REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
+REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
+
+REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
+REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
+
+REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
+REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
+
+#else
+// rscratch1 will apear in 32bit code that is dead but of course must compile
+// Using noreg ensures if the dead code is incorrectly live and executed it
+// will cause an assertion failure
+#define rscratch1 noreg
+
+#endif // _LP64
+
+// Address is an abstraction used to represent a memory location
+// using any of the amd64 addressing modes with one object.
+//
+// Note: A register location is represented via a Register, not
+// via an address for efficiency & simplicity reasons.
+
+class ArrayAddress;
+
+class Address VALUE_OBJ_CLASS_SPEC {
+ public:
+ enum ScaleFactor {
+ no_scale = -1,
+ times_1 = 0,
+ times_2 = 1,
+ times_4 = 2,
+ times_8 = 3,
+ times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
+ };
+
+ private:
+ Register _base;
+ Register _index;
+ ScaleFactor _scale;
+ int _disp;
+ RelocationHolder _rspec;
+
+ // Easily misused constructors make them private
+ // %%% can we make these go away?
+ NOT_LP64(Address(address loc, RelocationHolder spec);)
+ Address(int disp, address loc, relocInfo::relocType rtype);
+ Address(int disp, address loc, RelocationHolder spec);
+
+ public:
+
+ int disp() { return _disp; }
+ // creation
+ Address()
+ : _base(noreg),
+ _index(noreg),
+ _scale(no_scale),
+ _disp(0) {
+ }
+
+ // No default displacement otherwise Register can be implicitly
+ // converted to 0(Register) which is quite a different animal.
+
+ Address(Register base, int disp)
+ : _base(base),
+ _index(noreg),
+ _scale(no_scale),
+ _disp(disp) {
+ }
+
+ Address(Register base, Register index, ScaleFactor scale, int disp = 0)
+ : _base (base),
+ _index(index),
+ _scale(scale),
+ _disp (disp) {
+ assert(!index->is_valid() == (scale == Address::no_scale),
+ "inconsistent address");
+ }
+
+ // The following two overloads are used in connection with the
+ // ByteSize type (see sizes.hpp). They simplify the use of
+ // ByteSize'd arguments in assembly code. Note that their equivalent
+ // for the optimized build are the member functions with int disp
+ // argument since ByteSize is mapped to an int type in that case.
+ //
+ // Note: DO NOT introduce similar overloaded functions for WordSize
+ // arguments as in the optimized mode, both ByteSize and WordSize
+ // are mapped to the same type and thus the compiler cannot make a
+ // distinction anymore (=> compiler errors).
+
+#ifdef ASSERT
+ Address(Register base, ByteSize disp)
+ : _base(base),
+ _index(noreg),
+ _scale(no_scale),
+ _disp(in_bytes(disp)) {
+ }
+
+ Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
+ : _base(base),
+ _index(index),
+ _scale(scale),
+ _disp(in_bytes(disp)) {
+ assert(!index->is_valid() == (scale == Address::no_scale),
+ "inconsistent address");
+ }
+#endif // ASSERT
+
+ // accessors
+ bool uses(Register reg) const {
+ return _base == reg || _index == reg;
+ }
+
+ // Convert the raw encoding form into the form expected by the constructor for
+ // Address. An index of 4 (rsp) corresponds to having no index, so convert
+ // that to noreg for the Address constructor.
+ static Address make_raw(int base, int index, int scale, int disp);
+
+ static Address make_array(ArrayAddress);
+
+
+ private:
+ bool base_needs_rex() const {
+ return _base != noreg && _base->encoding() >= 8;
+ }
+
+ bool index_needs_rex() const {
+ return _index != noreg &&_index->encoding() >= 8;
+ }
+
+ relocInfo::relocType reloc() const { return _rspec.type(); }
+
+ friend class Assembler;
+ friend class MacroAssembler;
+ friend class LIR_Assembler; // base/index/scale/disp
+};
+
+//
+// AddressLiteral has been split out from Address because operands of this type
+// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
+// the few instructions that need to deal with address literals are unique and the
+// MacroAssembler does not have to implement every instruction in the Assembler
+// in order to search for address literals that may need special handling depending
+// on the instruction and the platform. As small step on the way to merging i486/amd64
+// directories.
+//
+class AddressLiteral VALUE_OBJ_CLASS_SPEC {
+ friend class ArrayAddress;
+ RelocationHolder _rspec;
+ // Typically we use AddressLiterals we want to use their rval
+ // However in some situations we want the lval (effect address) of the item.
+ // We provide a special factory for making those lvals.
+ bool _is_lval;
+
+ // If the target is far we'll need to load the ea of this to
+ // a register to reach it. Otherwise if near we can do rip
+ // relative addressing.
+
+ address _target;
+
+ protected:
+ // creation
+ AddressLiteral()
+ : _is_lval(false),
+ _target(NULL)
+ {}
+
+ public:
+
+
+ AddressLiteral(address target, relocInfo::relocType rtype);
+
+ AddressLiteral(address target, RelocationHolder const& rspec)
+ : _rspec(rspec),
+ _is_lval(false),
+ _target(target)
+ {}
+
+ AddressLiteral addr() {
+ AddressLiteral ret = *this;
+ ret._is_lval = true;
+ return ret;
+ }
+
+
+ private:
+
+ address target() { return _target; }
+ bool is_lval() { return _is_lval; }
+
+ relocInfo::relocType reloc() const { return _rspec.type(); }
+ const RelocationHolder& rspec() const { return _rspec; }
+
+ friend class Assembler;
+ friend class MacroAssembler;
+ friend class Address;
+ friend class LIR_Assembler;
+};
+
+// Convience classes
+class RuntimeAddress: public AddressLiteral {
+
+ public:
+
+ RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
+
+};
+
+class OopAddress: public AddressLiteral {
+
+ public:
+
+ OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
+
+};
+
+class ExternalAddress: public AddressLiteral {
+
+ public:
+
+ ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
+
+};
+
+class InternalAddress: public AddressLiteral {
+
+ public:
+
+ InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
+
+};
+
+// x86 can do array addressing as a single operation since disp can be an absolute
+// address amd64 can't. We create a class that expresses the concept but does extra
+// magic on amd64 to get the final result
+
+class ArrayAddress VALUE_OBJ_CLASS_SPEC {
+ private:
+
+ AddressLiteral _base;
+ Address _index;
+
+ public:
+
+ ArrayAddress() {};
+ ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
+ AddressLiteral base() { return _base; }
+ Address index() { return _index; }
+
+};
+
+const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
+
+// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
+// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
+// is what you get. The Assembler is generating code into a CodeBuffer.
+
+class Assembler : public AbstractAssembler {
+ friend class AbstractAssembler; // for the non-virtual hack
+ friend class LIR_Assembler; // as_Address()
+ friend class StubGenerator;
+
+ public:
+ enum Condition { // The x86 condition codes used for conditional jumps/moves.
+ zero = 0x4,
+ notZero = 0x5,
+ equal = 0x4,
+ notEqual = 0x5,
+ less = 0xc,
+ lessEqual = 0xe,
+ greater = 0xf,
+ greaterEqual = 0xd,
+ below = 0x2,
+ belowEqual = 0x6,
+ above = 0x7,
+ aboveEqual = 0x3,
+ overflow = 0x0,
+ noOverflow = 0x1,
+ carrySet = 0x2,
+ carryClear = 0x3,
+ negative = 0x8,
+ positive = 0x9,
+ parity = 0xa,
+ noParity = 0xb
+ };
+
+ enum Prefix {
+ // segment overrides
+ CS_segment = 0x2e,
+ SS_segment = 0x36,
+ DS_segment = 0x3e,
+ ES_segment = 0x26,
+ FS_segment = 0x64,
+ GS_segment = 0x65,
+
+ REX = 0x40,
+
+ REX_B = 0x41,
+ REX_X = 0x42,
+ REX_XB = 0x43,
+ REX_R = 0x44,
+ REX_RB = 0x45,
+ REX_RX = 0x46,
+ REX_RXB = 0x47,
+
+ REX_W = 0x48,
+
+ REX_WB = 0x49,
+ REX_WX = 0x4A,
+ REX_WXB = 0x4B,
+ REX_WR = 0x4C,
+ REX_WRB = 0x4D,
+ REX_WRX = 0x4E,
+ REX_WRXB = 0x4F
+ };
+
+ enum WhichOperand {
+ // input to locate_operand, and format code for relocations
+ imm_operand = 0, // embedded 32-bit|64-bit immediate operand
+ disp32_operand = 1, // embedded 32-bit displacement or address
+ call32_operand = 2, // embedded 32-bit self-relative displacement
+#ifndef _LP64
+ _WhichOperand_limit = 3
+#else
+ narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
+ _WhichOperand_limit = 4
+#endif
+ };
+
+
+
+ // NOTE: The general philopsophy of the declarations here is that 64bit versions
+ // of instructions are freely declared without the need for wrapping them an ifdef.
+ // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
+ // In the .cpp file the implementations are wrapped so that they are dropped out
+ // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
+ // to the size it was prior to merging up the 32bit and 64bit assemblers.
+ //
+ // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
+ // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
+
+private:
+
+
+ // 64bit prefixes
+ int prefix_and_encode(int reg_enc, bool byteinst = false);
+ int prefixq_and_encode(int reg_enc);
+
+ int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
+ int prefixq_and_encode(int dst_enc, int src_enc);
+
+ void prefix(Register reg);
+ void prefix(Address adr);
+ void prefixq(Address adr);
+
+ void prefix(Address adr, Register reg, bool byteinst = false);
+ void prefixq(Address adr, Register reg);
+
+ void prefix(Address adr, XMMRegister reg);
+
+ void prefetch_prefix(Address src);
+
+ // Helper functions for groups of instructions
+ void emit_arith_b(int op1, int op2, Register dst, int imm8);
+
+ void emit_arith(int op1, int op2, Register dst, int32_t imm32);
+ // only 32bit??
+ void emit_arith(int op1, int op2, Register dst, jobject obj);
+ void emit_arith(int op1, int op2, Register dst, Register src);
+
+ void emit_operand(Register reg,
+ Register base, Register index, Address::ScaleFactor scale,
+ int disp,
+ RelocationHolder const& rspec,
+ int rip_relative_correction = 0);
+
+ void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
+
+ // operands that only take the original 32bit registers
+ void emit_operand32(Register reg, Address adr);
+
+ void emit_operand(XMMRegister reg,
+ Register base, Register index, Address::ScaleFactor scale,
+ int disp,
+ RelocationHolder const& rspec);
+
+ void emit_operand(XMMRegister reg, Address adr);
+
+ void emit_operand(MMXRegister reg, Address adr);
+
+ // workaround gcc (3.2.1-7) bug
+ void emit_operand(Address adr, MMXRegister reg);
+
+
+ // Immediate-to-memory forms
+ void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
+
+ void emit_farith(int b1, int b2, int i);
+
+
+ protected:
+ #ifdef ASSERT
+ void check_relocation(RelocationHolder const& rspec, int format);
+ #endif
+
+ inline void emit_long64(jlong x);
+
+ void emit_data(jint data, relocInfo::relocType rtype, int format);
+ void emit_data(jint data, RelocationHolder const& rspec, int format);
+ void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
+ void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
+
+
+ bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
+
+ // These are all easily abused and hence protected
+
+ void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0);
+
+ // 32BIT ONLY SECTION
+#ifndef _LP64
+ // Make these disappear in 64bit mode since they would never be correct
+ void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
+ void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
+
+ void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
+
+ void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
+#else
+ // 64BIT ONLY SECTION
+ void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
+#endif // _LP64
+
+ // These are unique in that we are ensured by the caller that the 32bit
+ // relative in these instructions will always be able to reach the potentially
+ // 64bit address described by entry. Since they can take a 64bit address they
+ // don't have the 32 suffix like the other instructions in this class.
+
+ void call_literal(address entry, RelocationHolder const& rspec);
+ void jmp_literal(address entry, RelocationHolder const& rspec);
+
+ // Avoid using directly section
+ // Instructions in this section are actually usable by anyone without danger
+ // of failure but have performance issues that are addressed my enhanced
+ // instructions which will do the proper thing base on the particular cpu.
+ // We protect them because we don't trust you...
+
+ // Don't use next inc() and dec() methods directly. INC & DEC instructions
+ // could cause a partial flag stall since they don't set CF flag.
+ // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
+ // which call inc() & dec() or add() & sub() in accordance with
+ // the product flag UseIncDec value.
+
+ void decl(Register dst);
+ void decl(Address dst);
+ void decq(Register dst);
+ void decq(Address dst);
+
+ void incl(Register dst);
+ void incl(Address dst);
+ void incq(Register dst);
+ void incq(Address dst);
+
+ // New cpus require use of movsd and movss to avoid partial register stall
+ // when loading from memory. But for old Opteron use movlpd instead of movsd.
+ // The selection is done in MacroAssembler::movdbl() and movflt().
+
+ // Move Scalar Single-Precision Floating-Point Values
+ void movss(XMMRegister dst, Address src);
+ void movss(XMMRegister dst, XMMRegister src);
+ void movss(Address dst, XMMRegister src);
+
+ // Move Scalar Double-Precision Floating-Point Values
+ void movsd(XMMRegister dst, Address src);
+ void movsd(XMMRegister dst, XMMRegister src);
+ void movsd(Address dst, XMMRegister src);
+ void movlpd(XMMRegister dst, Address src);
+
+ // New cpus require use of movaps and movapd to avoid partial register stall
+ // when moving between registers.
+ void movaps(XMMRegister dst, XMMRegister src);
+ void movapd(XMMRegister dst, XMMRegister src);
+
+ // End avoid using directly
+
+
+ // Instruction prefixes
+ void prefix(Prefix p);
+
+ public:
+
+ // Creation
+ Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
+
+ // Decoding
+ static address locate_operand(address inst, WhichOperand which);
+ static address locate_next_instruction(address inst);
+
+ // Utilities
+
+#ifdef _LP64
+ static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
+ static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
+#else
+ static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); }
+ static bool is_simm32(int32_t x) { return true; }
+#endif // LP64
+
+ // Generic instructions
+ // Does 32bit or 64bit as needed for the platform. In some sense these
+ // belong in macro assembler but there is no need for both varieties to exist
+
+ void lea(Register dst, Address src);
+
+ void mov(Register dst, Register src);
+
+ void pusha();
+ void popa();
+
+ void pushf();
+ void popf();
+
+ void push(int32_t imm32);
+
+ void push(Register src);
+
+ void pop(Register dst);
+
+ // These are dummies to prevent surprise implicit conversions to Register
+ void push(void* v);
+ void pop(void* v);
+
+
+ // These do register sized moves/scans
+ void rep_mov();
+ void rep_set();
+ void repne_scan();
+#ifdef _LP64
+ void repne_scanl();
+#endif
+
+ // Vanilla instructions in lexical order
+
+ void adcl(Register dst, int32_t imm32);
+ void adcl(Register dst, Address src);
+ void adcl(Register dst, Register src);
+
+ void adcq(Register dst, int32_t imm32);
+ void adcq(Register dst, Address src);
+ void adcq(Register dst, Register src);
+
+
+ void addl(Address dst, int32_t imm32);
+ void addl(Address dst, Register src);
+ void addl(Register dst, int32_t imm32);
+ void addl(Register dst, Address src);
+ void addl(Register dst, Register src);
+
+ void addq(Address dst, int32_t imm32);
+ void addq(Address dst, Register src);
+ void addq(Register dst, int32_t imm32);
+ void addq(Register dst, Address src);
+ void addq(Register dst, Register src);
+
+
+ void addr_nop_4();
+ void addr_nop_5();
+ void addr_nop_7();
+ void addr_nop_8();
+
+ // Add Scalar Double-Precision Floating-Point Values
+ void addsd(XMMRegister dst, Address src);
+ void addsd(XMMRegister dst, XMMRegister src);
+
+ // Add Scalar Single-Precision Floating-Point Values
+ void addss(XMMRegister dst, Address src);
+ void addss(XMMRegister dst, XMMRegister src);
+
+ void andl(Register dst, int32_t imm32);
+ void andl(Register dst, Address src);
+ void andl(Register dst, Register src);
+
+ void andq(Register dst, int32_t imm32);
+ void andq(Register dst, Address src);
+ void andq(Register dst, Register src);
+
+
+ // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
+ void andpd(XMMRegister dst, Address src);
+ void andpd(XMMRegister dst, XMMRegister src);
+
+ void bswapl(Register reg);
+
+ void bswapq(Register reg);
+
+ void call(Label& L, relocInfo::relocType rtype);
+ void call(Register reg); // push pc; pc <- reg
+ void call(Address adr); // push pc; pc <- adr
+
+ void cdql();
+
+ void cdqq();
+
+ void cld() { emit_byte(0xfc); }
+
+ void clflush(Address adr);
+
+ void cmovl(Condition cc, Register dst, Register src);
+ void cmovl(Condition cc, Register dst, Address src);
+
+ void cmovq(Condition cc, Register dst, Register src);
+ void cmovq(Condition cc, Register dst, Address src);
+
+
+ void cmpb(Address dst, int imm8);
+
+ void cmpl(Address dst, int32_t imm32);
+
+ void cmpl(Register dst, int32_t imm32);
+ void cmpl(Register dst, Register src);
+ void cmpl(Register dst, Address src);
+
+ void cmpq(Address dst, int32_t imm32);
+ void cmpq(Address dst, Register src);
+
+ void cmpq(Register dst, int32_t imm32);
+ void cmpq(Register dst, Register src);
+ void cmpq(Register dst, Address src);
+
+ // these are dummies used to catch attempting to convert NULL to Register
+ void cmpl(Register dst, void* junk); // dummy
+ void cmpq(Register dst, void* junk); // dummy
+
+ void cmpw(Address dst, int imm16);
+
+ void cmpxchg8 (Address adr);
+
+ void cmpxchgl(Register reg, Address adr);
+
+ void cmpxchgq(Register reg, Address adr);
+
+ // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
+ void comisd(XMMRegister dst, Address src);
+
+ // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
+ void comiss(XMMRegister dst, Address src);
+
+ // Identify processor type and features
+ void cpuid() {
+ emit_byte(0x0F);
+ emit_byte(0xA2);
+ }
+
+ // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
+ void cvtsd2ss(XMMRegister dst, XMMRegister src);
+
+ // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
+ void cvtsi2sdl(XMMRegister dst, Register src);
+ void cvtsi2sdq(XMMRegister dst, Register src);
+
+ // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
+ void cvtsi2ssl(XMMRegister dst, Register src);
+ void cvtsi2ssq(XMMRegister dst, Register src);
+
+ // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
+ void cvtdq2pd(XMMRegister dst, XMMRegister src);
+
+ // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
+ void cvtdq2ps(XMMRegister dst, XMMRegister src);
+
+ // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
+ void cvtss2sd(XMMRegister dst, XMMRegister src);
+
+ // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
+ void cvttsd2sil(Register dst, Address src);
+ void cvttsd2sil(Register dst, XMMRegister src);
+ void cvttsd2siq(Register dst, XMMRegister src);
+
+ // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
+ void cvttss2sil(Register dst, XMMRegister src);
+ void cvttss2siq(Register dst, XMMRegister src);
+
+ // Divide Scalar Double-Precision Floating-Point Values
+ void divsd(XMMRegister dst, Address src);
+ void divsd(XMMRegister dst, XMMRegister src);
+
+ // Divide Scalar Single-Precision Floating-Point Values
+ void divss(XMMRegister dst, Address src);
+ void divss(XMMRegister dst, XMMRegister src);
+
+ void emms();
+
+ void fabs();
+
+ void fadd(int i);
+
+ void fadd_d(Address src);
+ void fadd_s(Address src);
+
+ // "Alternate" versions of x87 instructions place result down in FPU
+ // stack instead of on TOS
+
+ void fadda(int i); // "alternate" fadd
+ void faddp(int i = 1);
+
+ void fchs();
+
+ void fcom(int i);
+
+ void fcomp(int i = 1);
+ void fcomp_d(Address src);
+ void fcomp_s(Address src);
+
+ void fcompp();
+
+ void fcos();
+
+ void fdecstp();
+
+ void fdiv(int i);
+ void fdiv_d(Address src);
+ void fdivr_s(Address src);
+ void fdiva(int i); // "alternate" fdiv
+ void fdivp(int i = 1);
+
+ void fdivr(int i);
+ void fdivr_d(Address src);
+ void fdiv_s(Address src);
+
+ void fdivra(int i); // "alternate" reversed fdiv
+
+ void fdivrp(int i = 1);
+
+ void ffree(int i = 0);
+
+ void fild_d(Address adr);
+ void fild_s(Address adr);
+
+ void fincstp();
+
+ void finit();
+
+ void fist_s (Address adr);
+ void fistp_d(Address adr);
+ void fistp_s(Address adr);
+
+ void fld1();
+
+ void fld_d(Address adr);
+ void fld_s(Address adr);
+ void fld_s(int index);
+ void fld_x(Address adr); // extended-precision (80-bit) format
+
+ void fldcw(Address src);
+
+ void fldenv(Address src);
+
+ void fldlg2();
+
+ void fldln2();
+
+ void fldz();
+
+ void flog();
+ void flog10();
+
+ void fmul(int i);
+
+ void fmul_d(Address src);
+ void fmul_s(Address src);
+
+ void fmula(int i); // "alternate" fmul
+
+ void fmulp(int i = 1);
+
+ void fnsave(Address dst);
+
+ void fnstcw(Address src);
+
+ void fnstsw_ax();
+
+ void fprem();
+ void fprem1();
+
+ void frstor(Address src);
+
+ void fsin();
+
+ void fsqrt();
+
+ void fst_d(Address adr);
+ void fst_s(Address adr);
+
+ void fstp_d(Address adr);
+ void fstp_d(int index);
+ void fstp_s(Address adr);
+ void fstp_x(Address adr); // extended-precision (80-bit) format
+
+ void fsub(int i);
+ void fsub_d(Address src);
+ void fsub_s(Address src);
+
+ void fsuba(int i); // "alternate" fsub
+
+ void fsubp(int i = 1);
+
+ void fsubr(int i);
+ void fsubr_d(Address src);
+ void fsubr_s(Address src);
+
+ void fsubra(int i); // "alternate" reversed fsub
+
+ void fsubrp(int i = 1);
+
+ void ftan();
+
+ void ftst();
+
+ void fucomi(int i = 1);
+ void fucomip(int i = 1);
+
+ void fwait();
+
+ void fxch(int i = 1);
+
+ void fxrstor(Address src);
+
+ void fxsave(Address dst);
+
+ void fyl2x();
+
+ void hlt();
+
+ void idivl(Register src);
+
+ void idivq(Register src);
+
+ void imull(Register dst, Register src);
+ void imull(Register dst, Register src, int value);
+
+ void imulq(Register dst, Register src);
+ void imulq(Register dst, Register src, int value);
+
+
+ // jcc is the generic conditional branch generator to run-
+ // time routines, jcc is used for branches to labels. jcc
+ // takes a branch opcode (cc) and a label (L) and generates
+ // either a backward branch or a forward branch and links it
+ // to the label fixup chain. Usage:
+ //
+ // Label L; // unbound label
+ // jcc(cc, L); // forward branch to unbound label
+ // bind(L); // bind label to the current pc
+ // jcc(cc, L); // backward branch to bound label
+ // bind(L); // illegal: a label may be bound only once
+ //
+ // Note: The same Label can be used for forward and backward branches
+ // but it may be bound only once.
+
+ void jcc(Condition cc, Label& L,
+ relocInfo::relocType rtype = relocInfo::none);
+
+ // Conditional jump to a 8-bit offset to L.
+ // WARNING: be very careful using this for forward jumps. If the label is
+ // not bound within an 8-bit offset of this instruction, a run-time error
+ // will occur.
+ void jccb(Condition cc, Label& L);
+
+ void jmp(Address entry); // pc <- entry
+
+ // Label operations & relative jumps (PPUM Appendix D)
+ void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
+
+ void jmp(Register entry); // pc <- entry
+
+ // Unconditional 8-bit offset jump to L.
+ // WARNING: be very careful using this for forward jumps. If the label is
+ // not bound within an 8-bit offset of this instruction, a run-time error
+ // will occur.
+ void jmpb(Label& L);
+
+ void ldmxcsr( Address src );
+
+ void leal(Register dst, Address src);
+
+ void leaq(Register dst, Address src);
+
+ void lfence() {
+ emit_byte(0x0F);
+ emit_byte(0xAE);
+ emit_byte(0xE8);
+ }
+
+ void lock();
+
+ enum Membar_mask_bits {
+ StoreStore = 1 << 3,
+ LoadStore = 1 << 2,
+ StoreLoad = 1 << 1,
+ LoadLoad = 1 << 0
+ };
+
+ // Serializes memory.
+ void membar(Membar_mask_bits order_constraint) {
+ // We only have to handle StoreLoad and LoadLoad
+ if (order_constraint & StoreLoad) {
+ // MFENCE subsumes LFENCE
+ mfence();
+ } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
+ lfence();
+ } */
+ }
+
+ void mfence();
+
+ // Moves
+
+ void mov64(Register dst, int64_t imm64);
+
+ void movb(Address dst, Register src);
+ void movb(Address dst, int imm8);
+ void movb(Register dst, Address src);
+
+ void movdl(XMMRegister dst, Register src);
+ void movdl(Register dst, XMMRegister src);
+
+ // Move Double Quadword
+ void movdq(XMMRegister dst, Register src);
+ void movdq(Register dst, XMMRegister src);
+
+ // Move Aligned Double Quadword
+ void movdqa(Address dst, XMMRegister src);
+ void movdqa(XMMRegister dst, Address src);
+ void movdqa(XMMRegister dst, XMMRegister src);
+
+ void movl(Register dst, int32_t imm32);
+ void movl(Address dst, int32_t imm32);
+ void movl(Register dst, Register src);
+ void movl(Register dst, Address src);
+ void movl(Address dst, Register src);
+
+ // These dummies prevent using movl from converting a zero (like NULL) into Register
+ // by giving the compiler two choices it can't resolve
+
+ void movl(Address dst, void* junk);
+ void movl(Register dst, void* junk);
+
+#ifdef _LP64
+ void movq(Register dst, Register src);
+ void movq(Register dst, Address src);
+ void movq(Address dst, Register src);
+#endif
+
+ void movq(Address dst, MMXRegister src );
+ void movq(MMXRegister dst, Address src );
+
+#ifdef _LP64
+ // These dummies prevent using movq from converting a zero (like NULL) into Register
+ // by giving the compiler two choices it can't resolve
+
+ void movq(Address dst, void* dummy);
+ void movq(Register dst, void* dummy);
+#endif
+
+ // Move Quadword
+ void movq(Address dst, XMMRegister src);
+ void movq(XMMRegister dst, Address src);
+
+ void movsbl(Register dst, Address src);
+ void movsbl(Register dst, Register src);
+
+#ifdef _LP64
+ // Move signed 32bit immediate to 64bit extending sign
+ void movslq(Address dst, int32_t imm64);
+ void movslq(Register dst, int32_t imm64);
+
+ void movslq(Register dst, Address src);
+ void movslq(Register dst, Register src);
+ void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
+#endif
+
+ void movswl(Register dst, Address src);
+ void movswl(Register dst, Register src);
+
+ void movw(Address dst, int imm16);
+ void movw(Register dst, Address src);
+ void movw(Address dst, Register src);
+
+ void movzbl(Register dst, Address src);
+ void movzbl(Register dst, Register src);
+
+ void movzwl(Register dst, Address src);
+ void movzwl(Register dst, Register src);
+
+ void mull(Address src);
+ void mull(Register src);
+
+ // Multiply Scalar Double-Precision Floating-Point Values
+ void mulsd(XMMRegister dst, Address src);
+ void mulsd(XMMRegister dst, XMMRegister src);
+
+ // Multiply Scalar Single-Precision Floating-Point Values
+ void mulss(XMMRegister dst, Address src);
+ void mulss(XMMRegister dst, XMMRegister src);
+
+ void negl(Register dst);
+
+#ifdef _LP64
+ void negq(Register dst);
+#endif
+
+ void nop(int i = 1);
+
+ void notl(Register dst);
+
+#ifdef _LP64
+ void notq(Register dst);
+#endif
+
+ void orl(Address dst, int32_t imm32);
+ void orl(Register dst, int32_t imm32);
+ void orl(Register dst, Address src);
+ void orl(Register dst, Register src);
+
+ void orq(Address dst, int32_t imm32);
+ void orq(Register dst, int32_t imm32);
+ void orq(Register dst, Address src);
+ void orq(Register dst, Register src);
+
+ void popl(Address dst);
+
+#ifdef _LP64
+ void popq(Address dst);
+#endif
+
+ // Prefetches (SSE, SSE2, 3DNOW only)
+
+ void prefetchnta(Address src);
+ void prefetchr(Address src);
+ void prefetcht0(Address src);
+ void prefetcht1(Address src);
+ void prefetcht2(Address src);
+ void prefetchw(Address src);
+
+ // Shuffle Packed Doublewords
+ void pshufd(XMMRegister dst, XMMRegister src, int mode);
+ void pshufd(XMMRegister dst, Address src, int mode);
+
+ // Shuffle Packed Low Words
+ void pshuflw(XMMRegister dst, XMMRegister src, int mode);
+ void pshuflw(XMMRegister dst, Address src, int mode);
+
+ // Shift Right Logical Quadword Immediate
+ void psrlq(XMMRegister dst, int shift);
+
+ // Interleave Low Bytes
+ void punpcklbw(XMMRegister dst, XMMRegister src);
+
+ void pushl(Address src);
+
+ void pushq(Address src);
+
+ // Xor Packed Byte Integer Values
+ void pxor(XMMRegister dst, Address src);
+ void pxor(XMMRegister dst, XMMRegister src);
+
+ void rcll(Register dst, int imm8);
+
+ void rclq(Register dst, int imm8);
+
+ void ret(int imm16);
+
+ void sahf();
+
+ void sarl(Register dst, int imm8);
+ void sarl(Register dst);
+
+ void sarq(Register dst, int imm8);
+ void sarq(Register dst);
+
+ void sbbl(Address dst, int32_t imm32);
+ void sbbl(Register dst, int32_t imm32);
+ void sbbl(Register dst, Address src);
+ void sbbl(Register dst, Register src);
+
+ void sbbq(Address dst, int32_t imm32);
+ void sbbq(Register dst, int32_t imm32);
+ void sbbq(Register dst, Address src);
+ void sbbq(Register dst, Register src);
+
+ void setb(Condition cc, Register dst);
+
+ void shldl(Register dst, Register src);
+
+ void shll(Register dst, int imm8);
+ void shll(Register dst);
+
+ void shlq(Register dst, int imm8);
+ void shlq(Register dst);
+
+ void shrdl(Register dst, Register src);
+
+ void shrl(Register dst, int imm8);
+ void shrl(Register dst);
+
+ void shrq(Register dst, int imm8);
+ void shrq(Register dst);
+
+ void smovl(); // QQQ generic?
+
+ // Compute Square Root of Scalar Double-Precision Floating-Point Value
+ void sqrtsd(XMMRegister dst, Address src);
+ void sqrtsd(XMMRegister dst, XMMRegister src);
+
+ void std() { emit_byte(0xfd); }
+
+ void stmxcsr( Address dst );
+
+ void subl(Address dst, int32_t imm32);
+ void subl(Address dst, Register src);
+ void subl(Register dst, int32_t imm32);
+ void subl(Register dst, Address src);
+ void subl(Register dst, Register src);
+
+ void subq(Address dst, int32_t imm32);
+ void subq(Address dst, Register src);
+ void subq(Register dst, int32_t imm32);
+ void subq(Register dst, Address src);
+ void subq(Register dst, Register src);
+
+
+ // Subtract Scalar Double-Precision Floating-Point Values
+ void subsd(XMMRegister dst, Address src);
+ void subsd(XMMRegister dst, XMMRegister src);
+
+ // Subtract Scalar Single-Precision Floating-Point Values
+ void subss(XMMRegister dst, Address src);
+ void subss(XMMRegister dst, XMMRegister src);
+
+ void testb(Register dst, int imm8);
+
+ void testl(Register dst, int32_t imm32);
+ void testl(Register dst, Register src);
+ void testl(Register dst, Address src);
+
+ void testq(Register dst, int32_t imm32);
+ void testq(Register dst, Register src);
+
+
+ // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
+ void ucomisd(XMMRegister dst, Address src);
+ void ucomisd(XMMRegister dst, XMMRegister src);
+
+ // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
+ void ucomiss(XMMRegister dst, Address src);
+ void ucomiss(XMMRegister dst, XMMRegister src);
+
+ void xaddl(Address dst, Register src);
+
+ void xaddq(Address dst, Register src);
+
+ void xchgl(Register reg, Address adr);
+ void xchgl(Register dst, Register src);
+
+ void xchgq(Register reg, Address adr);
+ void xchgq(Register dst, Register src);
+
+ void xorl(Register dst, int32_t imm32);
+ void xorl(Register dst, Address src);
+ void xorl(Register dst, Register src);
+
+ void xorq(Register dst, Address src);
+ void xorq(Register dst, Register src);
+
+ // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
+ void xorpd(XMMRegister dst, Address src);
+ void xorpd(XMMRegister dst, XMMRegister src);
+
+ // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
+ void xorps(XMMRegister dst, Address src);
+ void xorps(XMMRegister dst, XMMRegister src);
+
+ void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
+};
+
+
+// MacroAssembler extends Assembler by frequently used macros.
+//
+// Instructions for which a 'better' code sequence exists depending
+// on arguments should also go in here.
+
+class MacroAssembler: public Assembler {
+ friend class LIR_Assembler;
+ protected:
+
+ Address as_Address(AddressLiteral adr);
+ Address as_Address(ArrayAddress adr);
+
+ // Support for VM calls
+ //
+ // This is the base routine called by the different versions of call_VM_leaf. The interpreter
+ // may customize this version by overriding it for its purposes (e.g., to save/restore
+ // additional registers when doing a VM call).
+#ifdef CC_INTERP
+ // c++ interpreter never wants to use interp_masm version of call_VM
+ #define VIRTUAL
+#else
+ #define VIRTUAL virtual
+#endif
+
+ VIRTUAL void call_VM_leaf_base(
+ address entry_point, // the entry point
+ int number_of_arguments // the number of arguments to pop after the call
+ );
+
+ // This is the base routine called by the different versions of call_VM. The interpreter
+ // may customize this version by overriding it for its purposes (e.g., to save/restore
+ // additional registers when doing a VM call).
+ //
+ // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
+ // returns the register which contains the thread upon return. If a thread register has been
+ // specified, the return value will correspond to that register. If no last_java_sp is specified
+ // (noreg) than rsp will be used instead.
+ VIRTUAL void call_VM_base( // returns the register containing the thread upon return
+ Register oop_result, // where an oop-result ends up if any; use noreg otherwise
+ Register java_thread, // the thread if computed before ; use noreg otherwise
+ Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
+ address entry_point, // the entry point
+ int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
+ bool check_exceptions // whether to check for pending exceptions after return
+ );
+
+ // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
+ // The implementation is only non-empty for the InterpreterMacroAssembler,
+ // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
+ virtual void check_and_handle_popframe(Register java_thread);
+ virtual void check_and_handle_earlyret(Register java_thread);
+
+ void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
+
+ // helpers for FPU flag access
+ // tmp is a temporary register, if none is available use noreg
+ void save_rax (Register tmp);
+ void restore_rax(Register tmp);
+
+ public:
+ MacroAssembler(CodeBuffer* code) : Assembler(code) {}
+
+ // Support for NULL-checks
+ //
+ // Generates code that causes a NULL OS exception if the content of reg is NULL.
+ // If the accessed location is M[reg + offset] and the offset is known, provide the
+ // offset. No explicit code generation is needed if the offset is within a certain
+ // range (0 <= offset <= page_size).
+
+ void null_check(Register reg, int offset = -1);
+ static bool needs_explicit_null_check(intptr_t offset);
+
+ // Required platform-specific helpers for Label::patch_instructions.
+ // They _shadow_ the declarations in AbstractAssembler, which are undefined.
+ void pd_patch_instruction(address branch, address target);
+#ifndef PRODUCT
+ static void pd_print_patched_instruction(address branch);
+#endif
+
+ // The following 4 methods return the offset of the appropriate move instruction
+
+ // Support for fast byte/word loading with zero extension (depending on particular CPU)
+ int load_unsigned_byte(Register dst, Address src);
+ int load_unsigned_word(Register dst, Address src);
+
+ // Support for fast byte/word loading with sign extension (depending on particular CPU)
+ int load_signed_byte(Register dst, Address src);
+ int load_signed_word(Register dst, Address src);
+
+ // Support for sign-extension (hi:lo = extend_sign(lo))
+ void extend_sign(Register hi, Register lo);
+
+ // Support for inc/dec with optimal instruction selection depending on value
+
+ void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
+ void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
+
+ void decrementl(Address dst, int value = 1);
+ void decrementl(Register reg, int value = 1);
+
+ void decrementq(Register reg, int value = 1);
+ void decrementq(Address dst, int value = 1);
+
+ void incrementl(Address dst, int value = 1);
+ void incrementl(Register reg, int value = 1);
+
+ void incrementq(Register reg, int value = 1);
+ void incrementq(Address dst, int value = 1);
+
+
+ // Support optimal SSE move instructions.
+ void movflt(XMMRegister dst, XMMRegister src) {
+ if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
+ else { movss (dst, src); return; }
+ }
+ void movflt(XMMRegister dst, Address src) { movss(dst, src); }
+ void movflt(XMMRegister dst, AddressLiteral src);
+ void movflt(Address dst, XMMRegister src) { movss(dst, src); }
+
+ void movdbl(XMMRegister dst, XMMRegister src) {
+ if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
+ else { movsd (dst, src); return; }
+ }
+
+ void movdbl(XMMRegister dst, AddressLiteral src);
+
+ void movdbl(XMMRegister dst, Address src) {
+ if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
+ else { movlpd(dst, src); return; }
+ }
+ void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
+
+ void incrementl(AddressLiteral dst);
+ void incrementl(ArrayAddress dst);
+
+ // Alignment
+ void align(int modulus);
+
+ // Misc
+ void fat_nop(); // 5 byte nop
+
+ // Stack frame creation/removal
+ void enter();
+ void leave();
+
+ // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
+ // The pointer will be loaded into the thread register.
+ void get_thread(Register thread);
+
+ // Support for VM calls
+ //
+ // It is imperative that all calls into the VM are handled via the call_VM macros.
+ // They make sure that the stack linkage is setup correctly. call_VM's correspond
+ // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
+
+
+ void call_VM(Register oop_result,
+ address entry_point,
+ bool check_exceptions = true);
+ void call_VM(Register oop_result,
+ address entry_point,
+ Register arg_1,
+ bool check_exceptions = true);
+ void call_VM(Register oop_result,
+ address entry_point,
+ Register arg_1, Register arg_2,
+ bool check_exceptions = true);
+ void call_VM(Register oop_result,
+ address entry_point,
+ Register arg_1, Register arg_2, Register arg_3,
+ bool check_exceptions = true);
+
+ // Overloadings with last_Java_sp
+ void call_VM(Register oop_result,
+ Register last_java_sp,
+ address entry_point,
+ int number_of_arguments = 0,
+ bool check_exceptions = true);
+ void call_VM(Register oop_result,
+ Register last_java_sp,
+ address entry_point,
+ Register arg_1, bool
+ check_exceptions = true);
+ void call_VM(Register oop_result,
+ Register last_java_sp,
+ address entry_point,
+ Register arg_1, Register arg_2,
+ bool check_exceptions = true);
+ void call_VM(Register oop_result,
+ Register last_java_sp,
+ address entry_point,
+ Register arg_1, Register arg_2, Register arg_3,
+ bool check_exceptions = true);
+
+ void call_VM_leaf(address entry_point,
+ int number_of_arguments = 0);
+ void call_VM_leaf(address entry_point,
+ Register arg_1);
+ void call_VM_leaf(address entry_point,
+ Register arg_1, Register arg_2);
+ void call_VM_leaf(address entry_point,
+ Register arg_1, Register arg_2, Register arg_3);
+
+ // last Java Frame (fills frame anchor)
+ void set_last_Java_frame(Register thread,
+ Register last_java_sp,
+ Register last_java_fp,
+ address last_java_pc);
+
+ // thread in the default location (r15_thread on 64bit)
+ void set_last_Java_frame(Register last_java_sp,
+ Register last_java_fp,
+ address last_java_pc);
+
+ void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
+
+ // thread in the default location (r15_thread on 64bit)
+ void reset_last_Java_frame(bool clear_fp, bool clear_pc);
+
+ // Stores
+ void store_check(Register obj); // store check for obj - register is destroyed afterwards
+ void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
+
+ // split store_check(Register obj) to enhance instruction interleaving
+ void store_check_part_1(Register obj);
+ void store_check_part_2(Register obj);
+
+ // C 'boolean' to Java boolean: x == 0 ? 0 : 1
+ void c2bool(Register x);
+
+ // C++ bool manipulation
+
+ void movbool(Register dst, Address src);
+ void movbool(Address dst, bool boolconst);
+ void movbool(Address dst, Register src);
+ void testbool(Register dst);
+
+ // oop manipulations
+ void load_klass(Register dst, Register src);
+ void store_klass(Register dst, Register src);
+
+ void load_prototype_header(Register dst, Register src);
+
+#ifdef _LP64
+ void store_klass_gap(Register dst, Register src);
+
+ void load_heap_oop(Register dst, Address src);
+ void store_heap_oop(Address dst, Register src);
+ void encode_heap_oop(Register r);
+ void decode_heap_oop(Register r);
+ void encode_heap_oop_not_null(Register r);
+ void decode_heap_oop_not_null(Register r);
+ void encode_heap_oop_not_null(Register dst, Register src);
+ void decode_heap_oop_not_null(Register dst, Register src);
+
+ void set_narrow_oop(Register dst, jobject obj);
+
+ // if heap base register is used - reinit it with the correct value
+ void reinit_heapbase();
+#endif // _LP64
+
+ // Int division/remainder for Java
+ // (as idivl, but checks for special case as described in JVM spec.)
+ // returns idivl instruction offset for implicit exception handling
+ int corrected_idivl(Register reg);
+
+ // Long division/remainder for Java
+ // (as idivq, but checks for special case as described in JVM spec.)
+ // returns idivq instruction offset for implicit exception handling
+ int corrected_idivq(Register reg);
+
+ void int3();
+
+ // Long operation macros for a 32bit cpu
+ // Long negation for Java
+ void lneg(Register hi, Register lo);
+
+ // Long multiplication for Java
+ // (destroys contents of eax, ebx, ecx and edx)
+ void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
+
+ // Long shifts for Java
+ // (semantics as described in JVM spec.)
+ void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
+ void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
+
+ // Long compare for Java
+ // (semantics as described in JVM spec.)
+ void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
+
+
+ // misc
+
+ // Sign extension
+ void sign_extend_short(Register reg);
+ void sign_extend_byte(Register reg);
+
+ // Division by power of 2, rounding towards 0
+ void division_with_shift(Register reg, int shift_value);
+
+ // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
+ //
+ // CF (corresponds to C0) if x < y
+ // PF (corresponds to C2) if unordered
+ // ZF (corresponds to C3) if x = y
+ //
+ // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
+ // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
+ void fcmp(Register tmp);
+ // Variant of the above which allows y to be further down the stack
+ // and which only pops x and y if specified. If pop_right is
+ // specified then pop_left must also be specified.
+ void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
+
+ // Floating-point comparison for Java
+ // Compares the top-most stack entries on the FPU stack and stores the result in dst.
+ // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
+ // (semantics as described in JVM spec.)
+ void fcmp2int(Register dst, bool unordered_is_less);
+ // Variant of the above which allows y to be further down the stack
+ // and which only pops x and y if specified. If pop_right is
+ // specified then pop_left must also be specified.
+ void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
+
+ // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
+ // tmp is a temporary register, if none is available use noreg
+ void fremr(Register tmp);
+
+
+ // same as fcmp2int, but using SSE2
+ void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
+ void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
+
+ // Inlined sin/cos generator for Java; must not use CPU instruction
+ // directly on Intel as it does not have high enough precision
+ // outside of the range [-pi/4, pi/4]. Extra argument indicate the
+ // number of FPU stack slots in use; all but the topmost will
+ // require saving if a slow case is necessary. Assumes argument is
+ // on FP TOS; result is on FP TOS. No cpu registers are changed by
+ // this code.
+ void trigfunc(char trig, int num_fpu_regs_in_use = 1);
+
+ // branch to L if FPU flag C2 is set/not set
+ // tmp is a temporary register, if none is available use noreg
+ void jC2 (Register tmp, Label& L);
+ void jnC2(Register tmp, Label& L);
+
+ // Pop ST (ffree & fincstp combined)
+ void fpop();
+
+ // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
+ void push_fTOS();
+
+ // pops double TOS element from CPU stack and pushes on FPU stack
+ void pop_fTOS();
+
+ void empty_FPU_stack();
+
+ void push_IU_state();
+ void pop_IU_state();
+
+ void push_FPU_state();
+ void pop_FPU_state();
+
+ void push_CPU_state();
+ void pop_CPU_state();
+
+ // Round up to a power of two
+ void round_to(Register reg, int modulus);
+
+ // Callee saved registers handling
+ void push_callee_saved_registers();
+ void pop_callee_saved_registers();
+
+ // allocation
+ void eden_allocate(
+ Register obj, // result: pointer to object after successful allocation
+ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
+ int con_size_in_bytes, // object size in bytes if known at compile time
+ Register t1, // temp register
+ Label& slow_case // continuation point if fast allocation fails
+ );
+ void tlab_allocate(
+ Register obj, // result: pointer to object after successful allocation
+ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
+ int con_size_in_bytes, // object size in bytes if known at compile time
+ Register t1, // temp register
+ Register t2, // temp register
+ Label& slow_case // continuation point if fast allocation fails
+ );
+ void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
+
+ //----
+ void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
+
+ // Debugging
+
+ // only if +VerifyOops
+ void verify_oop(Register reg, const char* s = "broken oop");
+ void verify_oop_addr(Address addr, const char * s = "broken oop addr");
+
+ // only if +VerifyFPU
+ void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
+
+ // prints msg, dumps registers and stops execution
+ void stop(const char* msg);
+
+ // prints msg and continues
+ void warn(const char* msg);
+
+ static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
+ static void debug64(char* msg, int64_t pc, int64_t regs[]);
+
+ void os_breakpoint();
+
+ void untested() { stop("untested"); }
+
+ void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); }
+
+ void should_not_reach_here() { stop("should not reach here"); }
+
+ void print_CPU_state();
+
+ // Stack overflow checking
+ void bang_stack_with_offset(int offset) {
+ // stack grows down, caller passes positive offset
+ assert(offset > 0, "must bang with negative offset");
+ movl(Address(rsp, (-offset)), rax);
+ }
+
+ // Writes to stack successive pages until offset reached to check for
+ // stack overflow + shadow pages. Also, clobbers tmp
+ void bang_stack_size(Register size, Register tmp);
+
+ // Support for serializing memory accesses between threads
+ void serialize_memory(Register thread, Register tmp);
+
+ void verify_tlab();
+
+ // Biased locking support
+ // lock_reg and obj_reg must be loaded up with the appropriate values.
+ // swap_reg must be rax, and is killed.
+ // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
+ // be killed; if not supplied, push/pop will be used internally to
+ // allocate a temporary (inefficient, avoid if possible).
+ // Optional slow case is for implementations (interpreter and C1) which branch to
+ // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
+ // Returns offset of first potentially-faulting instruction for null
+ // check info (currently consumed only by C1). If
+ // swap_reg_contains_mark is true then returns -1 as it is assumed
+ // the calling code has already passed any potential faults.
+ int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
+ bool swap_reg_contains_mark,
+ Label& done, Label* slow_case = NULL,
+ BiasedLockingCounters* counters = NULL);
+ void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
+
+
+ Condition negate_condition(Condition cond);
+
+ // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
+ // operands. In general the names are modified to avoid hiding the instruction in Assembler
+ // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
+ // here in MacroAssembler. The major exception to this rule is call
+
+ // Arithmetics
+
+
+ void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
+ void addptr(Address dst, Register src);
+
+ void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
+ void addptr(Register dst, int32_t src);
+ void addptr(Register dst, Register src);
+
+ void andptr(Register dst, int32_t src);
+ void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
+
+ void cmp8(AddressLiteral src1, int imm);
+
+ // renamed to drag out the casting of address to int32_t/intptr_t
+ void cmp32(Register src1, int32_t imm);
+
+ void cmp32(AddressLiteral src1, int32_t imm);
+ // compare reg - mem, or reg - &mem
+ void cmp32(Register src1, AddressLiteral src2);
+
+ void cmp32(Register src1, Address src2);
+
+#ifndef _LP64
+ void cmpoop(Address dst, jobject obj);
+ void cmpoop(Register dst, jobject obj);
+#endif // _LP64
+
+ // NOTE src2 must be the lval. This is NOT an mem-mem compare
+ void cmpptr(Address src1, AddressLiteral src2);
+
+ void cmpptr(Register src1, AddressLiteral src2);
+
+ void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+ void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+ // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+
+ void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+ void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
+
+ // cmp64 to avoild hiding cmpq
+ void cmp64(Register src1, AddressLiteral src);
+
+ void cmpxchgptr(Register reg, Address adr);
+
+ void locked_cmpxchgptr(Register reg, AddressLiteral adr);
+
+
+ void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
+
+
+ void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
+
+ void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
+
+ void shlptr(Register dst, int32_t shift);
+ void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
+
+ void shrptr(Register dst, int32_t shift);
+ void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
+
+ void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
+ void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
+
+ void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
+
+ void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
+ void subptr(Register dst, int32_t src);
+ void subptr(Register dst, Register src);
+
+
+ void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
+ void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
+
+ void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
+ void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
+
+ void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
+
+
+
+ // Helper functions for statistics gathering.
+ // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
+ void cond_inc32(Condition cond, AddressLiteral counter_addr);
+ // Unconditional atomic increment.
+ void atomic_incl(AddressLiteral counter_addr);
+
+ void lea(Register dst, AddressLiteral adr);
+ void lea(Address dst, AddressLiteral adr);
+ void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
+
+ void leal32(Register dst, Address src) { leal(dst, src); }
+
+ void test32(Register src1, AddressLiteral src2);
+
+ void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
+ void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
+ void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
+
+ void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
+ void testptr(Register src1, Register src2);
+
+ void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
+ void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
+
+ // Calls
+
+ void call(Label& L, relocInfo::relocType rtype);
+ void call(Register entry);
+
+ // NOTE: this call tranfers to the effective address of entry NOT
+ // the address contained by entry. This is because this is more natural
+ // for jumps/calls.
+ void call(AddressLiteral entry);
+
+ // Jumps
+
+ // NOTE: these jumps tranfer to the effective address of dst NOT
+ // the address contained by dst. This is because this is more natural
+ // for jumps/calls.
+ void jump(AddressLiteral dst);
+ void jump_cc(Condition cc, AddressLiteral dst);
+
+ // 32bit can do a case table jump in one instruction but we no longer allow the base
+ // to be installed in the Address class. This jump will tranfers to the address
+ // contained in the location described by entry (not the address of entry)
+ void jump(ArrayAddress entry);
+
+ // Floating
+
+ void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
+ void andpd(XMMRegister dst, AddressLiteral src);
+
+ void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
+ void comiss(XMMRegister dst, AddressLiteral src);
+
+ void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
+ void comisd(XMMRegister dst, AddressLiteral src);
+
+ void fldcw(Address src) { Assembler::fldcw(src); }
+ void fldcw(AddressLiteral src);
+
+ void fld_s(int index) { Assembler::fld_s(index); }
+ void fld_s(Address src) { Assembler::fld_s(src); }
+ void fld_s(AddressLiteral src);
+
+ void fld_d(Address src) { Assembler::fld_d(src); }
+ void fld_d(AddressLiteral src);
+
+ void fld_x(Address src) { Assembler::fld_x(src); }
+ void fld_x(AddressLiteral src);
+
+ void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
+ void ldmxcsr(AddressLiteral src);
+
+private:
+ // these are private because users should be doing movflt/movdbl
+
+ void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
+ void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
+ void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
+ void movss(XMMRegister dst, AddressLiteral src);
+
+ void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
+ void movlpd(XMMRegister dst, AddressLiteral src);
+
+public:
+
+ void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
+ void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
+ void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
+ void movsd(XMMRegister dst, AddressLiteral src);
+
+ void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
+ void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
+ void ucomiss(XMMRegister dst, AddressLiteral src);
+
+ void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
+ void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
+ void ucomisd(XMMRegister dst, AddressLiteral src);
+
+ // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
+ void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
+ void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
+ void xorpd(XMMRegister dst, AddressLiteral src);
+
+ // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
+ void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
+ void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
+ void xorps(XMMRegister dst, AddressLiteral src);
+
+ // Data
+
+ void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
+
+ void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
+ void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
+
+ void movoop(Register dst, jobject obj);
+ void movoop(Address dst, jobject obj);
+
+ void movptr(ArrayAddress dst, Register src);
+ // can this do an lea?
+ void movptr(Register dst, ArrayAddress src);
+
+ void movptr(Register dst, Address src);
+
+ void movptr(Register dst, AddressLiteral src);
+
+ void movptr(Register dst, intptr_t src);
+ void movptr(Register dst, Register src);
+ void movptr(Address dst, intptr_t src);
+
+ void movptr(Address dst, Register src);
+
+#ifdef _LP64
+ // Generally the next two are only used for moving NULL
+ // Although there are situations in initializing the mark word where
+ // they could be used. They are dangerous.
+
+ // They only exist on LP64 so that int32_t and intptr_t are not the same
+ // and we have ambiguous declarations.
+
+ void movptr(Address dst, int32_t imm32);
+ void movptr(Register dst, int32_t imm32);
+#endif // _LP64
+
+ // to avoid hiding movl
+ void mov32(AddressLiteral dst, Register src);
+ void mov32(Register dst, AddressLiteral src);
+
+ // to avoid hiding movb
+ void movbyte(ArrayAddress dst, int src);
+
+ // Can push value or effective address
+ void pushptr(AddressLiteral src);
+
+ void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
+ void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
+
+ void pushoop(jobject obj);
+
+ // sign extend as need a l to ptr sized element
+ void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
+ void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
+
+
+#undef VIRTUAL
+
+};
+
+/**
+ * class SkipIfEqual:
+ *
+ * Instantiating this class will result in assembly code being output that will
+ * jump around any code emitted between the creation of the instance and it's
+ * automatic destruction at the end of a scope block, depending on the value of
+ * the flag passed to the constructor, which will be checked at run-time.
+ */
+class SkipIfEqual {
+ private:
+ MacroAssembler* _masm;
+ Label _label;
+
+ public:
+ SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
+ ~SkipIfEqual();
+};
+
+#ifdef ASSERT
+inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
+#endif