summaryrefslogtreecommitdiff
path: root/core/src/main/java/org/elasticsearch/common/geo/builders/PolygonBuilder.java
blob: 026fc9aa1701a7f80834dc9e12e3bb9e078ad513 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*
 * Licensed to Elasticsearch under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.elasticsearch.common.geo.builders;

import com.spatial4j.core.exception.InvalidShapeException;
import com.spatial4j.core.shape.Shape;
import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.Geometry;
import com.vividsolutions.jts.geom.GeometryFactory;
import com.vividsolutions.jts.geom.LinearRing;
import com.vividsolutions.jts.geom.MultiPolygon;
import com.vividsolutions.jts.geom.Polygon;
import org.elasticsearch.common.collect.Tuple;
import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.common.util.set.Sets;
import org.elasticsearch.common.xcontent.XContentBuilder;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Locale;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicBoolean;

/**
 * The {@link PolygonBuilder} implements the groundwork to create polygons. This contains
 * Methods to wrap polygons at the dateline and building shapes from the data held by the
 * builder.
 */
public class PolygonBuilder extends ShapeBuilder {

    public static final GeoShapeType TYPE = GeoShapeType.POLYGON;
    public static final PolygonBuilder PROTOTYPE = new PolygonBuilder();

    private static final Coordinate[][] EMPTY = new Coordinate[0][];

    private Orientation orientation = Orientation.RIGHT;

    // line string defining the shell of the polygon
    private LineStringBuilder shell;

    // List of line strings defining the holes of the polygon
    private final ArrayList<LineStringBuilder> holes = new ArrayList<>();

    public PolygonBuilder() {
        this(Orientation.RIGHT);
    }

    public PolygonBuilder(Orientation orientation) {
        this(new ArrayList<Coordinate>(), orientation);
    }

    public PolygonBuilder(ArrayList<Coordinate> points, Orientation orientation) {
        this.orientation = orientation;
        this.shell = new LineStringBuilder().points(points);
    }

    public Orientation orientation() {
        return this.orientation;
    }

    public PolygonBuilder point(double longitude, double latitude) {
        shell.point(longitude, latitude);
        return this;
    }

    /**
     * Add a point to the shell of the polygon
     * @param coordinate coordinate of the new point
     * @return this
     */
    public PolygonBuilder point(Coordinate coordinate) {
        shell.point(coordinate);
        return this;
    }

    /**
     * Add an array of points to the shell of the polygon
     * @param coordinates coordinates of the new points to add
     * @return this
     */
    public PolygonBuilder points(Coordinate...coordinates) {
        shell.points(coordinates);
        return this;
    }

    /**
     * Add a new hole to the polygon
     * @param hole linear ring defining the hole
     * @return this
     */
    public PolygonBuilder hole(LineStringBuilder hole) {
        holes.add(hole);
        return this;
    }

    /**
     * @return the list of holes defined for this polygon
     */
    public List<LineStringBuilder> holes() {
        return this.holes;
    }

    /**
     * @return the list of points of the shell for this polygon
     */
    public LineStringBuilder shell() {
        return this.shell;
    }

    /**
     * Close the shell of the polygon
     */
    public PolygonBuilder close() {
        shell.close();
        return this;
    }

    /**
     * Validates only 1 vertex is tangential (shared) between the interior and exterior of a polygon
     */
    protected void validateHole(LineStringBuilder shell, LineStringBuilder hole) {
        HashSet<Coordinate> exterior = Sets.newHashSet(shell.points);
        HashSet<Coordinate> interior = Sets.newHashSet(hole.points);
        exterior.retainAll(interior);
        if (exterior.size() >= 2) {
            throw new InvalidShapeException("Invalid polygon, interior cannot share more than one point with the exterior");
        }
    }

    /**
     * The coordinates setup by the builder will be assembled to a polygon. The result will consist of
     * a set of polygons. Each of these components holds a list of linestrings defining the polygon: the
     * first set of coordinates will be used as the shell of the polygon. The others are defined to holes
     * within the polygon.
     * This Method also wraps the polygons at the dateline. In order to this fact the result may
     * contains more polygons and less holes than defined in the builder it self.
     *
     * @return coordinates of the polygon
     */
    public Coordinate[][][] coordinates() {
        int numEdges = shell.points.size()-1; // Last point is repeated
        for (int i = 0; i < holes.size(); i++) {
            numEdges += holes.get(i).points.size()-1;
            validateHole(shell, this.holes.get(i));
        }

        Edge[] edges = new Edge[numEdges];
        Edge[] holeComponents = new Edge[holes.size()];
        final AtomicBoolean translated = new AtomicBoolean(false);
        int offset = createEdges(0, orientation, shell, null, edges, 0, translated);
        for (int i = 0; i < holes.size(); i++) {
            int length = createEdges(i+1, orientation, shell, this.holes.get(i), edges, offset, translated);
            holeComponents[i] = edges[offset];
            offset += length;
        }

        int numHoles = holeComponents.length;

        numHoles = merge(edges, 0, intersections(+DATELINE, edges), holeComponents, numHoles);
        numHoles = merge(edges, 0, intersections(-DATELINE, edges), holeComponents, numHoles);

        return compose(edges, holeComponents, numHoles);
    }

    @Override
    public Shape build() {
        return jtsGeometry(buildGeometry(FACTORY, wrapdateline));
    }

    protected XContentBuilder coordinatesArray(XContentBuilder builder, Params params) throws IOException {
        shell.coordinatesToXcontent(builder, true);
        for(LineStringBuilder hole : holes) {
            hole.coordinatesToXcontent(builder, true);
        }
        return builder;
    }

    @Override
    public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
        builder.startObject();
        builder.field(FIELD_TYPE, TYPE.shapeName());
        builder.field(FIELD_ORIENTATION, orientation.name().toLowerCase(Locale.ROOT));
        builder.startArray(FIELD_COORDINATES);
        coordinatesArray(builder, params);
        builder.endArray();
        builder.endObject();
        return builder;
    }

    public Geometry buildGeometry(GeometryFactory factory, boolean fixDateline) {
        if(fixDateline) {
            Coordinate[][][] polygons = coordinates();
            return polygons.length == 1
                    ? polygon(factory, polygons[0])
                    : multipolygon(factory, polygons);
        } else {
            return toPolygon(factory);
        }
    }

    public Polygon toPolygon() {
        return toPolygon(FACTORY);
    }

    protected Polygon toPolygon(GeometryFactory factory) {
        final LinearRing shell = linearRing(factory, this.shell.points);
        final LinearRing[] holes = new LinearRing[this.holes.size()];
        Iterator<LineStringBuilder> iterator = this.holes.iterator();
        for (int i = 0; iterator.hasNext(); i++) {
            holes[i] = linearRing(factory, iterator.next().points);
        }
        return factory.createPolygon(shell, holes);
    }

    protected static LinearRing linearRing(GeometryFactory factory, ArrayList<Coordinate> coordinates) {
        return factory.createLinearRing(coordinates.toArray(new Coordinate[coordinates.size()]));
    }

    @Override
    public GeoShapeType type() {
        return TYPE;
    }

    protected static Polygon polygon(GeometryFactory factory, Coordinate[][] polygon) {
        LinearRing shell = factory.createLinearRing(polygon[0]);
        LinearRing[] holes;

        if(polygon.length > 1) {
            holes = new LinearRing[polygon.length-1];
            for (int i = 0; i < holes.length; i++) {
                holes[i] = factory.createLinearRing(polygon[i+1]);
            }
        } else {
            holes = null;
        }
        return factory.createPolygon(shell, holes);
    }

    /**
     * Create a Multipolygon from a set of coordinates. Each primary array contains a polygon which
     * in turn contains an array of linestrings. These line Strings are represented as an array of
     * coordinates. The first linestring will be the shell of the polygon the others define holes
     * within the polygon.
     *
     * @param factory {@link GeometryFactory} to use
     * @param polygons definition of polygons
     * @return a new Multipolygon
     */
    protected static MultiPolygon multipolygon(GeometryFactory factory, Coordinate[][][] polygons) {
        Polygon[] polygonSet = new Polygon[polygons.length];
        for (int i = 0; i < polygonSet.length; i++) {
            polygonSet[i] = polygon(factory, polygons[i]);
        }
        return factory.createMultiPolygon(polygonSet);
    }

    /**
     * This method sets the component id of all edges in a ring to a given id and shifts the
     * coordinates of this component according to the dateline
     *
     * @param edge An arbitrary edge of the component
     * @param id id to apply to the component
     * @param edges a list of edges to which all edges of the component will be added (could be <code>null</code>)
     * @return number of edges that belong to this component
     */
    private static int component(final Edge edge, final int id, final ArrayList<Edge> edges) {
        // find a coordinate that is not part of the dateline
        Edge any = edge;
        while(any.coordinate.x == +DATELINE || any.coordinate.x == -DATELINE) {
            if((any = any.next) == edge) {
                break;
            }
        }

        double shiftOffset = any.coordinate.x > DATELINE ? DATELINE : (any.coordinate.x < -DATELINE ? -DATELINE : 0);
        if (debugEnabled()) {
            LOGGER.debug("shift: {[]}", shiftOffset);
        }

        // run along the border of the component, collect the
        // edges, shift them according to the dateline and
        // update the component id
        int length = 0, connectedComponents = 0;
        // if there are two connected components, splitIndex keeps track of where to split the edge array
        // start at 1 since the source coordinate is shared
        int splitIndex = 1;
        Edge current = edge;
        Edge prev = edge;
        // bookkeep the source and sink of each visited coordinate
        HashMap<Coordinate, Tuple<Edge, Edge>> visitedEdge = new HashMap<>();
        do {
            current.coordinate = shift(current.coordinate, shiftOffset);
            current.component = id;

            if (edges != null) {
                // found a closed loop - we have two connected components so we need to slice into two distinct components
                if (visitedEdge.containsKey(current.coordinate)) {
                    if (connectedComponents > 0 && current.next != edge) {
                        throw new InvalidShapeException("Shape contains more than one shared point");
                    }

                    // a negative id flags the edge as visited for the edges(...) method.
                    // since we're splitting connected components, we want the edges method to visit
                    // the newly separated component
                    final int visitID = -id;
                    Edge firstAppearance = visitedEdge.get(current.coordinate).v2();
                    // correct the graph pointers by correcting the 'next' pointer for both the
                    // first appearance and this appearance of the edge
                    Edge temp = firstAppearance.next;
                    firstAppearance.next = current.next;
                    current.next = temp;
                    current.component = visitID;
                    // backtrack until we get back to this coordinate, setting the visit id to
                    // a non-visited value (anything positive)
                    do {
                        prev.component = visitID;
                        prev = visitedEdge.get(prev.coordinate).v1();
                        ++splitIndex;
                    } while (!current.coordinate.equals(prev.coordinate));
                    ++connectedComponents;
                } else {
                    visitedEdge.put(current.coordinate, new Tuple<Edge, Edge>(prev, current));
                }
                edges.add(current);
                prev = current;
            }
            length++;
        } while(connectedComponents == 0 && (current = current.next) != edge);

        return (splitIndex != 1) ? length-splitIndex: length;
    }

    /**
     * Compute all coordinates of a component
     * @param component an arbitrary edge of the component
     * @param coordinates Array of coordinates to write the result to
     * @return the coordinates parameter
     */
    private static Coordinate[] coordinates(Edge component, Coordinate[] coordinates) {
        for (int i = 0; i < coordinates.length; i++) {
            coordinates[i] = (component = component.next).coordinate;
        }
        return coordinates;
    }

    private static Coordinate[][][] buildCoordinates(ArrayList<ArrayList<Coordinate[]>> components) {
        Coordinate[][][] result = new Coordinate[components.size()][][];
        for (int i = 0; i < result.length; i++) {
            ArrayList<Coordinate[]> component = components.get(i);
            result[i] = component.toArray(new Coordinate[component.size()][]);
        }

        if(debugEnabled()) {
            for (int i = 0; i < result.length; i++) {
                LOGGER.debug("Component {[]}:", i);
                for (int j = 0; j < result[i].length; j++) {
                    LOGGER.debug("\t" + Arrays.toString(result[i][j]));
                }
            }
        }

        return result;
    }

    private static Coordinate[][] holes(Edge[] holes, int numHoles) {
        if (numHoles == 0) {
            return EMPTY;
        }
        final Coordinate[][] points = new Coordinate[numHoles][];

        for (int i = 0; i < numHoles; i++) {
            int length = component(holes[i], -(i+1), null); // mark as visited by inverting the sign
            points[i] = coordinates(holes[i], new Coordinate[length+1]);
        }

        return points;
    }

    private static Edge[] edges(Edge[] edges, int numHoles, ArrayList<ArrayList<Coordinate[]>> components) {
        ArrayList<Edge> mainEdges = new ArrayList<>(edges.length);

        for (int i = 0; i < edges.length; i++) {
            if (edges[i].component >= 0) {
                int length = component(edges[i], -(components.size()+numHoles+1), mainEdges);
                ArrayList<Coordinate[]> component = new ArrayList<>();
                component.add(coordinates(edges[i], new Coordinate[length+1]));
                components.add(component);
            }
        }

        return mainEdges.toArray(new Edge[mainEdges.size()]);
    }

    private static Coordinate[][][] compose(Edge[] edges, Edge[] holes, int numHoles) {
        final ArrayList<ArrayList<Coordinate[]>> components = new ArrayList<>();
        assign(holes, holes(holes, numHoles), numHoles, edges(edges, numHoles, components), components);
        return buildCoordinates(components);
    }

    private static void assign(Edge[] holes, Coordinate[][] points, int numHoles, Edge[] edges, ArrayList<ArrayList<Coordinate[]>> components) {
        // Assign Hole to related components
        // To find the new component the hole belongs to all intersections of the
        // polygon edges with a vertical line are calculated. This vertical line
        // is an arbitrary point of the hole. The polygon edge next to this point
        // is part of the polygon the hole belongs to.
        if (debugEnabled()) {
            LOGGER.debug("Holes: " + Arrays.toString(holes));
        }
        for (int i = 0; i < numHoles; i++) {
            final Edge current = new Edge(holes[i].coordinate, holes[i].next);
            // the edge intersects with itself at its own coordinate.  We need intersect to be set this way so the binary search
            // will get the correct position in the edge list and therefore the correct component to add the hole
            current.intersect = current.coordinate;
            final int intersections = intersections(current.coordinate.x, edges);
            // if no intersection is found then the hole is not within the polygon, so
            // don't waste time calling a binary search
            final int pos;
            boolean sharedVertex = false;
            if (intersections == 0 || ((pos = Arrays.binarySearch(edges, 0, intersections, current, INTERSECTION_ORDER)) >= 0)
                            && !(sharedVertex = (edges[pos].intersect.compareTo(current.coordinate) == 0)) ) {
                throw new InvalidShapeException("Invalid shape: Hole is not within polygon");
            }
            final int index = -((sharedVertex) ? 0 : pos+2);
            final int component = -edges[index].component - numHoles - 1;

            if(debugEnabled()) {
                LOGGER.debug("\tposition ("+index+") of edge "+current+": " + edges[index]);
                LOGGER.debug("\tComponent: " + component);
                LOGGER.debug("\tHole intersections ("+current.coordinate.x+"): " + Arrays.toString(edges));
            }

            components.get(component).add(points[i]);
        }
    }

    private static int merge(Edge[] intersections, int offset, int length, Edge[] holes, int numHoles) {
        // Intersections appear pairwise. On the first edge the inner of
        // of the polygon is entered. On the second edge the outer face
        // is entered. Other kinds of intersections are discard by the
        // intersection function

        for (int i = 0; i < length; i += 2) {
            Edge e1 = intersections[offset + i + 0];
            Edge e2 = intersections[offset + i + 1];

            // If two segments are connected maybe a hole must be deleted
            // Since Edges of components appear pairwise we need to check
            // the second edge only (the first edge is either polygon or
            // already handled)
            if (e2.component > 0) {
                //TODO: Check if we could save the set null step
                numHoles--;
                holes[e2.component-1] = holes[numHoles];
                holes[numHoles] = null;
            }
            // only connect edges if intersections are pairwise
            // 1. per the comment above, the edge array is sorted by y-value of the intersection
            // with the dateline.  Two edges have the same y intercept when they cross the
            // dateline thus they appear sequentially (pairwise) in the edge array. Two edges
            // do not have the same y intercept when we're forming a multi-poly from a poly
            // that wraps the dateline (but there are 2 ordered intercepts).
            // The connect method creates a new edge for these paired edges in the linked list.
            // For boundary conditions (e.g., intersect but not crossing) there is no sibling edge
            // to connect. Thus the first logic check enforces the pairwise rule
            // 2. the second logic check ensures the two candidate edges aren't already connected by an
            //    existing edge along the dateline - this is necessary due to a logic change in
            //    ShapeBuilder.intersection that computes dateline edges as valid intersect points
            //    in support of OGC standards
            if (e1.intersect != Edge.MAX_COORDINATE && e2.intersect != Edge.MAX_COORDINATE
                    && !(e1.next.next.coordinate.equals3D(e2.coordinate) && Math.abs(e1.next.coordinate.x) == DATELINE
                    && Math.abs(e2.coordinate.x) == DATELINE) ) {
                connect(e1, e2);
            }
        }
        return numHoles;
    }

    private static void connect(Edge in, Edge out) {
        assert in != null && out != null;
        assert in != out;
        // Connecting two Edges by inserting the point at
        // dateline intersection and connect these by adding
        // two edges between this points. One per direction
        if(in.intersect != in.next.coordinate) {
            // NOTE: the order of the object creation is crucial here! Don't change it!
            // first edge has no point on dateline
            Edge e1 = new Edge(in.intersect, in.next);

            if(out.intersect != out.next.coordinate) {
                // second edge has no point on dateline
                Edge e2 = new Edge(out.intersect, out.next);
                in.next = new Edge(in.intersect, e2, in.intersect);
            } else {
                // second edge intersects with dateline
                in.next = new Edge(in.intersect, out.next, in.intersect);
            }
            out.next = new Edge(out.intersect, e1, out.intersect);
        } else if (in.next != out && in.coordinate != out.intersect) {
            // first edge intersects with dateline
            Edge e2 = new Edge(out.intersect, in.next, out.intersect);

            if(out.intersect != out.next.coordinate) {
                // second edge has no point on dateline
                Edge e1 = new Edge(out.intersect, out.next);
                in.next = new Edge(in.intersect, e1, in.intersect);

            } else {
                // second edge intersects with dateline
                in.next = new Edge(in.intersect, out.next, in.intersect);
            }
            out.next = e2;
        }
    }

    private static int createEdges(int component, Orientation orientation, LineStringBuilder shell,
                                   LineStringBuilder hole, Edge[] edges, int offset, final AtomicBoolean translated) {
        // inner rings (holes) have an opposite direction than the outer rings
        // XOR will invert the orientation for outer ring cases (Truth Table:, T/T = F, T/F = T, F/T = T, F/F = F)
        boolean direction = (component == 0 ^ orientation == Orientation.RIGHT);
        // set the points array accordingly (shell or hole)
        Coordinate[] points = (hole != null) ? hole.coordinates(false) : shell.coordinates(false);
        ring(component, direction, orientation == Orientation.LEFT, shell, points, 0, edges, offset, points.length-1, translated);
        return points.length-1;
    }

    /**
     * Create a connected list of a list of coordinates
     *
     * @param points
     *            array of point
     * @param offset
     *            index of the first point
     * @param length
     *            number of points
     * @return Array of edges
     */
    private static Edge[] ring(int component, boolean direction, boolean handedness, LineStringBuilder shell,
                                 Coordinate[] points, int offset, Edge[] edges, int toffset, int length, final AtomicBoolean translated) {
        // calculate the direction of the points:
        // find the point a the top of the set and check its
        // neighbors orientation. So direction is equivalent
        // to clockwise/counterclockwise
        final int top = top(points, offset, length);
        final int prev = (offset + ((top + length - 1) % length));
        final int next = (offset + ((top + 1) % length));
        boolean orientation = points[offset + prev].x > points[offset + next].x;

        // OGC requires shell as ccw (Right-Handedness) and holes as cw (Left-Handedness)
        // since GeoJSON doesn't specify (and doesn't need to) GEO core will assume OGC standards
        // thus if orientation is computed as cw, the logic will translate points across dateline
        // and convert to a right handed system

        // compute the bounding box and calculate range
        double[] range = range(points, offset, length);
        final double rng = range[1] - range[0];
        // translate the points if the following is true
        //   1.  shell orientation is cw and range is greater than a hemisphere (180 degrees) but not spanning 2 hemispheres
        //       (translation would result in a collapsed poly)
        //   2.  the shell of the candidate hole has been translated (to preserve the coordinate system)
        boolean incorrectOrientation = component == 0 && handedness != orientation;
        if ( (incorrectOrientation && (rng > DATELINE && rng != 2*DATELINE)) || (translated.get() && component != 0)) {
            translate(points);
            // flip the translation bit if the shell is being translated
            if (component == 0) {
                translated.set(true);
            }
            // correct the orientation post translation (ccw for shell, cw for holes)
            if (component == 0 || (component != 0 && handedness == orientation)) {
                orientation = !orientation;
            }
        }
        return concat(component, direction ^ orientation, points, offset, edges, toffset, length);
    }

    private static final int top(Coordinate[] points, int offset, int length) {
        int top = 0; // we start at 1 here since top points to 0
        for (int i = 1; i < length; i++) {
            if (points[offset + i].y < points[offset + top].y) {
                top = i;
            } else if (points[offset + i].y == points[offset + top].y) {
                if (points[offset + i].x < points[offset + top].x) {
                    top = i;
                }
            }
        }
        return top;
    }

    private static final double[] range(Coordinate[] points, int offset, int length) {
        double minX = points[0].x;
        double maxX = points[0].x;
        double minY = points[0].y;
        double maxY = points[0].y;
        // compute the bounding coordinates (@todo: cleanup brute force)
        for (int i = 1; i < length; ++i) {
            if (points[offset + i].x < minX) {
                minX = points[offset + i].x;
            }
            if (points[offset + i].x > maxX) {
                maxX = points[offset + i].x;
            }
            if (points[offset + i].y < minY) {
                minY = points[offset + i].y;
            }
            if (points[offset + i].y > maxY) {
                maxY = points[offset + i].y;
            }
        }
        return new double[] {minX, maxX, minY, maxY};
    }

    /**
     * Concatenate a set of points to a polygon
     *
     * @param component
     *            component id of the polygon
     * @param direction
     *            direction of the ring
     * @param points
     *            list of points to concatenate
     * @param pointOffset
     *            index of the first point
     * @param edges
     *            Array of edges to write the result to
     * @param edgeOffset
     *            index of the first edge in the result
     * @param length
     *            number of points to use
     * @return the edges creates
     */
    private static Edge[] concat(int component, boolean direction, Coordinate[] points, final int pointOffset, Edge[] edges, final int edgeOffset,
            int length) {
        assert edges.length >= length+edgeOffset;
        assert points.length >= length+pointOffset;
        edges[edgeOffset] = new Edge(points[pointOffset], null);
        for (int i = 1; i < length; i++) {
            if (direction) {
                edges[edgeOffset + i] = new Edge(points[pointOffset + i], edges[edgeOffset + i - 1]);
                edges[edgeOffset + i].component = component;
            } else if(!edges[edgeOffset + i - 1].coordinate.equals(points[pointOffset + i])) {
                edges[edgeOffset + i - 1].next = edges[edgeOffset + i] = new Edge(points[pointOffset + i], null);
                edges[edgeOffset + i - 1].component = component;
            } else {
                throw new InvalidShapeException("Provided shape has duplicate consecutive coordinates at: " + points[pointOffset + i]);
            }
        }

        if (direction) {
            edges[edgeOffset].setNext(edges[edgeOffset + length - 1]);
            edges[edgeOffset].component = component;
        } else {
            edges[edgeOffset + length - 1].setNext(edges[edgeOffset]);
            edges[edgeOffset + length - 1].component = component;
        }

        return edges;
    }

    /**
     * Transforms coordinates in the eastern hemisphere (-180:0) to a (180:360) range
     */
    private static void translate(Coordinate[] points) {
        for (Coordinate c : points) {
            if (c.x < 0) {
                c.x += 2*DATELINE;
            }
        }
    }

    @Override
    public int hashCode() {
        return Objects.hash(shell, holes, orientation);
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj) {
            return true;
        }
        if (obj == null || getClass() != obj.getClass()) {
            return false;
        }
        PolygonBuilder other = (PolygonBuilder) obj;
        return Objects.equals(shell, other.shell) &&
                Objects.equals(holes, other.holes) &&
                Objects.equals(orientation,  other.orientation);
    }

    @Override
    public void writeTo(StreamOutput out) throws IOException {
        orientation.writeTo(out);
        shell.writeTo(out);
        out.writeVInt(holes.size());
        for (LineStringBuilder hole : holes) {
            hole.writeTo(out);
        }
    }

    @Override
    public PolygonBuilder readFrom(StreamInput in) throws IOException {
        PolygonBuilder polyBuilder = new PolygonBuilder(Orientation.readFrom(in));
        polyBuilder.shell = LineStringBuilder.PROTOTYPE.readFrom(in);
        int holes = in.readVInt();
        for (int i = 0; i < holes; i++) {
            polyBuilder.hole(LineStringBuilder.PROTOTYPE.readFrom(in));
        }
        return polyBuilder;
    }
}