
ACPI Component Architecture

User Guide and Programmer
Reference

OS-Independent Kernel Subsystem, Debugger, and Utilities

Revision 5.21

January 14, 2014

ACPI Component Architecture User Guide and Programmer Reference

2

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual

property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability

whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to

fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not

intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for

future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The ACPI Component Architecture may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Copyright © 2000 – 2014 Intel Corporation

*Other brands and names are the property of their respective owners.

ACPI Component Architecture User Guide and Programmer Reference

3

Contents

1 Introduction -------------------------------- 14--

1.1 Document Structure ...14

1.2 Rationale and Justification ...14

1.3 Reference Documents ...15

1.4 Document History...15

1.5 Overview of the ACPI Component Architecture...17

2 Architecture Overview -- 19

2.1 Overview of the ACPICA Subsystem...19
2.1.1 OS-independent ACPICA Subsystem .. 19
2.1.2 Operating System Services Layer .. 20
2.1.3 Relationships Between Host OS, ACPICA, and Host OSL 21

2.1.3.1 General Architectural Model.. 21
2.1.3.2 Host Operating System Interaction ... 21
2.1.3.3 OS Services Layer Interaction .. 21
2.1.3.4 ACPICA Subsystem Interaction .. 21

2.2 Architecture of the ACPICA Subsystem ..22
2.2.1 ACPI Table Management.. 23
2.2.2 Early ACPI Table Access.. 23
2.2.3 AML Interpreter ... 23
2.2.4 Namespace Management... 24
2.2.5 Resource Management... 24
2.2.6 ACPI Hardware Management ... 24
2.2.7 Event Handling.. 24
2.2.8 Requests from Host OS to ACPICA Subsystem..................................... 25

2.3 Architecture of the OS Services Layer (OSL) ..25
2.3.1 Types of OSL Services ... 26
2.3.2 Requests from ACPICA Subsystem to OS ... 26

3 Design Details --- 28

3.1 ACPI Namespace Fundamentals...28
3.1.1 Named Objects ... 28
3.1.2 Scopes .. 28

3.1.2.1 Example Namespace Scopes, Names, and Objects 28
3.1.3 Predefined Objects ... 29
3.1.4 Logical Namespace Layout... 29

3.2 Execution Model...30
3.2.1 Initialization ... 30
3.2.2 Memory Allocation .. 31

3.2.2.1 Caller Allocates All Buffers.. 31
3.2.2.2 ACPI Allocates Return Buffers .. 31

3.2.3 Parameter Validation .. 32
3.2.4 Exception Handling ... 32
3.2.5 Multitasking and Reentrancy... 32
3.2.6 Event Handling.. 32

3.2.6.1 Fixed Events.. 33
3.2.6.2 General Purpose Events ... 33
3.2.6.3 Notify Events ... 33

3.2.7 Address Spaces and Operation Regions.. 33

ACPI Component Architecture User Guide and Programmer Reference

4

3.2.7.1 Installation of Address Space Handlers 34
3.2.7.2 ACPI-Defined Address Spaces ... 34
3.2.7.3 Sharing Resources between Device Drivers and AML 35

3.3 Policies and Philosophies ..37
3.3.1 External Interfaces .. 37

3.3.1.1 Exception Codes ... 37
3.3.1.2 Memory Buffers ... 37

3.3.2 Subsystem Initialization .. 38
3.3.2.1 ACPI Table Validation ... 38
3.3.2.2 Required ACPI Tables... 38

3.3.3 Major Design Decisions .. 38
3.3.3.1 Performance versus Code/Data Size...................................... 38
3.3.3.2 Object Management – No Garbage Collection 39

4 Implementation Details --- 40

4.1 Required Host OS Initialization Sequence...40
4.1.1 Bootload and Low Level Kernel Initialization .. 40
4.1.2 ACPICA Subsystem Initialization .. 40
4.1.3 Other OS Initialization ... 40
4.1.4 Device Enumeration, Configuration, and Initialization 41
4.1.5 Final OS Initialization .. 41

4.2 Required ACPICA Initialization Sequence...41
4.2.1 Global Initialization – AcpiInitializeSubsystem.. 41
4.2.2 ACPI Table and Namespace Initialization .. 41

4.2.2.1 AcpiInitializeTables.. 41
4.2.2.2 AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex.. 41
4.2.2.3 AcpiLoadTables... 42
4.2.2.4 Internal ACPI Namespace Initialization................................... 42

4.2.3 Hardware Initialization – AcpiEnableSubsystem 42
4.2.3.1 ACPI Hardware and Event Initialization 42

4.2.4 Handler Installation ... 43
4.2.4.1 Handler Types ... 43

4.2.5 Object Initialization – AcpiIntializeObjects .. 44
4.2.5.1 ACPI Device Initialization .. 44
4.2.5.2 Other ACPI Object Initialization... 45

4.2.6 Other Operating System ACPI-related Initialization................................ 45
4.2.7 Just-in-time Operation Region Initialization .. 45

4.2.7.1 SystemMemory Region Initialization 46
4.2.7.2 PCI_Config Region Initialization.. 46

4.2.8 System Shutdown – AcpiTerminate.. 47
4.3 Multithreading Support ...47

4.3.1 Reentrancy.. 47
4.3.2 Mutual Exclusion and Synchronization ... 47

4.3.2.1 Internal use of Mutex Objects ... 47
4.3.2.2 Internal use of Spinlock Objects.. 48

4.3.3 Control Method Execution... 49
4.3.3.1 Control Method Blocking ... 49
4.3.3.2 Control Method Execution Rules... 49
4.3.3.3 A Simple Multithreading Model ... 50
4.3.3.4 A More Complex Multithreading Model 51

4.3.4 ACPI Global Lock Support .. 52
4.3.4.1 Obtaining The Global Lock.. 53
4.3.4.2 Releasing the Global Lock .. 53
4.3.4.3 Global Lock Interrupt Handler ... 53

4.3.5 Single Thread Environments... 53

ACPI Component Architecture User Guide and Programmer Reference

5

4.4 General Purpose Event (GPE) Support ...54
4.4.1 Runtime and Wake GPEs... 54

4.4.1.1 Execution of _PRW Methods .. 54
4.4.1.2 Implicit Notify Support ... 55

4.4.2 Using the ACPICA GPE Support Code .. 55
4.4.2.1 Host OS Initialization ... 56
4.4.2.2 GPE Handlers ... 56
4.4.2.3 GPE Handler Execution .. 56
4.4.2.4 Load and LoadTable ASL/AML Operators 57
4.4.2.5 GPE Block Devices ... 57

4.5 Miscellaneous ACPICA Behavior...58
4.5.1 Why ACPICA Cannot Use C Bitfields ... 58
4.5.2 Dynamically Loaded ACPI Tables .. 58
4.5.3 Bus Master Arbitration (ARB_DIS) ... 59

5 ACPICA Subsystem Features -- 60

5.1 ACPI 5.0 Support ...60
5.1.1 Reduced Hardware Platforms... 60

5.1.1.1 Runtime Reduced Hardware Support 60
5.1.1.2 Compile-Time Reduced Hardware Support 60

5.1.2 New and Existing ACPI Tables ... 61
5.1.3 Operation Regions and Space IDs ... 61
5.1.4 Resource Descriptors ... 62
5.1.5 ASL/AML Support ... 62
5.1.6 Predefined ACPI Names... 62
5.1.7 ACPICA External Interfaces.. 63
5.1.8 Miscellaneous and Tools .. 63
5.1.9 ACPI Table Definition Language... 63
5.1.10 GPIO Event Model for ACPICA .. 64

5.2 AML Interpreter Slack Mode ..64

5.3 AML Interpreter Math Mode (32-bit or 64-bit) ..65

5.4 Predefined Control Method Validation ...65

5.5 I/O Port Protection ...65

5.6 Debugging Support ..66
5.6.1 Error and Warning Messages ... 66
5.6.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro) 67
5.6.3 Function Tracing (ACPI_FUNCTION_TRACE Macro) 67
5.6.4 ACPICA Debugger.. 68

5.7 Environmental Support Requirements ...68
5.7.1 Resource Requirements ... 68
5.7.2 C Library Functions... 68
5.7.3 Source Code Organization.. 70
5.7.4 System Include Files... 71

5.7.4.1 Customization to the Target Environment............................... 71

6 Data Types and Interface Parameters --- 72

6.1 ACPICA Interface Parameters ...72
6.1.1 ACPI Names and Pathnames... 72
6.1.2 Pointers ... 72
6.1.3 Buffers... 72

6.2 ACPICA Basic Data Types ..73
6.2.1 UINT64 and COMPILER_DEPENDENT_UINT64.................................. 73
6.2.2 ACPI_PHYSICAL_ADDRESS .. 73
6.2.3 ACPI_IO_ADDRESS .. 73
6.2.4 ACPI_SIZE.. 73

ACPI Component Architecture User Guide and Programmer Reference

6

6.2.5 ACPI_STRING – ASCII String .. 73
6.2.6 ACPI_BUFFER – Input and Output Memory Buffers.............................. 73

6.2.6.1 Input Buffer .. 74
6.2.6.2 Output Buffer ... 74

6.2.7 ACPI_STATUS – Interface Exception Return Codes 75
6.2.8 ACPI_HANDLE – Object Handle .. 75

6.2.8.1 Predefined Handles... 75
6.2.9 ACPI_OBJECT_TYPE – Object Type Codes ... 76
6.2.10 ACPI_OBJECT – Method Parameters and Return Objects 76

6.2.10.1 Using the ACPI_OBJECT.. 78
6.2.11 ACPI_OBJECT_LIST – List of Objects... 79
6.2.12 ACPI_EVENT_TYPE – Fixed Event Type Codes................................... 79
6.2.13 ACPI_TABLE_HEADER – Common ACPI Table Header 79

6.3 ACPI Resource Data Types...79
6.3.1 PCI IRQ Routing Tables ... 79
6.3.2 Device Resources... 80

6.3.2.1 ACPI_RESOURCE_TYPE – Resource Data Types 80
6.4 ACPICA Exception Codes ...82

7 Subsystem Configuration --- 86

7.1 Configuration Files ...86

7.2 Component Selection...86
7.2.1 ACPI_DISASSEMBLER.. 86
7.2.2 ACPI_DEBUGGER ... 86
7.2.3 ACPI_REDUCED_HARDWARE... 87

7.3 Configurable Data Types ...88
7.3.1 ACPI_SPINLOCK ... 88
7.3.2 ACPI_SEMAPHORE... 88
7.3.3 ACPI_MUTEX ... 88
7.3.4 ACPI_CPU_FLAGS .. 89
7.3.5 ACPI_THREAD_ID ... 89
7.3.6 ACPI_CACHE_T... 89
7.3.7 ACPI_UINTPTR_T.. 89

7.4 Subsystem Compile-Time Options ..89
7.4.1 ACPI_USE_SYSTEM_CLIBRARY ... 89
7.4.2 ACPI_USE_STANDARD_HEADERS... 89
7.4.3 ACPI_DEBUG_OUTPUT.. 90
7.4.4 ACPI_USE_LOCAL_CACHE.. 90
7.4.5 ACPI_DBG_TRACK_ALLOCATIONS .. 90
7.4.6 ACPI_MUTEX_TYPE.. 90
7.4.7 ACPI_MUTEX_DEBUG .. 91
7.4.8 ACPI_SIMPLE_RETURN_MACROS ... 91
7.4.9 ACPI_USE_DO_WHILE_0 ... 91

7.5 Per-Compiler Configuration ...91
7.5.1 COMPILER_DEPENDENT_INT64 ... 91
7.5.2 COMPILER_DEPENDENT_UINT64 .. 92
7.5.3 ACPI_INLINE .. 92
7.5.4 ACPI_USE_NATIVE_DIVIDE ... 92
7.5.5 ACPI_DIV_64_BY_32 (Short 64-bit Divide).. 92
7.5.6 ACPI_SHIFT_RIGHT_64 (64-bit Shift) ... 93
7.5.7 ACPI_EXPORT_SYMBOL.. 93
7.5.8 ACPI_EXTERNAL_XFACE... 93
7.5.9 ACPI_INTERNAL_XFACE.. 94
7.5.10 ACPI_INTERNAL_VAR_XFACE .. 94
7.5.11 ACPI_SYSTEM_XFACE... 94

ACPI Component Architecture User Guide and Programmer Reference

7

7.5.12 ACPI_PRINTF_LIKE... 94
7.5.13 ACPI_UNUSED_VAR ... 94

7.6 Per-Machine Configuration ..94
7.6.1 ACPI_MACHINE_WIDTH ... 95
7.6.2 ACPI_FLUSH_CPU_CACHE.. 95
7.6.3 ACPI_OS_NAME .. 95
7.6.4 ACPI_ACQUIRE_GLOBAL_LOCK... 95
7.6.5 ACPI_RELEASE_GLOBAL_LOCK... 96

7.7 Subsystem Runtime Configuration ..97
7.7.1 Interpreter Slack Mode.. 97
7.7.2 ACPI Register Widths ... 97
7.7.3 Serialized Control Methods... 98
7.7.4 Output from the AML Debug Object ... 98
7.7.5 Copy the System DSDT to Local Memory .. 98
7.7.6 Creation of_OSI Method ... 98
7.7.7 I/O Address Truncation ... 98
7.7.8 Runtime Validation/Repair of Predefined Names 99
7.7.9 Reduced ACPI Hardware Flag.. 99
7.7.10 Ignore XSDT, Use RSDT Instead ... 99
7.7.11 Use 32-bit FADT Addresses to Resolve Conflicts 99

7.8 Subsystem Configuration Constants..99
7.8.1 ACPI_CHECKSUM_ABORT... 99
7.8.2 ACPI_MAX_LOOP_INTERATIONS ... 100
7.8.3 ACPI_MAX_STATE_CACHE_DEPTH ... 100
7.8.4 ACPI_MAX_PARSE_CACHE_DEPTH... 100
7.8.5 ACPI_MAX_OBJECT_CACHE_DEPTH... 100
7.8.6 ACPI_MAX_WALK_CACHE_DEPTH... 100

8 ACPICA Subsystem - External Interface Definition --- 101

8.1 ACPICA Subsystem Initialization and Control ...101
8.1.1 AcpiInitializeSubsystem .. 101
8.1.2 AcpiInstallInitializationHandler .. 102

8.1.2.1 Interface to User Callback Function 102
8.1.3 AcpiEnableSubsystem .. 103
8.1.4 AcpiInitializeObjects.. 104
8.1.5 AcpiSubsystemStatus ... 105
8.1.6 AcpiTerminate... 105
8.1.7 AcpiInstallInterface.. 106

8.1.7.1 Default Supported _OSI Strings.. 107
8.1.7.2 Why ACPICA responds TRUE to _OSI (Windows)............... 107

8.1.8 AcpiUpdateInterfaces.. 108
8.1.9 AcpiRemoveInterface.. 109
8.1.10 AcpiInstallInterfaceHandler ... 110

8.1.10.1 Interface to _OSI Interface Handlers..................................... 110
8.2 ACPI Table Management...111

8.2.1 AcpiInitializeTables ... 111
8.2.2 AcpiReallocateRootTable ... 112
8.2.3 AcpiFindRootPointer ... 113
8.2.4 AcpiLoadTables .. 113
8.2.5 AcpiLoadTable .. 115
8.2.6 AcpiUnloadParentTable .. 116
8.2.7 AcpiGetTableHeader .. 116
8.2.8 AcpiGetTable .. 117
8.2.9 AcpiGetTableByIndex ... 119
8.2.10 AcpiInstallTableHandler .. 119

8.2.10.1 Interface to the Table Event Handler 120

ACPI Component Architecture User Guide and Programmer Reference

8

8.2.11 AcpiRemoveTableHandler .. 121
8.3 ACPI Namespace Management ..122

8.3.1 AcpiEvaluateObject... 122
8.3.2 AcpiEvaluateObjectTyped... 126
8.3.3 AcpiGetObjectInfo... 127
8.3.4 AcpiGetNextObject ... 130
8.3.5 AcpiGetParent... 132
8.3.6 AcpiGetType ... 132
8.3.7 AcpiGetHandle.. 133
8.3.8 AcpiGetName.. 135
8.3.9 AcpiGetDevices .. 136
8.3.10 AcpiAttachData ... 137
8.3.11 AcpiDetachData .. 138
8.3.12 AcpiGetData.. 139
8.3.13 AcpiInstallMethod.. 140
8.3.14 AcpiWalkNamespace.. 142

8.3.14.1 Interface to User Callback Function 143
8.3.15 AcpiAcquireMutex ... 144
8.3.16 AcpiReleaseMutex .. 145

8.4 ACPI Hardware Management ..146
8.4.1 AcpiEnable .. 146
8.4.2 AcpiDisable ... 147
8.4.3 AcpiReset.. 147
8.4.4 AcpiReadBitRegister ... 148
8.4.5 AcpiWriteBitRegister ... 149
8.4.6 AcpiRead... 150
8.4.7 AcpiWrite... 151
8.4.8 AcpiAcquireGlobalLock... 152
8.4.9 AcpiReleaseGlobalLock.. 152
8.4.10 AcpiGetTimerResolution ... 153
8.4.11 AcpiGetTimerDuration .. 154
8.4.12 AcpiGetTimer .. 154

8.5 ACPI Sleep/Wake Support...155
8.5.1 AcpiSetFirmwareWakingVector .. 155
8.5.2 AcpiSetFirmwareWakingVector64 .. 156
8.5.3 AcpiGetSleepTypeData .. 156
8.5.4 AcpiEnterSleepStatePrep ... 157
8.5.5 AcpiEnterSleepState... 158
8.5.6 AcpiEnterSleepStateS4Bios ... 159
8.5.7 AcpiLeaveSleepStatePrep .. 160
8.5.8 AcpiLeaveSleepState.. 160

8.6 ACPI Fixed Event Management...161
8.6.1 AcpiEnableEvent... 161
8.6.2 AcpiDisableEvent .. 162
8.6.3 AcpiClearEvent ... 163
8.6.4 AcpiGetEventStatus.. 163
8.6.5 AcpiInstallFixedEventHandler ... 164

8.6.5.1 Interface to Fixed Event Handlers... 165
8.6.6 AcpiRemoveFixedEventHandler ... 166

8.7 ACPI General Purpose Event (GPE) Management ...167
8.7.1 AcpiUpdateAllGpes... 167
8.7.2 AcpiEnableGpe ... 167
8.7.3 AcpiDisableGpe .. 169
8.7.4 AcpiClearGpe.. 170
8.7.5 AcpiSetGpe... 171
8.7.6 AcpiFinishGpe... 172

ACPI Component Architecture User Guide and Programmer Reference

9

8.7.7 AcpiSetupGpeForWake .. 173
8.7.8 AcpiSetGpeWakeMask ... 174
8.7.9 AcpiGetGpeStatus .. 175
8.7.10 AcpiGetGpeDevice ... 176
8.7.11 AcpiDisableAllGpes .. 177
8.7.12 AcpiEnableAllRuntimeGpes.. 178
8.7.13 AcpiInstallGpeBlock .. 178
8.7.14 AcpiRemoveGpeBlock .. 179
8.7.15 AcpiInstallGpeHandler .. 180

8.7.15.1 Interface to General Purpose Event Handlers 181
8.7.16 AcpiRemoveGpeHandler .. 182

8.8 Miscellaneous Handler Support ...183
8.8.1 AcpiInstallSciHandler .. 183

8.8.1.1 Interface to SCI Handlers .. 183
8.8.2 AcpiRemoveSciHandler .. 184
8.8.3 AcpiInstallGlobalEventHandler ... 185

8.8.3.1 Interface to the Global Event Handler 185
8.8.4 AcpiInstallNotifyHandler.. 186

8.8.4.1 Interface to Notification Event Handlers................................ 188
8.8.5 AcpiRemoveNotifyHandler.. 188
8.8.6 AcpiInstallAddressSpaceHandler ... 190

8.8.6.1 Interface to Address Space Setup Handlers 191
8.8.6.2 Interface to Address Space Handlers 192
8.8.6.3 Context for the Default PCI Address Space Handler 193
8.8.6.4 Context for the GPIO/SerialBus Address Space Handlers ... 193

8.8.7 AcpiRemoveAddressSpaceHandler ... 194
8.8.8 AcpiInstallExceptionHandler ... 195

8.8.8.1 Interface to Exception Handlers .. 196
8.9 ACPI Resource Management ..197

8.9.1 AcpiGetCurrentResources .. 197
8.9.2 AcpiGetPossibleResources .. 198
8.9.3 AcpiSetCurrentResources .. 199
8.9.4 AcpiGetEventResources... 200
8.9.5 AcpiGetIRQRoutingTable ... 201
8.9.6 AcpiGetVendorResource .. 202
8.9.7 AcpiBufferToResource.. 203
8.9.8 AcpiResourceToAddress64 .. 204
8.9.9 AcpiWalkResourceBuffer .. 204

8.9.9.1 Interface to User Callback Function 205
8.9.10 AcpiWalkResources.. 206

8.10 Memory Management ..207
8.10.1 ACPI_ALLOCATE... 207
8.10.2 ACPI_ALLOCATE_ZEROED.. 208
8.10.3 ACPI_FREE .. 208

8.11 Formatted Output ...209
8.11.1 AcpiInfo and ACPI_INFO.. 209
8.11.2 AcpiWarning and ACPI_WARNING.. 210
8.11.3 AcpiError and ACPI_ERROR.. 211
8.11.4 AcpiException and ACPI_EXCEPTION.. 212
8.11.5 AcpiBiosWarning and ACPI_BIOS_WARNING.................................... 213
8.11.6 AcpiBiosError and ACPI_BIOS_ERROR.. 214
8.11.7 AcpiDebugPrint and ACPI_DEBUG_PRINT... 215
8.11.8 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW 217

8.12 Miscellaneous Utilities..217
8.12.1 AcpiCheckAddressRange ... 217
8.12.2 AcpiDebugTrace ... 218

ACPI Component Architecture User Guide and Programmer Reference

10

8.12.3 AcpiDecodePldBuffer.. 219
8.12.4 AcpiFormatException.. 220
8.12.5 AcpiGetStatistics... 220
8.12.6 AcpiGetSystemInfo ... 221
8.12.7 AcpiPurgeCachedObjects... 223

8.13 Global Variables...223
8.13.1 AcpiDbgLevel & AcpiDbgLayer... 223
8.13.2 AcpiGbl_FADT .. 223
8.13.3 AcpiCurrentGpeCount... 223
8.13.4 AcpiGbl_SystemAwakeAndRunning... 224

9 OS Services Layer - External Interface Definition --- 225

9.1 Environmental and ACPI Tables..225
9.1.1 AcpiOsInitialize ... 225
9.1.2 AcpiOsTerminate .. 226
9.1.3 AcpiOsGetRootPointer.. 226
9.1.4 AcpiOsPredefinedOverride ... 227
9.1.5 AcpiOsTableOverride.. 227
9.1.6 AcpiOsPhysicalTableOverride .. 229

9.2 Memory Management ..230
9.2.1 AcpiOsCreateCache ... 230
9.2.2 AcpiOsDeleteCache.. 231
9.2.3 AcpiOsPurgeCache .. 231
9.2.4 AcpiOsAcquireObject.. 232
9.2.5 AcpiOsReleaseObject... 232
9.2.6 AcpiOsMapMemory .. 233
9.2.7 AcpiOsUnmapMemory.. 234
9.2.8 AcpiOsGetPhysicalAddress .. 234
9.2.9 AcpiOsAllocate.. 235
9.2.10 AcpiOsFree ... 235
9.2.11 AcpiOsReadable ... 236
9.2.12 AcpiOsWritable ... 236

9.3 Multithreading and Scheduling Services..237
9.3.1 AcpiOsGetThreadId .. 237
9.3.2 AcpiOsExecute ... 237
9.3.3 AcpiOsSleep ... 238
9.3.4 AcpiOsStall.. 239
9.3.5 AcpiOsWaitEventsComplete... 239

9.4 Mutual Exclusion and Synchronization ..240
9.4.1 AcpiOsCreateMutex.. 240
9.4.2 AcpiOsDeleteMutex .. 240
9.4.3 AcpiOsAcquireMutex .. 241
9.4.4 AcpiOsReleaseMutex ... 242
9.4.5 AcpiOsCreateSemaphore ... 242
9.4.6 AcpiOsDeleteSemaphore ... 243
9.4.7 AcpiOsWaitSemaphore... 243
9.4.8 AcpiOsSignalSemaphore.. 244
9.4.9 AcpiOsCreateLock .. 245
9.4.10 AcpiOsDeleteLock .. 246
9.4.11 AcpiOsAcquireLock... 246
9.4.12 AcpiOsReleaseLock.. 247

9.5 Interrupt Handling...247
9.5.1 AcpiOsInstallInterruptHandler ... 247

9.5.1.1 Interface to OS-independent Interrupt Handlers 248
9.5.2 AcpiOsRemoveInterruptHandler ... 249

ACPI Component Architecture User Guide and Programmer Reference

11

9.6 Memory Access and Memory Mapped I/O ..249
9.6.1 AcpiOsReadMemory... 250
9.6.2 AcpiOsWriteMemory ... 250

9.7 Port Input/Output..251
9.7.1 AcpiOsReadPort ... 251
9.7.2 AcpiOsWritePort ... 252

9.8 PCI Configuration Space Access...252
9.8.1 AcpiOsReadPciConfiguration ... 253
9.8.2 AcpiOsWritePciConfiguration.. 253

9.9 Formatted Output ...254
9.9.1 AcpiOsPrintf .. 254
9.9.2 AcpiOsVprintf .. 255
9.9.3 AcpiOsRedirectOutput .. 255

9.10 System ACPI Table Access ...256
9.10.1 AcpiOsGetTableByAddress .. 256
9.10.2 AcpiOsGetTableByIndex... 257
9.10.3 AcpiOsGetTableByName.. 259

9.11 Miscellaneous ..260
9.11.1 AcpiOsGetTimer ... 260
9.11.2 AcpiOsSignal... 261
9.11.3 AcpiOsGetLine.. 262

10 ACPICA Deployment Guide --- 263

10.1 Using the ACPICA Subsystem Interfaces..263
10.1.1 Initialization Sequence .. 263
10.1.2 ACPICA Initialization Examples .. 263

10.1.2.1 Full ACPICA Initialization .. 263
10.1.2.2 ACPICA Initialization With Early ACPI Table Access 264

10.1.3 Shutdown Sequence... 265
10.1.4 Traversing the ACPI Namespace (Low Level)...................................... 266
10.1.5 Traversing the ACPI Namespace (High Level)..................................... 268

10.2 Implementing the OS Services Layer ..269
10.2.1 Parameter Validation .. 269
10.2.2 Memory Management ... 269
10.2.3 Scheduling Services ... 269
10.2.4 Mutual Exclusion and Synchronization ... 269
10.2.5 Interrupt Handling ... 269
10.2.6 Stream I/O... 270
10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration) 270

11 User-Mode Tools and Utilities-- 271

11.1 Generating the ACPICA Tools/Utilities from Source..271
11.1.1 Generic Unix Makefiles ... 271
11.1.2 Visual Studio Project Files .. 272

11.1.2.1 Visual Studio 2008 Installation Notes.................................... 272
11.1.2.2 Flex/Bison for Windows Installation Notes 273

ACPI Component Architecture User Guide and Programmer Reference

12

11.2 iASL Compiler ..274

11.3 AcpiExec – User Mode ACPI Execution/Simulation ..276

11.4 AcpiHelp – Display ACPI Help Information..277

11.5 AcpiDump – Dump System ACPI Tables ..278

11.6 AcpiXtract – Extract ACPI Tables ..278

11.7 AcpiSrc – Convert ACPICA Source Code ...279

11.8 AcpiNames – Example Namespace Dump..280

12 ACPICA Debugger Reference -- 281

12.1 Overview ..281

12.2 Supported Environments ...281
12.2.1 The AcpiExec Utility .. 281

12.3 Debugger Architecture ...281

12.4 Configuration and Installation ..282

12.5 Command Overview ..284

12.6 Command Summary ..284

12.7 General Purpose Commands ..286
12.7.1 Allocations... 286
12.7.2 Dump... 286
12.7.3 Exit .. 286
12.7.4 Handlers.. 286
12.7.5 Help... 287
12.7.6 History (! And !!) .. 287
12.7.7 Level.. 288
12.7.8 Locks... 288
12.7.9 Osi... 288
12.7.10 Quit.. 289
12.7.11 Stats .. 289
12.7.12 Tables ... 289
12.7.13 Unload... 290

12.8 Namespace Access Commands..290
12.8.1 BusInfo .. 290
12.8.2 Disassemble.. 290
12.8.3 Find ... 290
12.8.4 Integrity ... 291
12.8.5 Methods .. 291
12.8.6 Namespace... 291
12.8.7 Notify ... 291
12.8.8 Objects .. 292
12.8.9 Owner.. 292
12.8.10 Paths ... 293
12.8.11 Predefined... 293
12.8.12 Prefix ... 293
12.8.13 References.. 293
12.8.14 Resources ... 294
12.8.15 Set N ... 294
12.8.16 Template ... 294
12.8.17 Terminate .. 294
12.8.18 Type .. 295

12.9 Control Method Execution Commands ..295
12.9.1 Arguments... 295
12.9.2 Breakpoint ... 295
12.9.3 Call .. 295
12.9.4 Debug.. 296

ACPI Component Architecture User Guide and Programmer Reference

13

12.9.5 Execute ... 296
12.9.5.1 Specifying Method Arguments .. 296

12.9.6 Go ... 297
12.9.7 Information .. 297
12.9.8 Into .. 297
12.9.9 List... 298
12.9.10 Locals.. 298
12.9.11 Results .. 298
12.9.12 Set... 298
12.9.13 Stop... 299
12.9.14 Thread... 299
12.9.15 Trace... 299
12.9.16 Tree... 299

12.10 Hardware-Related Commands ..300
12.10.1 Event ... 300
12.10.2 Gpe ... 300
12.10.3 Gpes.. 300
12.10.4 Sci ... 300
12.10.5 Sleep ... 301

12.11 File I/O Commands ..301
12.11.1 Close ... 301
12.11.2 Load .. 301
12.11.3 Open ... 301

12.12 Debug Test Commands ...302
12.12.1 Test Objects.. 302
12.12.2 Test Predefined... 302

Figures

Figure 1. The ACPI Component Architecture 18...

Figure 2. ACPICA Subsystem Architecture .. 20

Figure 3. Interaction between the Architectural Components... 22

Figure 4. Internal Modules of the ACPICA Subsystem... 23

Figure 5. Operating System to ACPICA Subsystem Request Flow 25

Figure 6. ACPICA Subsystem to Operating System Request Flow 27

Figure 7. Internal Namespace Structure ... 30

Figure 8. Global Lock Architecture.. 52

Figure 9. ACPICA Debugger Architecture .. 282

Tables

Table 1. C Library Functions Used within the Subsystem 69................

Table 2. ACPI Object Type Codes.. 76

Table 3. Exception Code Values... 83

ACPI Component Architecture User Guide and Programmer Reference

14

1 Introduction

1.1 Document Structure

This document consists of these major sections:

Introduction: Contains a brief overview of the ACPI Component Architecture (CA) and the
interfaces for both the ACPICA Subsystem and OS Services Layers.

Architecture Overview: Overview of the main architectural components and interface to the host
operating system. Summary of the computational and architectural model that is implemented
by the ACPI component architecture.

Design Details: Details concerning design decisions and execution model.

Implementation Details: Details concerning implementation specifics.

ACPICA Subsystem Features: Details concerning features that are specific to ACPICA
(independent of ACPI itself.)

Data Types and Interface Parameters: Descriptions of the major data types and data structures
that are exposed via the external interfaces. Other related information required to use the
ACPICA subsystems and interfaces.

Subsystem Configuration: Description of the available configuration options to tailor the
subsystem to different compilers and machines, as well as run-time tuning options.

ACPICA Subsystem – External Interface Definition: Detailed description of the programmatic
interfaces that are implemented by the kernel-resident, OS-independent component of the
ACPI Component Architecture.

OS Services Layer – External Interface Definition: Detailed description of the programmatic
interfaces that must be implemented by operating system vendors in the layer that interfaces
the ACPICA Subsystem to the host operating system.

ACPICA Deployment Guide: Tips and techniques on how to use the ACPICA Subsystem
interfaces, and how to implement the OSL interfaces to host a new operating system.

User-Mode Tools and Utilities: A brief overview and guide to the miscellaneous tools and utilities
that are part of the ACPICA package.

ACPICA Debugger Reference: Overview, installation and configuration, and detailed

service is known as the OS Services Layer).

descriptions of the command set.

1.2 Rationale and Justification

The complexity of the ACPI specification leads to a lengthy and difficult implementation in
operating system software. The purpose of the ACPI component architecture is to simplify ACPI
implementations for operating system vendors (OSVs) by providing major portions of an ACPI
implementation in OS-independent ACPI modules that can be integrated into any operating system.

The ACPICA software can be hosted on any operating system by writing a small and relatively
simple translation service between the ACPICA subsystem and the host operating system (This

ACPI Component Architecture User Guide and Programmer Reference

15

1.3 Reference Documents

ACPI documents are available at http://www.acpi.info

Advanced Configuration and Power Interface Specification, Revision 1.0, December 1, 1996

Advanced Configuration and Power Interface Specification, Revision 1.0a, July 1, 1998

Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999

Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000

Advanced Configuration and Power Interface Specification, Revision 2.0a, March 32, 2002

Advanced Configuration and Power Interface Specification, Revision 2.0b, October 11, 2002

Advanced Configuration and Power Interface Specification, Revision 2.0c, August 23, 2003

Advanced Configuration and Power Interface Specification, Revision 3.0, September 2, 2004

Advanced Configuration and Power Interface Specification, Revision 3.0a, December 30, 2005

Advanced Configuration and Power Interface Specification, Revision 3.0b, October 10, 2006

Advanced Configuration and Power Interface Specification, Revision 4.0, June 16, 2009

Advanced Configuration and Power Interface Specification, Revision 4.0a, April 5, 2010

Advanced Configuration and Power Interface Specification, Revision 5.0, December 6, 2011

Advanced Configuration and Power Interface Specification, Revision 5.0a, November 13, 2013

ACPICA documents are available at http://www.acpica.org/documentation/

. Add new debugger command, “OSI”.

iASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

1.4 Document History

January 2000: Original version.

09 July 2005: Added example and description of OS initialization sequence.

26 November 2008: Major update and overhaul. Update all interfaces and text to match reality

18 March 2009: Removed AcpiOsValidateAddress. Added section for feature descriptions. Added
description of I/O port protection.

14 May 2009: Add new AcpiInstallMethod function.

03 November 2009: Changes to AcpiWalkNamespace. Added documentation of ACPICA source
code tree.

21 January 2009: Removed obsolete ACPI_INTEGER data type.

04 March 2009: Add new global for the AML debug object. Clarify use of the ACPI_OBJECT data
type.

30 March 2010: Update for GPE interface changes. Added DSDT copy option.

04 April 2010: Add description of GPE support for LoadTable.

05 August 2010: Add new host_OSI interface functions, AcpiInstallInterface,
AcpiRemoveInterface, AcpiInstallInterfaceHandler

http://www.acpi.info/
http://www.acpica.org/documentation/

ACPI Component Architecture User Guide and Programmer Reference

16

September 2013: Add description of the ACPICA GPIO event model.

17 August 2010: Remove obsolete AcpiOsDerivePciId OSL function. This function has been
implemented within ACPICA in an OS-independent manner.

21 September 2010: Fix/clarify the initialization sequence for installation of user/host address space
handlers. This can only happen after AcpiEnableSubsystem is called.

December 2010: Support for new GPE handling features. Full description of GPE support in
ACPICA as well as updated descriptions for GPE interfaces.

May 2011: Debugger: Add description of new mechanism to pass complex arguments to control
methods (Integer, Strings, Buffers, and Packages.)

October 2011: Add new ACPI 5.0 interfaces – AcpiGetEventResource, AcpiAcquireMutex,
AcpiReleaseMutex.

November 2011: Full update for ACPI 5.0 features – add overall description and miscellaneous
updates throughout.

December 2011: Update for new interface, AcpiCheckAddressRange.

February 2012: Add note that the sleep/wake interfaces now support the V5 FADT with standalone
sleep registers. Widen the AcpiOsReadMemory and AcpiOsWriteMemory interfaces to 64 bits. Add
ACPI_REDUCED_HARDWARE option. Add AcpiOsPhysicalTableOverride and
AcpiLeaveSleepStatePrep.

March 2012: Added flags parameter to AcpiEnterSleepState and AcpiLeaveSleepStatePrep to
enable optional execution of the _GTS and _BFS methods.

April 2012: Add support for multiple Notify() handlers.

May 2012: Add AcpiOsWaitEventsComplete OSL interface.

June 2012: Add multiple device support to the Implicit Notify feature.

July 2012: Add AcpiLoadTable and AcpiUnloadParentTable external interfaces for dynamic
load/unload of hotplug related SSDTs. Add AcpiBiosWarning and AcpiBiosError interfaces for
reporting issues specific to the platform BIOS/firmware.

August 2012: Add AcpiDecodePldBuffer interface. Remove all support of the deprecated _GTS
(Going To Sleep) and _BFS (Back From Sleep) methods.

October 2012: Add support for _SUB to AcpiGetObjectInfo interface. Rename ACPI_DEVICE_ID
to ACPI_PNP_DEVICE_ID.

March 2013: Add section to describe the rules that ACPICA uses for the use of internal mutex
objects.

May 2013: Add AcpiDump utility and related interfaces used to obtain system ACPI tables. Add
sections describing the sharing of resources between device drivers and AML code.

June 2013: Add support for multiple instances of the UEFI table.

July 2013: Add AcpiUpdateInterfaces interface.

August 2013: Add AcpiInstallSciHandler, AcpiRemoveSciHandler interfaces. Add Debugger Path
and SCI commands.

ACPI Component Architecture User Guide and Programmer Reference

17

device driver, OSPM software, and the ACPI hardware.

November 2013: Add section describing generation of ACPICA tools from source code.

December 2013: Add new runtime options: AcpiGbl_DoNotUseXsdt and
AcpiGbl_Use32BitFadtAddresses.

1.5 Overview of the ACPI Component Architecture

The ACPI Component Architecture (also referred to by the term “ACPICA” in this document)
defines and implements a group of software components that together create an implementation of
the ACPI specification. A major goal of the architecture is to isolate all operating system
dependencies to a relatively small translation or conversion layer (the OS Services Layer) so that the
bulk of the ACPICA code is independent of any individual operating system. Therefore, hosting the
ACPICA code on new operating systems requires no source changes within the ACPICA code itself.
The components of the architecture include:

 An OS-independent, kernel-resident ACPICA Subsystem component that provides the
fundamental ACPI services such as the AML interpreter and namespace management.

 An OS-dependent OS Services Layer for each host operating system to provide OS support
for the OS-independent ACPICA Subsystem.

 An ASL compiler-disassembler for translating ASL code to AML byte code and for
disassembling existing binary ACPI tables back to ASL source code.

 Several ACPI utilities for executing the interpreter in ring 3 user space, extracting binary
ACPI tables from the output of the AcpiDump utility, and translating the ACPICA source
code to Linux/Unix format.

This document describes the ACPICA Subsystem, OS Services Layer, AML Debugger, and related
user-space utilities. The iASL compiler is documented in the iASL: ACPI Source Language
Optimizing Compiler and Disassembler User Guide.

In the diagram below, the ACPICA subsystem is shown in relation to the host operating system,

ACPI Component Architecture User Guide and Programmer Reference

18

Figure 1. The ACPI Component Architecture

Host Operating System

OSPM / Policy

Manager

Device Drivers

ACPICA Subsystem

ACPI –

Related

Hardware

User Interface

ACPI Component Architecture User Guide and Programmer Reference

19

gement software.

2 Architecture Overview

2.1 Overview of the ACPICA Subsystem

The ACPICA Subsystem implements the low level or fundamental aspects of the ACPI
specification. Included are an AML parser/interpreter, ACPI namespace management, ACPI table
and device support, and event handling. Since the ACPICA subsystem provides low-level system
services, it also requires low-level operating system services such as memory management,
synchronization, scheduling, and I/O.

To allow the ACPICA Subsystem to easily interface to any operating system that provides such
services, an Operating System Services Layer translates ACPICA-to-OS requests into the system
calls provided by the host operating system. The OS Services Layer is the only component of the
ACPICA that contains code that is specific to a host operating system.

Thus, the ACPICA Subsystem consists of two major software components:

1. The basic kernel-resident ACPICA Subsystem provides the fundamental ACPI services that
are independent of any particular operating system.

1. The OS Services Layer (OSL) provides the conversion layer that interfaces the OS-independent
ACPICA Subsystem to a particular host operating system.

When combined into a single static or loadable software module such as a device driver or kernel
subsystem, these two major components form the ACPICA Subsystem. Throughout this document,
the term “ACPICA Subsystem” refers to the combination of the OS-independent ACPICA
Subsystem with an OS Services Layer components combined into a single module, driver, or load
unit.

2.1.1 OS-independent ACPICA Subsystem

The OS-independent ACPICA Subsystem supplies the major building blocks or subcomponents that
are required for all ACPI implementations — including an AML interpreter, a namespace manager,
ACPI event and resource management, and ACPI hardware support.

One of the goals of the ACPICA Subsystem is to provide an abstraction level high enough such that
the host operating system does not need to understand or know about the very low-level ACPI
details. For example, all AML code is hidden from the host. Also, the details of the ACPI hardware
are abstracted to higher-level software interfaces.

The ACPICA Subsystem implementation makes no assumptions about the host operating system or
environment. The only way it can request operating system services is via interfaces provided by the
OS Services Layer.

The primary user of the services provided by the ACPICA Subsystem are the host OS device drivers
and power/thermal mana

ACPI Component Architecture User Guide and Programmer Reference

20

2.1.2 Operating System Services Layer

The OS Services Layer (or OSL) operates as a translation service for requests from the OS-
independent ACPICA subsystem back to the host OS. The OSL implements a generic set of OS
service interfaces by using the primitives available from the host OS.

Because of its nature, the OS Services Layer must be implemented anew for each supported host
operating system. There is a single OS-independent ACPICA Subsystem, but there must be an OS
Services Layer for each operating system supported by the ACPI component architecture.

The primary function of the OSL in the ACPI Component Architecture is to be the small glue layer
that binds the much larger ACPICA Subsystem to the host operating system. Because of the nature
of ACPI itself — such as the requirement for an AML interpreter and management of a large
namespace data structure — most of the implementation of the ACPI specification is independent of
any operating system services. Therefore, the OS-independent ACPICA Subsystem is the larger of
the two components.

The overall ACPI Component Architecture in relation to the host operating system is diagrammed
below.

Figure 2. ACPICA Subsystem Architecture

OS Services Layer

OS-independent ACPICA
Component

Host Operating System

ACPICA Subsystem Module

ACPI Component Architecture User Guide and Programmer Reference

21

2.1.3 Relationships Between Host OS, ACPICA, and Host OSL

2.1.3.1 General Architectural Model

The model employed can be described in two parts, the ACPICA-to-host interaction, and the host-
to-ACPICA interaction.

1) The host OSL implements all OS services required by ACPICA. All ACPICA-to-host
interactions pass through the OSL via direct calls to the AcpiOs* interfaces from ACPICA.

2) There are two types of host-to-ACPICA interactions, synchronous and asynchronous:

Synchronous: These are host-initiated interactions that are performed by the host making
direct calls to the various public Acpi* interfaces.

Asynchronous: These are host-requested interactions that happen in response to various
asynchronous events such as ACPI general purpose and fixed events. For these interactions,
the host calls ACPICA to install an appropriate handler at initialization time. This handler is
then invoked by ACPICA whenever the requested event occurs. Typically, the handlers are
optional, and these are optional interactions.

2.1.3.2 Host Operating System Interaction

The Host Operating System makes direct calls to the Acpi* interfaces within the ACPICA
Subsystem to request ACPI services.

Whenever the ACPICA Subsystem requires operating system services, it makes calls the OS
Services Layer. The OSL component “calls up” to the host operating system whenever operating
system services are required, either for the OSL itself, or on behalf of the ACPICA Subsystem
component. All native (OS-dependent) calls made directly to the host are confined to the OS
Services Layer. The basic OS-independent ACPICA code contains no operating system-specific
code.

2.1.3.3 OS Services Layer Interaction

The OS Services Layer provides operating system dependent implementations of the predefined

.

AcpiOs* interfaces. These interfaces provide common operating system services to the ACPICA
Subsystem such as memory allocation, mutual exclusion, hardware access, and I/O. The ACPICA
Subsystem component uses these interfaces to gain access to OS services in an OS-independent
manner. Therefore, the OSL component makes calls to the host operating system to implement the
AcpiOs * interfaces.

2.1.3.4 ACPICA Subsystem Interaction

The ACPICA Subsystem implements a set of external interfaces that can be directly called from the
host OS. These Acpi* interfaces provide the actual ACPI services for the host. When operating
system services are required during the servicing of an ACPI request, the Subsystem makes requests
to the host OS indirectly via the fixed AcpiOs* interfaces.

The diagram below illustrates the relationships and interaction between the various architectural
elements by showing the flow of control between them. Note that the OS-independent ACPICA
Subsystem never calls the host directly – instead it makes calls to the AcpiOs * interfaces in the
OSL. This provides the ACPICA code with OS-independence

ACPI Component Architecture User Guide and Programmer Reference

22

Figure 3. Interaction between the Architectural Components

2.2 Architecture of the ACPICA Subsystem

The ACPICA Subsystem is divided into several logical modules or sub-components. Each module
implements a service or group of related services. This section describes each sub-component and
identifies the classes of external interfaces to the components, the mapping of these classes to the
individual components, and the interface names.

These ACPICA modules are the OS-independent parts of an ACPI implementation that can share
common code across all operating systems. These modules are delivered in source code form (the
language used is ANSI C), and can be compiled and integrated into an OS-specific ACPI driver or
subsystem (or whatever packaging is appropriate for the host OS.)

The diagram below shows the various internal modules of the ACPICA Subsystem and their
relationship to each other. The AML interpreter forms the foundation of the component, with
additional services built upon this foundation.

OS Services Layer

Implements

Acpi*

Interfaces

Implements
AcpiOs*

Interfaces

Host

Operating

System

Components

ACPICA Subsystem

OS-independent ACPICA

ACPI Component Architecture User Guide and Programmer Reference

23

Figure 4. Internal Modules of the ACPICA Subsystem

2.2.1 ACPI Table Management

This component manages all ACPI tables such as the RSDT/XSDT, FADT, FACS, DSDT, SSDT,
etc. The tables may be loaded from the firmware or directly from a buffer provided by the host
operating system. Services include:

 ACPI Table Verification

 ACPI Table installation and removal

 Access to all available ACPI tables

2.2.2 Early ACPI Table Access

In many cases, certain ACPI tables are required by the host OS very early during system/kernel
initialization. For example, the ECDT (Embedded Controller Boot Resources Table) and MADT
(Multiple APIC Description Table) may be required before hardware elements can be initialized
properly. This initialization and thus these ACPI tables may be required before the kernel dynamic
memory (and virtual memory) is available.

To support this need, the ACPICA Table Manager component is designed as a standalone service
that can be initialized and used independently from the rest of the ACPICA subsystem. It can be
executed with no need for any dynamic memory, and only the need for a single memory mapping at
any given time.

2.2.3 AML Interpreter

The AML interpreter is responsible for the parsing and execution of the AML byte code that is
provided by the computer system vendor. Most of the other services are built upon the AML
interpreter. Therefore, there are no direct external interfaces to the interpreter. The services that the
interpreter provides to the other services include:

ACPI Table
Management

Event
Management

ACPI Hardware
Management

Resource
Management

Namespace
Management

AML Interpreter

ACPI Component Architecture User Guide and Programmer Reference

24

include:

ACPI Table Parsing

AML Control Method Execution

Evaluation of Namespace Objects

2.2.4 Namespace Management

The Namespace component provides ACPI namespace services on top of the AML interpreter. It
builds and manages the internal ACPI namespace. Services include:

Namespace Initialization from ACPI tables

Device Enumeration

Namespace Access

Access to ACPI data and tables

2.2.5 Resource Management

The Resource component provides resource query and configuration services on top of the
Namespace manager and AML interpreter. Services include:

Getting and Setting Current Resources

Getting Possible Resources

Getting IRQ Routing Tables

Getting Power Dependencies

2.2.6 ACPI Hardware Management

The hardware manager controls access to the ACPI registers, timers, and other ACPI-related
hardware. Services include:

ACPI Status register and Enable register access

ACPI Register access (generic read and write)

Power Management Timer access

ACPI mode enable/disable

Global Lock support

Sleep Transitions support (S-states)

2.2.7 Event Handling

The Event Handling component manages the ACPI System Control Interrupt (SCI). The single SCI
multiplexes the ACPI timer, Fixed Events, and General Purpose Events (GPEs). This component
also manages dispatch of notification and Address Space/Operation Region events. Services

ACPI Component Architecture User Guide and Programmer Reference

25

ACPI event enable/disable (Fixed Events, GPEs)

Fixed Event Handlers (Installation, removal, and dispatch)

General Purpose Event (GPE) Handlers (Installation , removal, and dispatch)

Notify Handlers (Installation, removal, and dispatch)

Address Space and Operation Region Handlers (Installation, removal, and dispatch)

2.2.8 Requests from Host OS to ACPICA Subsystem

The host operating system can make direct calls to the Acpi* external interfaces to request ACPI
services.

The exact ACPI services required (and the requests made to those services) will vary from OS to
OS. However, it can be expected that most OS requests will fit into the broad categories of the
functional service groups described earlier: boot time functions, device load time functions, and
runtime functions.

The flow of OS to ACPICA requests is shown in the diagram below.

Figure 5. Operating System to ACPICA Subsystem Request Flow

2.3 Architecture of the OS Services Layer (OSL)

The OS Services Layer component of the architecture enables the rehosting or retargeting of the
ACPICA components to execute under different operating systems, or to even execute in
environments where there is no host operating system. In other words, the OSL component provides
the glue that joins ACPICA to a particular operating system and/or environment. The OSL
implements interfaces and services using the system calls and utilities that are available from the
host OS. Therefore, an OS Services Layer must be written for each target operating system.

ACPICA Subsystem

OSPM Code

SMBus Driver

PCI and Plug n Play

Drivers

Other ACPI –

Related Drivers

Embedded
Controller

Driver

Battery Drivers

ACPI Component Architecture User Guide and Programmer Reference

26

The flow of ACPI to OS requests is shown in the diagram below.

The OSL component implements a standard set of interfaces that perform OS dependent functions
(such as memory allocation and hardware access) on behalf of the OS-independent ACPICA
Subsystem component. These interfaces are themselves OS-independent because they are constant
across all OSL implementations. It is the implementations of these interfaces that are OS-dependent,
because they must use the native services and interfaces of the host operating system.

These standard interfaces (defined in this document as the AcpiOs* interfaces) include functions
such as memory management and thread scheduling, and must be implemented using the available
services of the host operating system.

2.3.1 Types of OSL Services

The services provided for the OS-independent ACPICA Subystem by the OS Services Layer can be
categorized into the following groups:

 Environmental – global initialization and environment setup.

 Memory Management – dynamic memory allocation and memory mapping.

 Multitasking Support – scheduling and asynchronous execution.

 Mutual Exclusion and Synchronization – Mutexes, Semaphores, and Spin Locks.

 Interrupt handling – interrupt handlers.

 Address Spaces – memory, I/O port, and PCI configuration space access.

 Stream I/O – support for console I/O with printf-like functions. This provides error,
warning, debug, and trace output from the subsystem.

2.3.2 Requests from ACPICA Subsystem to OS

ACPI to OS requests are requests for OS services made by the ACPICA subsystem. These requests
must be serviced (and therefore implemented) in a manner that is appropriate to the host operating
system. These requests include calls for OS dependent functions such as I/O, resource allocation,
error logging, and user interaction. The ACPI Component Architecture defines interfaces to the OS
Services Layer for this purpose. These interfaces are constant (i.e. they are OS-independent), but
they must be implemented uniquely for each target OS.

ACPI Component Architecture User Guide and Programmer Reference

27

Figure 6. ACPICA Subsystem to Operating System Request Flow

ACPICA Subsystem

OS Services Layer

OS-independent ACPICA
Component

Requests to Host OS

ACPI Component Architecture User Guide and Programmer Reference

28

3 Design Details
This section contains information about concepts, data types, and data structures that are common to
both the OS-independent and OSL components of the ACPICA Subsystem.

3.1 ACPI Namespace Fundamentals

The ACPI Namespace is a large data structure that is constructed and maintained by the ACPICA
Subsystem component. Constructed primarily from the AML defined within an ACPI Differentiated
System Description Table (DSDT), the namespace contains a hierarchy of named ACPI objects.

3.1.1 Named Objects

Each object in the namespace has a fixed 4-character name (32 bits) associated with it. The root
object is referenced by the backslash as the first character in a pathname. Pathnames are constructed
by concatenating multiple 4-character object names with a period as the name separator.

3.1.2 Scopes

The concept of an object scope relates directly to the original source ASL that describes and defines
an object. An object’s scope is defined as all objects that appear between the pair of open and close
brackets immediately after the object. In other words, the scope of an object is the container for all
of the children of that object.

In some of the ACPICA interfaces, it is convenient to define a scope parameter that is meant to
represent this container. For example, when converting an ACPI name into an object handle, the two
parameters required to resolve the name are the name itself, and a containing scope where the name
can be found. When the object that matches the name is found within the scope, a handle to that
object can be returned.

3.1.2.1 Example Namespace Scopes, Names, and Objects

In the ASL code below, the scope of the object _GPE contains the objects _L08 and _L0A.

Scope (_GPE)
{

Method (_L08)
{

Notify (_SB.PCI0.DOCK, 1)
}
Method (_L0A)
{

Store (0, _SB.PCI0.ISA.EC0.DCS)
}

}

In this example, there are three ACPI namespace objects, about which we can observe the
following:

The names of the three objects are _GPE, _L08, and _L0A.

The child objects of parent object _GPE are _L08 and _L0A.

ACPI Component Architecture User Guide and Programmer Reference

29

The absolute pathname (or fully-qualified pathname) of object _L08 is “_GPE._L08”.

The scope of object _GPE contains both the _L08 and _L0A objects.

The scope of control methods _L08 and _L0A contain executable AML code.

The containing scope of object _L08 is the scope owned by the object _GPE.

The parent of both objects _L08 and _L0A is object _GPE.

The type of both objects _L08 and _L0A is ACPI_TYPE_METHOD.

The next object (or peer object) after object _L08 is object _L0A. In the example _GPE scope,
there are no additional objects after object _L0A.

Since _GPE is a namespace object at the root level (as indicated by the preceding backslash in the
name), its parent is the root object, and its containing scope is the root scope.

has been entered.

3.1.3 Predefined Objects

During initialization of the internal namespace within the ACPICA Subsystem component, there are
several predefined objects that are always created and installed in the namespace, regardless of
whether they appear in any of the loaded ACPI tables. These objects and their associated types are
shown below.

“_GPE”, ACPI_TYPE_ANY // General Purpose Event block
“_PR_”, ACPI_TYPE_ANY // Processor block
“_SB_”, ACPI_TYPE_ANY // System Bus block
“_SI_”, ACPI_TYPE_ANY // System Indicators block
“_TZ_”, ACPI_TYPE_ANY // Thermal Zone block
“_REV”, ACPI_TYPE_NUMBER // Supported ACPI specification revision
“_OS_”, ACPI_TYPE_STRING // OS Name
“_GL_”, ACPI_TYPE_MUTEX // Global Lock
“_OSI”, ACPI_TYPE_METHOD // Query OS Interfaces

3.1.4 Logical Namespace Layout

The diagram below shows the logical namespace after the predefined objects and the _GPE scope

ACPI Component Architecture User Guide and Programmer Reference

30

Figure 7. Internal Namespace Structure

_L08

_L0A

_GPE

PR

SB

SI

TZ

_REV

OS

GL

\

ACPI_ROOT_OBJECT

_GPE Scope

ACPI_ROOT_SCOPE

Control Interrupts (SCIs), and transitions the hardware from legacy mode to ACPI mode.

3.2 Execution Model

3.2.1 Initialization

The initialization of the ACPICA Subsystem must be driven entirely by the host operating system.
Since it may be appropriate (depending on the requirements of the host OS) to initialize different
parts of the ACPICA Subsystem at different times, this initialization is split into a multi-step
process. The four main steps are outlined below.

1. Perform a global initialization of the ACPICA Subsystem – this initializes the global data
and other items within the subsystem.

2. Initialize the table manager and load the ACPI tables – The FADT, FACS, DSDT, and
SSDTs must be acquired and mapped before the internal namespace can be constructed.
The tables may be loaded from the firmware, loaded from an input buffer, or some
combination of both. The minimum set of ACPI tables includes an RSDT/XSDT, FADT,
FACS, and a DSDT. Any SSDTs are optional. All other ACPI tables defined by the ACPI
specification are not directly used by the ACPICA subsystem, but they are available to
ACPI-related device drivers via the table manager external interfaces. These tables include
the MADT, ECDT, etc.

3. Build the internal namespace – this causes ACPICA to parse the DSDT and any SSDTs and
build an internal namespace from the objects found therein.

4. Enable ACPI mode of the machine. Before ACPI events can occur, the machine must be
put into ACPI mode. The ACPICA Subsystem installs an interrupt handler for the System

ACPI Component Architecture User Guide and Programmer Reference

31

was allocated. The length of the buffer is contained in the ACPI_BUFFER structure.

3.2.2 Memory Allocation

There are two models of memory allocation that can be used. In the first model, the caller to the
ACPICA subsystem pre-allocates any required memory. This allows maximum flexibility for the
caller since only the caller knows what is the appropriate memory pool to allocate from, whether to
statically or dynamically allocate the memory, etc. In the second model, the caller can choose to
have the ACPICA subsystem allocate memory via the AcpiOsAllocate interface. Although this
model is less flexible, it is far easier to use and is sufficient for most environments.

Each memory allocation model is described below.

3.2.2.1 Caller Allocates All Buffers

In this model, the caller preallocates buffers of a large enough size and posts them to the ACPICA
subsystem via the ACPI_BUFFER data type.

It is often the case that the required buffer size is not known by even the ACPICA subsystem until
after the evaluation of an object or the execution of a control method has been completed. Therefore,
the “get size” model of a separate interface to obtain the required buffer size is insufficient. Instead,
a model that allows the caller to pre-post a buffer of a large enough size has been chosen. This
model is described below.

For ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol can be used to determine the exact buffer size required:

1. Set the buffer length field of the ACPI_BUFFER structure to zero, or to the size of a local
buffer that is thought to be large enough for the data.

2. Call the Acpi interface.

3. If the return exception code is AE_BUFFER_OVERFLOW, the buffer length field has
been set by the interface to the buffer length that is actually required.

4. Allocate a buffer of this length and initialize the length and buffer pointer field of the
ACPI_BUFFER structure.

5. Call the Acpi interface again with this valid buffer of the required length.

Alternately, if the caller has some idea of the buffer size required, a buffer can be posted in the
original call. If this call fails, only then is a larger buffer allocated. See Section 6.2.6 –
“ACPI_BUFFER – Input and Output Memory Buffers” for additional discussion on using the
ACPI_BUFFER data type.

3.2.2.2 ACPI Allocates Return Buffers

In this model, the caller lets the ACPICA subsystem allocate return buffers. It is the responsibility of
the caller to delete these returned buffers.

For the ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol is used to allow the ACPICA subsystem to allocate return buffers:

1. Set the buffer length field of the ACPI_BUFFER structure to
ACPI_ALLOCATE_BUFFER.

2. Call the Acpi interface.

3. If the return exception code is AE_OK, the interface completed successfully and a buffer

ACPI Component Architecture User Guide and Programmer Reference

32

method.

4. Delete the buffer by calling AcpiOsFree with the pointer contained in the ACPI_BUFFER
structure (do not use ACPI_FREE).

3.2.3 Parameter Validation

Only limited parameter validation is performed on all input parameters passed to the ACPICA
Subsystem. Therefore, the host OS should perform all limit and range checks on buffer pointers,
strings, and other input parameters before passing them down to the ACPICA Subsystem code.

The limited parameter validation consists of sanity checking input parameters for null pointers and
out-of-range values and nothing more. Any additional parameter validation (such as buffer length
validation) must occur before the host calls the ACPICA code.

3.2.4 Exception Handling

All exceptions that occur during the processing of a request to the ACPICA Subsystem are returned
in an ACPI_STATUS return code and bubbled up to the original caller. Names for the ACPICA
exceptions are all prefixed with “AE_”. For example, AE_OK indicates successful completion of a
request.

All exception handling is performed inline by the caller to the ACPICA Subsystem interfaces. There
are no exception handlers associated with either the Acpi* or AcpiOs* calls.

3.2.5 Multitasking and Reentrancy

All components of the ACPICA subsystem are intended to be fully reentrant and support multiple
threads of execution. To achieve this, there are several mutual exclusion OSL interfaces that must be
properly implemented with the native host OS primitives to ensure that mutual exclusion and
synchronization can be performed correctly. Although dependent on the correct implementation of
these interfaces, the ACPICA Subsystem is otherwise fully reentrant and supports multiple threads
throughout the component, with the exception of the AML interpreter, as explained below.

Because of the constraints of the ACPI specification, there is a major limitation on the concurrency
that can be achieved within the AML interpreter portion of the subsystem. The specification states
that at most one control method can be actually executing AML code at any given time. If a control
method blocks (an event that can occur only under a few limited conditions), another method may
begin execution. However, it can be said that the specification precludes the concurrent execution of
control methods. Therefore, the AML interpreter itself is essentially a single-threaded component of
the ACPICA subsystem. Serialization of both internal and external requests for execution of control
methods is performed and managed by the front-end of the interpreter.

3.2.6 Event Handling

The term Event Handling is used somewhat loosely to describe the class of asynchronous events that
can occur during the execution of the ACPICA subsystem. These events include:

 System Control Interrupts (SCIs) that are generated by both the ACPI Fixed and General
Purpose Events.

 Notify events that are generated via the execution of the ASL Notify keyword in a control

ACPI Component Architecture User Guide and Programmer Reference

33

ASL programmer defines

 Events that are caused by accesses to an address space or operation region during the
execution of a control method.

Each of these events and the support for them in the ACPICA subsystem are described in more
detail below.

3.2.6.1 Fixed Events

Incoming Fixed Events can be handled by the default ACPICA subsystem event handlers, or
individual handlers can be installed for each event. Only device drivers or system services should
install such handlers.

3.2.6.2 General Purpose Events

Incoming General Purpose Events (GPEs) are usually handled by executing a control method that is
associated with a particular GPE. According to the ACPI specification, each GPE level may have a
method associated with it whose name is of the form _Exx for edge-triggered or _Lxx for level-
triggered. Xx is the GPE level in hexadecimal (See the ACPI specification for complete details.)
This control method is never executed in the context of the SCI interrupt handler, but is instead
queued for later execution by the host operating system.

In addition to this mechanism, individual handlers for GPE levels may be installed. It is not required
that a handler be installed for a GPE level, and in fact, currently the only device that requires a
dedicated GPE handler is the ACPI Embedded Controller. A device driver for the Embedded
Controller would install a handler for the GPE that is dedicated to the EC.

If a GPE handler is installed for a given GPE, the handler takes priority and any _Exx/_Lxx method
for that GPE is no longer invoked.

GPE Block Devices are also supported. These GPE blocks may be installed and removed
dynamically as necessary. The ACPICA Subsystem provides centralized GPE handling and
dispatch, and provides the necessary interfaces to install and remove GPE Block Devices.

3.2.6.3 Notify Events

An ACPI Notify Event occurs as a result of the execution of a Notify opcode during the execution of
a control method. A notify event occurs on a particular ACPI object, and this object must be a
device or thermal zone. If a handler is installed for notifications on a particular device, this handler
is invoked during the execution of the Notify opcode, in the context of the thread that is executing
the control method.

Notify handlers should be installed by device drivers and other system services that know about the
particular device or thermal zone on which notifications will be received.

3.2.7 Address Spaces and Operation Regions

ASL source code and the corresponding AML code use the Address Space mechanism to access
data that is out of the direct scope of the ASL. For example, Address Spaces are used to access the
CMOS RAM and the ACPI Embedded Controller. There are several predefined Address Spaces that
may be accessed and user-defined Address Spaces are allowed.

The Operating System software (which includes the AML Interpreter) allows access to the various
address spaces via the ASL Operation Region (OpRegion) construct. An OpRegion is a named
window into an address space. During the creation of an OpRegion, the

ACPI Component Architecture User Guide and Programmer Reference

34

Generic Serial Bus (ACPI 5.0)

both the boundaries (window size) and the address space to be accessed by the OpRegion. Specific
addresses within the access window can then be defined as named fields to simplify their use.

The AML Interpreter is responsible for translating ASL/AML references to named Fields into
accesses to the appropriate Address Space. The interpreter resolves locations within an address
space using the fields’ address within an OpRegion and then the OpRegion’s offset within the
address space. The resolved address, address access width, and function (read or write) are then
passed to the address space handler who is responsible for performing the actual physical access of
the address space.

3.2.7.1 Installation of Address Space Handlers

At runtime, the ASL/AML code cannot access an address space until a handler has been installed for
that address space. An ACPICA user can either install the default address space handlers or install
user defined address space handlers using the AcpiInstallAddressSpaceHandler interface.

Each Address Space is “owned” by a particular device such that all references to that address space
within the scope of the device will be handled by that devices address space handler. This
mechanism allows multiple address space/operation region handlers to be installed for the same type
of address space, each mutually exclusive by virtue of being governed by the ACPI address space
scoping rules. For example, picture a platform with two SMBus devices, one an embedded
controller based SMBus; the other a PCI based SMBus. Each SMBus must expose its own address
space to the ASL without disrupting the function of the other. In this case, there may be two device
drivers and two distinctly different address space handlers, one for each type of SMBus. This
mechanism can be employed in a similar manner for the other predefined address spaces. For
example, the PCI Configuration space for each PCI bus is unique to that bus. Creation of a region
within the scope of a PCI bus must refer only to that bus.

Address space handlers must be installed on a named object in the ACPI namespace or on the
special object ACPI_ROOT_OBJECT. This is required to maintain the scoping rules of address
space access. Address handlers are installed for the namespace object representing the device that
“owns” that address space. Per ASL rules, regions that access that address space must be declared in
the ASL within the scope of that namespace object.

It is the responsibility of the ACPICA user to enumerate the namespace and install address handlers
as needed.

3.2.7.2 ACPI-Defined Address Spaces

The ACPI specification defines address spaces for:

 System Memory

 System I/O

 PCI Configuration Space

 System Management Bus (SMBus)

 Embedded Controller

 CMOS

 PCI Bar Target

 IPMI (ACPI 4.0)

 General Purpose I/O (ACPI 5.0)

ACPI Component Architecture User Guide and Programmer Reference

35

ed to share I/O ports.

The ACPICA subsystem implements default address space handlers for the following ACPI defined
address spaces:

 System Memory

 System I/O

 PCI Configuration Space

Default address space handlers can be installed by supplying the special value
ACPI_DEFAULT_HANDLER as the handler address when calling the
AcpiInstallAddressSpaceHandler interface.

The other predefined address spaces (such as Embedded Controller and SMBus) have no default
handlers and will not be accessible without OS provided handlers. This is typically the role of the
Embedded Controller, SMBus, and other ACPI-related device drivers.

3.2.7.3 Sharing Resources between Device Drivers and AML

There may be situations where an ACPI-related device driver and the associated ASL/AML code
must share device registers, memory locations, etc.

ACPICA provides a mechanism to allow the device driver to own these locations and registers such
that all AML access is automatically forwarded to the driver. A custom address space handler can
manage these shared resources.

Device drivers and OSPM code can install a custom address space handler for any particular device
so that the driver has exclusive control over access to the device registers. ACPICA allows each and
every device in the namespace to have a unique address space handler (for any of the ACPI address
spaces). Whenever the ASL code for the device executes and accesses the registers/locations (via an
Operation Region), the device driver address space handler will be invoked, thus giving the driver
complete control over the shared resource.

Note: The custom address space handler will intercept only those accesses that are performed by the
ASL code that is within the scope of the device where it is installed. This does not affect handling of
accesses for any other devices in the namespace. For example, the default SystemIO space handler
might be used for all I/O access in the entire namespace except for a particular device where a
custom handler is installed because of the ne

ACPI Component Architecture User Guide and Programmer Reference

36

}

3.2.7.3.1 ASL Shared Resource Example

Below is a snippet of ASL code that defines and accesses an I/O Operation Region and several
shared I/O registers (COST and VREG).

Scope (_SB)
{

Device (PCI0)
{

Name (_HID, EisaId ("PNP0A08")) // _HID: Hardware ID

Device (PS2K)
{

Name (_HID, EisaId ("PNP0303")) // _HID: Hardware ID

OperationRegion (PKBS, SystemIO, 0x60, 0x05)
Field (PKBS, WordAcc, Lock, Preserve)
{

COST, 16,
VREG, 16

}

Method (_AC0, 0, NotSerialized)
{

And (COST, 0xFFFF, COST)
Store (0x1234, VREG)
Or (COST, 0xFFF6, COST)

Store (COST, Debug)
Return (COST)

}
}

}
}

3.2.7.3.2 Custom Address Space Handler Installation

In order to trap accesses to the registers defined in the example above, the device driver must obtain
a handle to the device in the ACPI namespace and then install a custom address space handler for
the device. Once the address space handler is installed, all ASL/AML accesses to the PKBS
Operation Region (above) via the COST and VREG I/O ports will be forwarded to the driver for
processing.

Status = AcpiGetHandle (NULL, "_SB.PCI0.PS2K", &ObjHandle);

Status = AcpiInstallAddressSpaceHandler (ObjHandle, ACPI_ADR_SPACE_SYSTEM_IO,
RegionHandler, RegionInit, MyContext);

if (ACPI_FAILURE (Status))
{

ACPI_EXCEPTION ((AE_INFO, Status,
"Could not install an OpRegion handler for PS2K device (%p)",
ObjHandle));

ACPI Component Architecture User Guide and Programmer Reference

37

hopefully

Using the acpiexec utility and executing the "handlers" command, we see that the custom handler
for _SB_.PCI0.PS2K has been installed:

- handlers

Operation Region Handlers at the namespace root:
SystemMemory (00) : User (00422A30) /* default acpiexec handler */

SystemIO (01) : User (00422A30) /* default acpiexec handler */

Operation Region Handlers for specific devices:
SystemIO (01) : User (00422280) Device Name: _SB_.PCI0.PS2K

Executing the _AC0 method (which accesses the I/O registers defined in the PKBS Operation
Region), we see that the custom SystemIO handler for _SB_.PCI0.PS2K is invoked multiple times:

- evaluate _SB_.PCI0.PS2K._AC0

Evaluating _SB_.PCI0.PS2K._AC0
ACPI: PCI0.PS2K SystemIO request at: 0x0000000000000060 [READ]
ACPI: PCI0.PS2K SystemIO request at: 0x0000000000000060 [WRITE]
ACPI: PCI0.PS2K SystemIO request at: 0x0000000000000062 [WRITE]
ACPI: PCI0.PS2K SystemIO request at: 0x0000000000000060 [READ]
ACPI: PCI0.PS2K SystemIO request at: 0x0000000000000060 [WRITE]
ACPI: PCI0.PS2K SystemIO request at: 0x0000000000000060 [READ]
[ACPI Debug] Integer 0x0000000000000000
ACPI: PCI0.PS2K SystemIO request at: 0x0000000000000060 [READ]
Evaluation of _SB_.PCI0.PS2K._AC0 returned object 00323EC8, buffer length 10
[Integer] = 0000000000000000

3.3 Policies and Philosophies

This section provides insight into the policies and philosophies that were used during the design and
implementation of the ACPICA Subsystem. Many of these policies are a direct interpretation of the
ACPI specification. Others are a direct or indirect result of policies and procedures dictated by the
ACPI specification. Still others are simply standards that have been agreed upon during the design
of the subsystem.

3.3.1 External Interfaces

3.3.1.1 Exception Codes

All external interfaces (Acpi*) return an exception code as the function return. Any other return
values are returned via pointer(s) passed as parameters. This provides a consistent and simple
synchronous exception-handling model.

Since the ACPICA Subsystem is reentrant and supports multiple threads on multiple operating
systems, a model where an exception code is stored in the task descriptor (such as the errno
mechanism) was purposefully avoided to improve portability.

3.3.1.2 Memory Buffers

Memory for return objects, buffers, etc. that is returned via the external interfaces is rarely allocated
by the subsystem itself. The model chosen is to force the caller to always pre-allocate memory. This
forces the calling software to manage both the creation and deletion of its own buffers —

ACPI Component Architecture User Guide and Programmer Reference

38

termination.

minimizing memory fragmentation and avoiding memory leaks. The exception to this is the
ACPI_BUFFER type, where the caller can direct the ACPICA subsystem to allocate return buffers.

3.3.2 Subsystem Initialization

3.3.2.1 ACPI Table Validation

All ACPI tables that are examined by the ACPICA Subsystem undergo some minimal validation
before they are accepted. This includes all tables found in the RSDT regardless of whether the
signature is recognized, and all tables loaded from user buffers. The following validations are
performed on each table. A warning is issued for tables that do not pass one or more of these tests:

1. The Table pointer must point to valid physical memory

2. The signature (in the table header) must be 4 ASCII chars, even if the name is not
recognized.

3. The table must be readable for length specified in the header

4. The table checksum must be valid (with the exception of the FACS, which has no
checksum).

Other than this validation, tables that are not recognized by their table header signature are simply
ignored.

3.3.2.2 Required ACPI Tables

At the very minimum, the ACPICA Subsystem requires the following ACPI tables:

1. One Fixed ACPI Description Table (FADT — signature “FACP”). This table contains
configuration information about the ACPI hardware and pointers to the FACS and DSDT
tables.

2. One Firmware ACPI Control Structure (FACS). This table contains the OS-to-firmware
interface including the firmware waking vector and the Global Lock.

3. One Differentiated System Description Table (DSDT). This table contains the primary
AML code for the system.

4. Optional are one or more Secondary System Description Tables (SSDTs) that contain
additional AML code. All SSDTs found in the RSDT/XSDT root table are loaded during
the table/namespace initialization. Other SSDTs and OEM tables can be loaded at runtime
via the Load or LoadTable AML operators.

3.3.3 Major Design Decisions

3.3.3.1 Performance versus Code/Data Size

The ACPICA subsystem is optimized to minimize code and data size at the expense of performance.
The relatively static internal namespace data structure has been optimized to minimize non-paged
kernel memory use, and control method execution parse trees are freed immediately upon method

ACPI Component Architecture User Guide and Programmer Reference

39

tire subsystem.

3.3.3.2 Object Management – No Garbage Collection

Creation and deletion of all internal objects are managed such that garbage collection is never
required or performed. Objects are deleted deterministicatlly when they are no longer needed. This
is achieved through the use of object reference counts and object trees.

Internal object caches allow the reuse of commonly used objects without burdening the OS free
space manager. This greatly improves the performance of the en

ACPI Component Architecture User Guide and Programmer Reference

40

Determine processor configuration

4 Implementation Details

4.1 Required Host OS Initialization Sequence

This section describes a generic operating system initialization sequence that includes the ACPICA
subsystem. The ACPICA subsystem must be loaded very early in the kernel initialization. In fact,
ACPI support must be considered to be one of the fundamental startup modules of the kernel. The
basic OS requirements of the ACPICA subsystem include memory management, synchronization
primitives, and interrupt support. As soon as these services are available, ACPICA should be
initialized. Only after ACPI is available can motherboard device enumeration and configuration
begin.

In summary, ACPI Tables are descriptions of the hardware, therefore must be loaded into the OS
very early.

4.1.1 Bootload and Low Level Kernel Initialization

 OS is loaded into memory via bootloader or downloader

 Initialize OS data structures, objects and run-time environment

 Initialize low-level kernel subsystems

 Initialize ACPI Table Manager if early ACPI table access is required

 Initialize and enable free space manager

 Initialize and enable synchronization primitives

 Initialize basic interrupt mechanism and hardware

 Initialize and start system timer

4.1.2 ACPICA Subsystem Initialization

 Initialize ACPICA Table Manager and Load ACPI Tables

 Initialize Namespace

 Initialize ACPI Hardware and install SCI interrupt handler

 Initialize ACPI Address Spaces (Default handlers and user handlers)

 Initialize ACPI Objects (_STA, _INI)

 Find PCI Root Bus(es) and install PCI config space handlers

4.1.3 Other OS Initialization

 Remaining non-ACPI Kernel initialization

 Initialize and start System Resource Manager

ACPI Component Architecture User Guide and Programmer Reference

41

FACS, DSDT, and any SSDTs. All other ACPI tables present on the platform must be consumed by

4.1.4 Device Enumeration, Configuration, and Initialization

 Match motherboard devices to drivers via _HID

 Initialize PCI subsystem: Obtain _PRT interrupt routing table and Initialize PCI routing.
PCI driver enumerates PCI bus and loads appropriate drivers.

 Initialize Embedded Controller support/driver

 Initialize SM Bus support/driver

 Load and initialize drivers for any other motherboard devices

4.1.5 Final OS Initialization

 Load and initialize any remaining device drivers

 Initialize upper layers of the OS

 Activate user interface

4.2 Required ACPICA Initialization Sequence

This section presents a detailed description of the initialization process for the ACPICA subsystem.
The initialization interfaces are provided at a sufficient granularity to allow customization of the
initialization sequence for each host operating system and host environment.

4.2.1 Global Initialization – AcpiInitializeSubsystem

This mandatory step begins the initialization process and must be first. It initializes the ACPICA
Subsystem software, including all global variables, tables, and data structures. All components of
the ACPICA Subsystem are initialized, including the OSL interface layer and the OSPM layer. The
interface provided is AcpiInitializeSubsystem.

4.2.2 ACPI Table and Namespace Initialization

This required phase loads the ACPI tables from the BIOS and initializes the internal ACPI
namespace.

4.2.2.1 AcpiInitializeTables

This function initializes the ACPICA Table Manager. This component is independent of the rest of
the ACPICA subsystem and may be initialized and executed at any time during kernel initialization,
even before dynamic/virtual memory is available. This allows the ACPI tables to be acquired very
early in the kernel initialization process. Some ACPI tables are required during early kernel
initialization/configuration – such as the SLIT (System Locality Distance Information Table), SRAT
(System Resource Affinity Table), and MADT (Multiple APIC Description Table.)

4.2.2.2 AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex

These functions may be used by the host OS and device drivers to obtain individual ACPI tables as
necessary. The only ACPI tables that are consumed by the ACPICA subsystem are the FADT,

ACPI Component Architecture User Guide and Programmer Reference

42

in this mode.)

the host OS and device drivers. For example, the ECDT (Embedded Controller Boot Resources
Table) is used by the host-dependent Embedded Controller device driver.

4.2.2.3 AcpiLoadTables

This interface creates the internal ACPI namespace data structure from the DSDT and SSDTs found
in the RSDT/XSDT root table. All SSDTs found in the root table are loaded. Other SSDTs may be
loaded by AML code at runtime via the AML Load operator. OEM tables that appear in the
RSDT/XSDT can only be loaded via the AML LoadTable operator.

4.2.2.4 Internal ACPI Namespace Initialization

As the various ACPI tables are loaded (installed into the internal data structures of the CA
subsystem), the internal ACPI Namespace (database of named ACPI objects) is constructed from
those tables. As each table is loaded, the following tasks are automatically performed:

 First pass parse – Load all named ACPI objects into the internal namespace

 Second pass parse – Resolve all forward references within the ACPI table

 First pass parse of all control methods – Sanity check to ensure that the tables can be
completely parsed, including the control methods. The resulting parse tree is not stored,
since control methods are parsed on the fly every time they are executed. (This task
represents minimal CPU overhead, and saves huge amounts of memory that would be
consumed by storing parse trees.)

 Lock the namespace so that GPEs will not cause control methods to run

4.2.3 Hardware Initialization – AcpiEnableSubsystem

This step continues the subsystem initialization and is more hardware oriented. It first puts the
system into ACPI mode, then installs the default Operation Region handlers, initializes the event
manager, and installs the SCI and Global Lock handlers.

During the event manager initialization, fixed events are initialized and enabled. GPEs are
initialized, but are not enabled at this time.

To summarize the actions performed by this call:

 Enter ACPI Mode.

 Install default operation region handlers for the following address spaces that must always
be available: SystemMemory, SystemIO, PCI_Config, and DataTable.

 Initialize ACPI Fixed and General Purpose events (not enabled at this time, however.)

 Install the SCI and Global Lock interrupt handlers.

4.2.3.1 ACPI Hardware and Event Initialization

This step puts the system into ACPI mode if necessary, sets up the ACPI hardware, initializes the
ACPI Event handling, and installs the ACPI interrupt handlers. This step is optional when running
in “hardware-independent” mode – when there is no access to hardware by the ACPICA subsystem
(For example, the AcpiExec utility runs

ACPI Component Architecture User Guide and Programmer Reference

43

The ACPI hardware must be initialized and an SCI interrupt handler must be installed before it is
architecturally safe to evaluate ACPI objects and execute control methods, for the following
reasons:

1. Any ACPI named object (predefined or otherwise) can be implemented as a control method
and there is no way to safely make any assumptions about which objects are and are not
implemented as control methods. This is dependent on the individual AML on each platform.

2. Because control methods can access the ACPI hardware, cause ACPI interrupts (SCIs), and
most interesting of all, can block while waiting for an SCI to be serviced, it is inherently unsafe
and architecturally incorrect to attempt to execute control methods without first initializing the
hardware and installing the SCI interrupt handler

This step is only optional when running in “hardware-independent” mode. Otherwise it is required
to setup the ACPI hardware and System Control Interrupt handling. ACPI mode is entered if the
machine is in legacy mode. If the machine is already in ACPI mode (such as an IA-64 machine), no
action is required.

When this step is complete, control methods may be executed because the hardware is now
initialized and the subsystem is able to take ACPI-related interrupts (System Control Interrupts or
SCIs). The execution of any control method (including the _REG methods) can cause the generation
of an SCI – therefore, the hardware must be initialized before control methods may be run.
Additional ACPICA subsystem initialization that requires control method execution can now be
completed.

4.2.4 Handler Installation

Once the namespace has been constructed and the hardware has been initialized, the OS should
install any handlers that it may require during execution of the ACPICA subsystem. The purpose of
installing these handlers at this point in the initialization process is so that the handlers are in place
before execution of any control methods is allowed – thereby insuring that any custom handlers will
not miss any of the events that they are intended to handle. Any handlers installed in this phase will
override any default handlers.

4.2.4.1 Handler Types

The following handler installation interfaces are available

Initialization Handler: AcpiInstallInitializationHandler

This function is used to install a global handler for ACPICA initialization events. Currently, the
handler is called after the execution of every device _INI method.

Table Event Handler: AcpiInstallTableHandler

This function is used to install a global handler for ACPI table load/unload events.

AML Exception Handler: AcpiInstallExceptionHandler

This function is used to install a global handler for AML run-time exceptions.

Address Space Handlers: AcpiInstallAddressSpaceHandler

handlers are invoked to implement Operation Region requests. Note: during the installation, any

This function is used to install address space handlers to override the default address space
handlers (for the predefined address spaces) or install handlers for custom address spaces. These

ACPI Component Architecture User Guide and Programmer Reference

44

_REG methods associated with the SpaceID are executed. Thus, the Address Space Handlers can
only be installed after the hardware has been initialized.

Fixed Event Handlers: AcpiInstallFixedEventHandler

This function is used to install handlers for ACPI Fixed Events.

General-Purpose Event Handlers: AcpiInstallGpeHandler

This function is used to install handlers for ACPI General Purpose Events (GPEs).

Notify Handlers: AcpiInstallNotifyHandler

nhances the speed of this step and can reduce

This function is used to install handlers for ACPI device, thermal zone, and processor
notifications.

4.2.5 Object Initialization – AcpiIntializeObjects

This step completes the initialization of all objects within the loaded namespace, then initializes and
enables the runtime general-purpose events:

 Initialize all Operation Regions. This step runs all Operation Region _REG methods for the
address spaces with default handlers – SystemMemory, SystemIO, PCI_Config, and
DataTable. Note: Operation Regions that are declared within control methods are not
initialized until actual execution of the method.

 Finish initialization of complex objects (Operation Regions, BufferFields, Buffers,
BankFields, and Packages) that contain executable AML code within the declaration.

 Initialize all Device, Processor and Thermal objects within the namespace by executing
the_STA and _INI methods on each of these objects.

 Initialize the FADT-defined GPE blocks.

 Execute all _PRW methods within the namespace. These methods identify and define the
GPEs that are used for wake events. These types of GPEs are never enabled at runtime, they
are only enabled as the system enters a sleep state.

 Enable all runtime GPEs. The GPEs can only be enabled after the _REG, _STA, and _INI
methods have been run. This ensures that all Operation Regions and all Devices have been
initialized and are ready.

4.2.5.1 ACPI Device Initialization

During this step, all Device, Processor, and Thermal objects found within the ACPI namespace are
initialized. The _INI method is executed for all devices that are present as indicated by the _STA
method. This is not an actual initialization of the device hardware – this is left to the actual device
drivers for the hardware.

The entire namespace is traversed and the_STA and _INI methods are run on all ACPI objects of
type Device, Processor, and Thermal found therein. Any operation regions accessed by these
methods will be automatically initialized by the just-in-time address space initialization mechanism.
The initialization is performed via the following steps:

 A namespace analysis is performed to identify all subtrees that contain devices that have a
corresponding _INI method. This greatly e

ACPI Component Architecture User Guide and Programmer Reference

45

PCIConfig address space accesses a SystemMemory Operation Region, the definition of that

operating system boot time. If there is no _INI method for a given device, then no attempt is
made to execute the _STA method for the device.

 If the device has an _INI method, attempt to execute the _STA method for the device.

 If _STA does not exist within the scope of the device, the device is assumed to be both
present and functional – as per the ACPI specification.

 If the _STA flags indicate the device is not present but functioning, do not run _INI on the
device, but continue to examine the children of the device.

 If the _STA flags indicate the device is not present and not functioning, do not examine the
children of this device – abort the walk of this subtree of the namespace.

 If the _STA flags indicate that the device is present, then attempt to execute the _INI method
for the device.

 The global initialization handler is called after the execution of every _INI method.

4.2.5.2 Other ACPI Object Initialization

This step initializes the remaining AML Operation Regions and Fields that were not initialized
during the device and address space initialization.

Operation Regions and CreateField ASL statements can contain executable AML code and therefore
the initialization of the objects must be deferred until the CA subsystem and ACPI hardware are
both initialized. Some of this initialization may have been completed during the earlier steps. This
step completes that initialization.

This final pass through the loaded ACPI tables will execute all AML code outside of the control
methods that has not already been executed on-demand during the previous phases. The purpose is
to initialize the Field and OpRegion objects by executing all CreateField, OperationRegion code in
the AML. ACPI 2.0 has additional elements that will need to be initialized this way (Not yet
implemented.)

4.2.6 Other Operating System ACPI-related Initialization

All external ACPI interfaces are available and the host OS can perform the following initialization
steps:

 Enumerate devices using the _HID method

 Load, configure, and install device drivers

 Device Drivers install handlers for other address spaces such as SMBus, EC, IPMI, and
custom address spaces

 The PCI driver enumerates PCI devices and loads PCIConfig handlers for PCI-to-PCI-
bridge devices (which causes the associated child PCI bus_REG methods to run, etc.)

4.2.7 Just-in-time Operation Region Initialization

This phase includes just-in-time initialization for any Operation Regions, Packages, Buffers, or
Fields that are accessed by the control methods executed here. For example, if a _REG method for a

ACPI Component Architecture User Guide and Programmer Reference

46

operating system configuration.

particular SystemMemory region is fully evaluated at that time. (Operation Regions and CreateField
ASL statements can contain executable AML code and therefore the initialization of the objects
must be deferred until the CA subsystem and ACPI hardware are both initialized).

Therefore, Address Spaces are initialized in the order in which they are accessed, not in the order
that they are declared in the ASL source code.

When any Address Space is initialized, the associated _REG method (if any) is executed as well.

4.2.7.1 SystemMemory Region Initialization

For each operation region within the SystemMemory address space, a memory mapped window of
maximum size ACPI_SYSMEM_REGION_WINDOW_SIZE is maintained, in an attempt to
minimize the overhead of mapping entire operation regions if they are very large.

When a request is received that is outside of the current window, the existing mapping is deleted
and a new mapping that can service the request is created.

This mapping feature is implemented in the default handler for the SystemMemory address space.

4.2.7.2 PCI_Config Region Initialization

For these operation regions, the namespace is searched upwards from the region to find the
corresponding PCI Root Bridge.

If a _HID or _CID method under a device object indicates the presence of a PCI Root Bridge (an ID
value of PNP0A03 or PNP0A08 for PCI Express), perform PCI Configuration Space initialization
on the bridge. Install the PCI address space handler on the bridge (and on all descendents) and run
the _REG method for the device if it is present. Then execute the _ADR, _SEG, and _BBN
methods (in the bridge scope) to obtain the PCI Device, Function, Segment, and Bus numbers.
Finally, run the associated _REG method to indicate the availability of the region.

 The initial PCI Device and Function values are obtained from the _ADR method.

 The initial PCI Segment number is obtained from the _SEG method.

 The initial PCI Bus number is obtained from the _BBN method.

 The final PCI ID consisting of Device, Function, Segment, and Bus is obtained by calling the
AcpiHwDerivePciId OSL interface. This function adjusts the Bus, Device, and Function
numbers based upon the PCI device tree and the PCI configuration space registers. This
allows for a dynamic value for the Bus number based upon the hardware configuration and
initialization.

When accessing a PCI_Config operation region, all I/O from/to the PCI confituration space is
performed via the OSL interfaces AcpiOsReadPciConfiguration and AcpiOsWritePciConfiguration.

The (internal) AcpiHwDerivePciId function derives a full PCI ID for a PCI device, consisting of a
Segment number, a Bus number, and a Device number.

The PCI hardware dynamically configures PCI bus numbers depending on the bus topology
discovered during system initialization. The AcpiHwDerivePciId function is invoked by the
ACPICA subsystem during configuration of a PCI_Config Operation Region in order to (possibly)
update the Bus number in the PciId with the actual Bus number as determined by the hardware and

ACPI Component Architecture User Guide and Programmer Reference

47

ation for the AML debugger

The PciId parameter is initially populated by the ACPICA subsystem during the Operation Region
initialization. ACPICA then calls AcpiHwDerivePciId, which is makes any necessary modifications
to the Segment, Bus, or Device number PCI ID subfields as appropriate for the current hardware and
OS configuration.

4.2.8 System Shutdown – AcpiTerminate

This step frees all dynamically allocated resources back to the host operating system The ACPICA
subsystem may be re-initialized and restarted from the beginning anytime after this step completes.

4.3 Multithreading Support

4.3.1 Reentrancy

All external interfaces to the ACPICA Subsystem are fully reentrant. There are limitations to the
amount of concurrency allowed during control method execution, but these limitations are
transparent to the calling threads — in the sense that threads that attempt to execute control methods
will simply block until the interpreter becomes available.

4.3.2 Mutual Exclusion and Synchronization

Three different types of synchronization objects are used by the ACPICA code:

3. Mutex objects. These objects are used for high-level mutual exclusion within the ACPICA
Subsystem and AML interpreter and to implement the ASL Mutex operators, as well as the
ACPI Global Lock. If there are no mutex primitives available in the host OS, they can be
implemented with semaphore objects (binary semaphores.)

4. Semaphore objects. These objects are used for synchronization and to implement the ASL
Event operators.

5. Spin Locks. These objects are only used at interrupt level (in interrupt handlers).

4.3.2.1 Internal use of Mutex Objects

ACPICA defines the following mutex objects for internal use:

Interpreter: Lock for the entire AML interpreter

Namespace: Lock for the internal ACPI namespace data structure

Tables: Lock for the data structures for the ACPI tables received from the BIOS

Events: Lock for the data structures related to ACPI events (GPEs, Fixed Events, etc.)

Caches: General lock for internal caches

Memory: Lock for the debug-only memory tracking list(s)

Debug Command Complete: Synchronization for the AML debugger

Debug Command Ready: Synchroniz

ACPI Component Architecture User Guide and Programmer Reference

48

Global lock pending bit

When using these mutex objects, ACPICA obeys the following rules:

1) Mutex objects are always acquired in the order of the objects defined above. For example, if
the Tables lock has been acquired, the Namespace or Interpreter lock will never be
subsequently acquired .

2) However, the acquisition of a mutex does not imply or require that previous mutex objects
must be acquired. In other words, the Namespace lock may be acquired without holding the
Interpreter lock.

3) Mutex objects are never acquired recursively by ACPICA.

4) Mutex objects are always released in the reverse of the acquisition order.

5) The ACPI_MUTEX_DEBUG compile-time option may be specified that will enable code that
checks for and enforces the rules above. This option is typically used to debug the ACPICA
code and ensure that the rules above are strictly adhered to.

These rules of use are published here in order to help developers implement the mutex objects
within the host OSL.

NOTE: These rules do not apply directly to the ASL/AML Mutex object, which has slightly
different rules as defined by the ACPI specification.

In addition, there are several other miscellaneous mutex objects used internally:

Namespace Read/Write: Two mutex objects are used to implement a readers/writers lock that is
used for namespace walks and dynamic ACPI table loading and unloading

Global Lock: Used to implement the AML global lock object. This is used in conjunction with a
global lock semaphore and global lock spinlock.

_OSI Method: Lock for the _OSI information data structures.

4.3.2.2 Internal use of Spinlock Objects

ACPICA uses several internal spinlocks for the following:

1) Internal object reference counting mechanism

2) GPE data structures and registers

3) Other ACPI hardware (Fixed, events, etc.) data structures and registers

4)

ACPI Component Architecture User Guide and Programmer Reference

49

method that is already executing (or is blocked).

4.3.3 Control Method Execution

Most of the multithread support within the ACPICA subsystem is implemented using traditional
locks and mutexes around critical (shared) data areas. However, the AML interpreter design is
different in that the ACPI specification defines a special threading behavior for the execution of
control methods. The design implements the following portion of the ACPI specification that
defines a partially multithreaded AML interpreter in these four sentences:

A control method can use other internal, or well-defined, control methods to accomplish the
task at hand, which can include defined control methods provided by the operating
software. Interpretation of a Control Method is not preemptive, but can block. When a
control method does block, the operating software can initiate or continue the execution of
a different control method. A control method can only assume that access to global objects
is exclusive for any period the control method does not block.

4.3.3.1 Control Method Blocking

First of all, how can a control method block? This is a fairly exhaustive list of the possibilities:

1. Executes the Sleep() ASL opcode

2. Executes the Acquire() ASL opcode and the request cannot be immediately satisfied

3. Executes the Wait() ASL opcode and the request cannot be immediately satisfied

4. Attempts to acquire the Global Lock (via Operation Region access, etc), but must wait

5. Attempts to execute a control method that is serialized and already executing (or is blocked),
or has reached its concurrency limit

6. Invokes the host debugger via a write to the debug object or executes the BreakPoint() ASL
opcode

7. Accesses an Operation Region which results in a dispatch to a user-installed handler that
blocks on I/O or other long-term operation

8. A Notify AML opcode results in a dispatch to a user-installed handler that blocks in a similar
way

4.3.3.2 Control Method Execution Rules

Here are some Control Method execution “rules” that the ACPICA multithread support is built
upon. These rules are not always stated explicitly in the ACPI specification — some of them are
inferred.

1. A Control Method will run to completion (as far as the interpreter is concerned – this
doesn’t include thread preemption and interrupt handling by the OS) unless it blocks (i.e. a
control method will not be arbitrarily preempted by the interpreter.)

2. If a Control Method blocks, the next Control Method in the queue will be executed. When
the original (blocked) control method becomes ready, it will not preempt the executing
method. Instead, it will be placed back on the execution queue (We could place the method
at the tail or the head of the execution queue, or leave this decision to the OSL
implementers).

3. Methods can be serialized (non-reentrant) or reentrant. A thread will block if an attempt is
made to execute (either via direct invocation or indirectly via a method call) a serialized

ACPI Component Architecture User Guide and Programmer Reference

50

ethod.

4. The “implicit” synchronization supported by Operation Regions and mentioned in the ACPI
specification seems to depend entirely on the non-preemptive control method execution
model (see above.)

4.3.3.3 A Simple Multithreading Model

The actual mechanisms to block a thread are simple and are already in place on the OSL side:

1. Sleep () – directly implemented via AcpiOsSleep (), will block the caller and free the
processor.

2. Acquire () – implemented via an AcpiOsMutex.

3. Wait () – implemented via an AcpiOsSemaphore.

4. Global Lock – implemented via an AcpiOsMutex and the interrupt caused by the release
of the lock.

5. Concurrency limit – we could put a queue at each method (high overhead), or simply re-
queue the thread (perhaps in a high-priority queue if we implement one).

6. Host Debugger – These are simply AcpiOs* calls that we assume will block for a long
time.

7. Operation Region Handler blocks on some OS primitive

8. Notify handler blocks in the same manner as (7).

These mechanisms are sufficient to implement the blocking, but this isn’t enough to implement the
execution semantics of “no preemption unless the method does something to block itself”. This
requires additional support. I will take a stab at a multithread model here; please feel free to modify
or comment.

1. True concurrent control method execution is not allowed. Although the interpreter is
“reentrant” in the sense that more than one thread can call into the interpreter, only one
thread at any given time (system wide) can be actively interpreting a control method. All
other control methods (and the threads that are executing them) must be either blocked or
awaiting execution/resumption.

2. Therefore, we can put a mutex around the entire interpreter and only allow a thread access
to the interpreter when there are no other accessing threads.

3. The implication and result is that when an executing control method blocks, it is defined to
have stopped accessing the interpreter, and is no longer executing within the interpreter.

4. If any interrupt handler needs interpreter services (such as the EC driver and the _Qxx
control methods), it must schedule a thread for execution. When it runs, this thread calls the
interpreter to execute the m

ACPI Component Architecture User Guide and Programmer Reference

51

. Since they are all executing the same code, this behavior is ensured.

The algorithm below implements the model described above:

AmlExecuteControlMethod ()
Acquire (Global Interpreter Lock)

If <the method does anything that might block>
Check if it will block (such as wait on a semaphore with a zero timeout, or
grab global lock)
If <we know or the method will block or still think that it might block>
(such as sleep, acquire-no-units, wait-no-event, global lock not available,
reached concurrency limit) – and perhaps before we dispatch to a user
OpRegion or Notify handler)

Release (Global Interpreter Lock) (Allow another thread to execute a
method)

Execute the blocking call (AcpiOsSleep or AcpiOsWaitSemaphore)
Acquire (Global Interpreter Lock) (Must re-enter the interpreter,

can’t preempt running thread!)
Release (Global Interpreter Lock) (Finished with this method, free the
interpreter)

4.3.3.4 A More Complex Multithreading Model

This extension to the model shown above adds a mechanism to implement a “priority” system where
all executing and blocked Control Methods have a higher priority than methods that are queued and
have never executed yet. This allows the interpreter some control over the scheduling of threads that
are executing control methods, without relying directly on an OS-defined priority mechanism. In
other words, it provides an OS-dependent way to schedule threads the way we want.

Two semaphores are used, call them an “Outer Gate” and an “Inner Gate”. A thread must pass
through both gates before it can begin execution. Once inside both gates, it releases the outer gate,
allowing a thread in to wait at the inner gate. When the first thread completes execution of the
method, it releases the inner gate, allowing the next thread to proceed. If at any time during
execution a thread must block, it releases the inner gate, blocks, then re-acquires the inner gate when
it resumes execution.

The maximum length of the queue at the inner gate will never exceed <the number of blocked
threads (running a method)> + 1 (the last thread allowed in through the outer gate).

In the typical (blocking) case, T1 blocks allowing T2 to run. T1 unblocks and eventually waits on
the inner gate. T2 eventually completes and signals the inner gate. T1 now runs to completion. All
of this happens regardless of the number of threads waiting at the outer gate – therefore, it gives
priority to threads that are already running a method.

The algorithm below implements the modified model described above:

AmlExecuteControlMethod ()
Acquire (Outer Lock)
Acquire (Inner Lock) (Must acquire both locks to begin execution)
Release (Outer Lock) (Allow one thread into the outer lock)
If <the method does anything that might block>

Check if it will block (such as wait on a semaphore with a zero timeout)
If <we know or the method will block or still think that it might block>
(such as sleep, acquire-no-units, wait-no-event, global lock not
available, reached concurrency limit) – and perhaps before we dispatch to
a user OpRegion or Notify handler)

Release (Inner Lock) (Allow another thread to begin execution of a
method)
Execute the blocking call (AcpiOsSleep, AcpiOsWaitSemaphore, etc.)
Acquire (Inner Lock) (Must re-enter the interpreter since we
cannot preempt running thread!)

Release (Inner Lock) (Finished with this method, free the interpreter)

Note: It is not so important that the threads free the locks in reverse order as it is that they all unlock
the locks in the same order

ACPI Component Architecture User Guide and Programmer Reference

52

While the simple multithreading model will be sufficient, the more complex model allows a more
“fair” allocation of resources under heavy load. The outstanding question is whether there will ever
be enough concurrent use of the AML interpreter to justify the complexity of the second model.

4.3.4 ACPI Global Lock Support

The ACPI Global Lock is intended to be a mutual exclusion mechanism that allows both the host
operating system and the resident firmware to access common hardware and data structures. It is not
intended to be a mutual exclusion mechanism between threads implemented by the host OS.

The one and only purpose of the Global Lock is to provide synchronization between the resident
firmware (SMI BIOS, etc.) and all other software on the platform.

The ACPICA subsystem manages the global lock in the following manner:

 When the firmware owns the global lock, ACPICA queues up all requests to acquire the
global lock.

 When the firmware releases the global lock, ACPICA satisfies all queued requests one at
a time. A separate hardware acquire and release is performed for each thread that has
requested the lock.

This algorithm prevents starvation of the global lock if many OS threads are requesting it. The BIOS
has the opportunity to acquire the lock after each requesting thread releases it.

The diagram below shows the global lock in relation to the BIOS and other system software.

Figure 8. Global Lock Architecture

Global Lock

Shared Data

Resident
Firmware

(BIOS)

Operating System

Device Drivers

ACPI Subsystem

ACPI Component Architecture User Guide and Programmer Reference

53

always return an AE_OK exception code.

4.3.4.1 Obtaining The Global Lock

/* Only one thread can acquire the lock at a time */

Acquire the internal global lock mutex
If (AcquireHardwareGlobalLock())
{

GlobalLockAquired = TRUE;
return; /* All done! */

}

/* Must wait until the BIOS releases the lock and generates interrupt */

AmlExitInterpreter ();
AcpiOsWaitSemaphore (GlobalLockSemaphore, WAIT_FOREVER);
AmlEnterInterpreter ();

4.3.4.2 Releasing the Global Lock

If global lock is not acquired
Error, return;

ReleaseHardwareGlobalLock ();
If Pending bit set

Write the GBL_RLS bit to the control register

GlobalLockAquired = FALSE;
Release the internal global lock mutex

4.3.4.3 Global Lock Interrupt Handler

/* We get an SCI when the firmware releases the lock */

AcquireHardwareGlobalLock ()
If (Global Locak was acquired)
{

GlobalLockAcquired = TRUE;
AcpiOsSignalSemaphore (GlobalLockSemaphore);

}

4.3.5 Single Thread Environments

Both the design and implementation of the ACPICA Subsystem is targeted primarily for inclusion
within the kernel of a multitasking operating system. However, it is possible to generate and operate
the subsystem within a single threaded environment — with either a primitive operating system or
loader, or even standalone with no additional system software other than a few device drivers.

The successful operation of the ACPICA in any environment depends upon the correct
implementation of the OSL layer underneath it. This requirement is no different for a single
threaded environment, but some special considerations must be made:

The primary mechanisms used for mutual exclusion and multithread synchronization throughout the
ACPICA subsystem are the OSL Spinlock, Mutex, and Semaphore. Since these mechanisms are not
required in a single threaded environment, it is sufficient to implement these interfaces to simply

ACPI Component Architecture User Guide and Programmer Reference

54

d with the _PRW.

When used within an OS kernel at ring 0, the ACPI debugger requires a dedicated thread to perform
command line processing. Since this mechanism is not required in a single threaded environment, it
can be configured out during generation of the subsystem.

4.4 General Purpose Event (GPE) Support

This section describes the initialization and use of the ACPI General Purpose Events.

4.4.1 Runtime and Wake GPEs

The original definition of a “runtime” versus a “wake” GPE was as follows:

A runtime GPE is a GPE that is used for signaling while the system is up and running.
Examples of these types of events include the Embedded Controller, thermal zones, and
notebook lid switches.

A wake GPE is any GPE that is capable of waking the system from sleep/suspend. Examples of
these types of events include a notebook lid switch, a serial port, USB ports and a power
button. These GPEs are usually identified by being referenced by one or more _PRW methods
(Power Resources for Wake.)

There are a limited number of GPEs that are defined by the ACPI specification as being both
runtime and wake. Examples of these include lid switches and control method power buttons.

Recently, however, the line between runtime and wake GPEs has been blurred by various platforms.
For example, on some platforms, a wake GPE can be used at runtime to indicate state changes for
individual buses such as USB.

Partly because of these changes and because ACPICA will no longer execute _PRW methods on
behalf of the host, ACPICA itself no longer attempts to differentiate between runtime and wake
GPEs. This identification is left to the host and the individual device drivers as described in the
following sections.

4.4.1.1 Execution of _PRW Methods

As of ACPICA version 20101217 (December 2010), the _PRW methods (Power Resources for
Wake) are no longer automatically executed as part of the ACPICA initialization.

Originally (2000 – 2010), the ACPICA GPE initialization code performed a walk of the entire
namespace to execute all discovered _PRW methods and thus detect all GPEs capable of waking the
system.

As of December 2010, the _PRW method execution has been removed from ACPICA itself since it
is actually unnecessary. The host OS must in fact execute all _PRW methods in order to identify the
device and power-resource dependencies for its own power management subsystem. ACPICA now
requires the host OS to identify the wake GPEs as part of this process and to inform ACPICA of
these GPEs via the AcpiSetWakeGpe interface. This not only reduces the complexity of the ACPICA
initialization code, but in many cases (on systems with large namespaces) it should reduce the
kernel boot time as well since the _PRW methods are now only executed once, and an entire ACPI
namespace walk/search is eliminated.

As the host executes the _PRW methods, it must inform ACPICA of the GPE associated with each
_PRW, as well as the parent device associate

ACPI Component Architecture User Guide and Programmer Reference

55

4.4.1.2 Implicit Notify Support

This feature provides an automatic device notification for wake devices when a wakeup GPE occurs
and there is no corresponding GPE method or handler. Rather than ignoring such a GPE, an implicit
AML Notify operation is performed on the parent device object.

This feature is not part of the ACPI specification and is provided for Windows compatibility only.

The behavior of this feature is summarized below:

1. A Device has a _PRW method that associates it with a GPE

2. There is no method for the GPE in the ACPI namespace

3. No handler is installed for the GPE

4. When the GPE fires, a Notify(2) is performed on the original Device. The GPE is assumed
to be level-triggered and the GPE is cleared after the Notify has been executed. Notify(2) is
a DEVICE_WAKE notify.

5. Multiple devices are supported for the Implicit Notify feature. When the GPE fires, a notify
is performed on all devices associated with the GPE. (See the description for the
AcpiSetupGpeForWake interface.)

Example:

GPEs and dynamically loaded ACPI tables

In this example, a Device named USB0 has a _PRW method that associates the device with wake
GPE 07. However, there is no GPE method named _L07 in the namespace.

Device (USB0)
{

Name (_PRW, Package() {
7,
3

})
}

Since there is no GPE method named _L07 in the ACPI namespace, ACPICA automatically
executes the code below on behalf of USB0 when GPE 7 fires:

Method (_L07)
{

Notify (USB0, 2)
}

Note that the implicit notify feature only applies to GPEs that have a Device associated with them
via a _PRW method.

4.4.2 Using the ACPICA GPE Support Code

This section describes the use of the ACPICA GPE support code in the following areas:

1) GPE initialization during the host OS startup

2) GPE Block Devices

3)

ACPI Component Architecture User Guide and Programmer Reference

56

enabled.

4) GPE handlers

4.4.2.1 Host OS Initialization

The Host operating system is expected to perform the following actions during system initialization:

The Host calls AcpiEnableSubsystem. During execution of this call, ACPICA initializes the FADT-
defined GPE blocks 0 and 1, and finds all _Lxx/_Exx methods for the GPE 0/1 blocks (under
_GPE).

Later, after the host has called AcpiInitializeObjects, the host then performs a namespace walk to
identify and execute all _PRW methods.

For each _PRW method found in the ACPI namespace, the host calls AcpiSetWakeGpe to identify a
possible wake GPE.

The host should install any GPE handlers at this time (See “GPE Handlers” below.)

After completion of the _PRW method execution phase, the host calls AcpiUpdateAllGpes. During
this call, ACPICA completes the initialization of all GPEs and enables all of the “runtime” GPEs.
The only GPEs that are enabled directly by ACPICA are those GPEs that have an associated
_Lxx/_Exx method. For GPEs that have handlers, the host is responsible for enabling them.

Before the system sleeps, the host calls AcpiSetGpeWakeMask for every GPE that is to be allowed
to wake the system. The actual GPEs to be enabled for wake depends on the system configuration
and the ACPI-related drivers that are loaded.

4.4.2.2 GPE Handlers

By default, ACPICA will enable at runtime any GPE that has an associated _Lxx/_Exx GPE method
(during the execution of the AcpiUpdateAllGpes interface.)

The GPE handler mechanism enables host GPE processing for GPEs that do not have an associated
GPE method (for example, the GPE associated with the Embedded Controller) or any other GPE. If
there is a method associated with a GPE, an installed handler for the GPE takes precedence. The
method is no longer executed after a handler is installed.

During host OS initialization or when a new GPE is detected via a GPE Block Device or a dynamic
table load, the host may install handlers for individual GPEs via the AcpiInstallGpeHandler
interface. Also, the host may install a single global handler that is invoked for all GPEs and Fixed
Events by using the AcpiInstallGlobalEventHandler interface.

Once a handler is installed for a particular GPE, the host is responsible for enabling the GPE (via the
AcpiEnableGpe interface) and disabling the GPE if necessary via AcpiDisableGpe.

Both AcpiEnableGpe and AcpiDisableGpe implement a reference count mechanism that allows for
transparent sharing of runtime GPEs.

Any GPE handlers should be installed during the initialization phase anytime after
AcpiEnableSubsystem has been called, but before the required call to AcpiUpdateAllGpes.

4.4.2.3 GPE Handler Execution

The basic GPE handler execution model is as follows: First, the GPE is disabled. Next, the handler
is invoked, at interrupt level. At completion of the GPE handler processing, the GPE is cleared if
necessary and re-

ACPI Component Architecture User Guide and Programmer Reference

57

There are two types of supported GPE handlers:

1. A simple, synchronous handler that performs some GPE processing and immediately
returns to the invoking ACPICA code. Note that this handler is invoked at interrupt level
and thus its capabilities are limited.

2. A more complex handler that performs some asynchronous processing via a thread that is
signaled from the synchronous part of the handler.

Simple Handler (synchronous): The handler should return the value ACPI_REENABLE_GPE. In
response, ACPICA will immediately call the internal version of AcpiFinishGpe in order to clear and
reenable the GPE.

Complex Handler (with asynchronous part): The synchronous part of the handler performs some

related drivers that are loaded.

limited processing and then signals the asynchronous part via a host-dependent mechanism and
returns to ACPICA. After the GPE has been completely processed by the asynchronous part of the
handler (at some later time), the handler calls AcpiFinishGpe to clear and reenable the GPE.

Note that in the case of the simple handler, ACPICA will automatically finish the GPE by clearing
the GPE status bit (if the GPE is level-triggered) and reenabling the GPE because ACPICA knows
that the GPE processing is complete. In the asynchronous/complex case, the GPE handler must tell
ACPICA that the GPE processing is complete by invoking the AcpiFinishGpe interface.

4.4.2.4 Load and LoadTable ASL/AML Operators

During execution of a control method that contains a Load or LoadTable operator, ACPICA locates
the new ACPI table and installs the table into the namespace. It also finds any new _Lxx/_Exx GPE
methods that may exist with the new table.

ACPICA notifies the host that a new table has been loaded by invoking the global Table Handler.
The host installs this handler during system initialization via the AcpiInstallTableHandler interface.

From the host-installed Table Handler, the host must identify and execute any newly-loaded _PRW
methods, and call AcpiSetWakeGpe for any GPEs that are identified as possible wake GPEs.

After completion of the _PRW execution, the host calls AcpiUpdateAllGpes to enable any GPEs that
now have associated _Lxx/_Exx GPE methods that were discovered within the loaded table.

4.4.2.5 GPE Block Devices

A GPE Block Device is indicated by a device object within the ACPI namespace with a PNP ID of
“ACPI0006”. Typically, once such a device is detected, a host-specific GPE Block Device Driver
will be loaded and will perform the following actions:

The Host calls AcpiInstallGpeBlock. During execution of this call, ACPICA installs and initializes
the GPEs associated with the GPE Block Device and finds all _Lxx/_Exx methods for the block.

The Host must identify any _PRW methods associated with individual GPEs within the GPE Block
Device, and call AcpiSetWakeGpe for each possible wake GPE.

After completion of the GPE Block Device installation and _PRW method execution, the host calls
AcpiUpdateAllGpes to enable any new runtime GPEs associated with the new GPE block.

Again, before the system sleeps, the host calls AcpiSetGpeWakeMask for every GPE that is to be
allowed to wake the system. The actual GPEs to be enabled for wake depends on the system
configuration and the ACPI-

ACPI Component Architecture User Guide and Programmer Reference

58

4.5 Miscellaneous ACPICA Behavior

4.5.1 Why ACPICA Cannot Use C Bitfields

The ACPICA code is written in ANSI C, and strives to be as portable as possible in order to support
and integrate into any host operating system that requires ACPI support.

To this end, the ACPICA code and ACPICA header files purposely and explicitly avoid the use of
C bitfields, for the reason summarized by the quote below:

“Bitfields are great and easy to read, but unfortunately the C language does not
specify the layout of bitfields in memory, which means that they are essentially
useless for dealing with packed data in on-disk formats or binary wire protocols.”

“If you ask me, this decision was a design error in C – Ritchie could have picked an
order and stuck with it”

Quote used with permission from Norman Ramsey. For more information, see:
http://stackoverflow.com/a/1053662/41661)

In addition, there are endian considerations where a compiler will change the memory layout of
bitfields based on whether the target is little-endian or big-endian.

These problems with bitfields applies to ACPI tables acquired from the platform BIOS/firmware
(flags fields, etc.) as well as bit-packed buffers returned from predefined ACPI names such as
_PLD.

Therefore, in lieu of using bitfields, the ACPICA headers supply public bit/flag definitions, masks,
and macros to both get and set bits as appropriate. This support is available to both the ACPICA
code itself, and ACPI consumers such as ACPI-related device drivers.

4.5.2 Dynamically Loaded ACPI Tables

Additional ACPI tables may be loaded from ASL code via the following methods:

1. ASL Load operator: This operator will load an ACPI table directly from an Operation Region,
Operation Region Field, or a Buffer. Although the ACPI specification states that the loaded
table should be of type SSDT, ACPICA will not check the signature of the loaded table. Objects
are loaded into the namespace relative to the namespace root. This is compatible with other
ACPI implementations.

2. ASL LoadTable operator: This operator will load an ACPI table that is present in the
RSDT/XSDT. Since all SSDTs within the RSDT/XSDT are loaded automatically at
initialization time, this table must have a signature other than SSDT – typically OEMx.

3. AcpiLoadTable interface: The host can call this interface to load an SSDT from a buffer.

table is executed.

Primarily intended for hot-plug support.

Regardless of where the table originates, the following actions are performed on behalf of the newly
loaded table before the Load or LoadTable operator or AcpiLoadTable interface completes
execution:

 Any module-level code (executable AML code not within any control method) within the

http://stackoverflow.com/a/1053662/41661

ACPI Component Architecture User Guide and Programmer Reference

59

exception will be returned.

 Any and all _PRW methods within the table are executed in order to discover any GPEs that
must now be marked as wakeup GPEs.

 Any new _Lxx/_Exx GPE methods within the table are registered with their corresponding
GPE. If the referenced GPE is a runtime GPE and is not currently enabled, it is enabled
immediately. This behavior applies to both the FADT-defined GPE blocks (0 and 1) and any
GPE Block Devices.

4.5.3 Bus Master Arbitration (ARB_DIS)

Management of bus master arbitration (via the ARB_DIS bit in the optional PM2_CNT ACPI
register) must be implemented in the host-dependent C3 processor power state support. Note,
ARB_DIS is obsolete and only applies to older chipsets, both Intel and other vendors (for Intel,
ICH4-M and earlier).

To disable BM arbitration, set the ARB_DIS bit as follows:

Status = AcpiWriteBitRegister (ACPI_BITREG_ARB_DISABLE, 1);

To enable BM arbitration, clear the ARB_DIS bit as follows:

Status = AcpiWriteBitRegister (ACPI_BITREG_ARB_DISABLE, 0);

Note: If the PM2_CNT register is not supported on the platform, the AE_BAD_ADDRESS

ACPI Component Architecture User Guide and Programmer Reference

60

AcpiRemoveFixedEventHandler

5 ACPICA Subsystem Features

5.1 ACPI 5.0 Support

The ACPI 5.0 specification was released in November, 2011. ACPICA contains a full
implementation of ACPI 5.0, as summarized below.

5.1.1 Reduced Hardware Platforms

Reduced hardware platforms are defined in ACPI 5.0 and refer to ACPI systems without the usual
ACPI hardware. There are two ways in which the reduced hardware platforms are supported by
ACPICA:

1) A runtime configuration feature that dynamically disables all ACPI hardware access code
whenever the HW_REDUCED_ACPI flag is found to be set in the FADT.

2) A compile-time option to entirely remove the ACPI hardware support code from the ACPICA
subsystem. This option is primarily intended for custom builds of host operating systems where
the target platform is known to support ACPI in the reduced hardware mode.

5.1.1.1 Runtime Reduced Hardware Support

This feature automatically supports reduced hardware platforms without any code changes. The
reduced hardware support is dynamically enabled via the HW_REDUCED_ACPI flag in the
revision 5 FADT. If this flag is set, ACPICA will not attempt to initialize or use any of the usual
ACPI hardware. Note, when this flag is set, all of the following ACPI hardware is assumed to be not
present and is not initialized or accessed:

General Purpose Events (GPEs)

Fixed Events (PM1a/PM1b and PM Control)

Power Management Timer and Console Buttons (power/sleep)

Real-time Clock Alarm

Global Lock

System Control Interrupt (SCI)

The FACS is assumed to be non-existent

5.1.1.2 Compile-Time Reduced Hardware Support

This option is used during the build/compile of the ACPICA subystem. It disables the compilation
of all code related to the hardware in the previous section. When the
ACPI_REDUCED_HARDWARE option is specified during the build, all ACPI hardware-related
code is omitted from the source code generation, resulting in a considerable savings of both code
and data. The affected external interfaces are stubbed, however, and will return a status value of
AE_NOT_CONFIGURED. The affected external interfaces are shown below:

AcpiInstallSciHandler
AcpiRemoveSciHandler
AcpiInstallGlobalEventHandler
AcpiInstallFixedEventHandler

ACPI Component Architecture User Guide and Programmer Reference

61

GenericSerialBus

AcpiInstallGpeHandler
AcpiRemoveGpeHandler
AcpiAcquireGlobalLock
AcpiReleaseGlobalLock
AcpiEnable
AcpiDisable
AcpiEnableEvent
AcpiDisableEvent
AcpiClearEvent
AcpiGetEventStatus
AcpiUpdateAllGpes
AcpiEnableGpe
AcpiDisableGpe
AcpiSetGpe
AcpiSetupGpeForWake
AcpiSetGpeWakeMask
AcpiClearGpe
AcpiGetGpeStatus
AcpiFinishGpe
AcpiDisableAllGpes
AcpiEnableAllRuntimeGpes
AcpiInstallGpeBlock
AcpiRemoveGpeBlock
AcpiGetGpeDevice
AcpiGetTimerResolution
AcpiGetTimer
AcpiGetTimerDuration
AcpiReadBitRegister
AcpiWriteBitRegister
AcpiSetFirmwareWakingVector
AcpiSetFirmwareWakingVector64
AcpiEnterSleepStateS4bios

5.1.2 New and Existing ACPI Tables

All new tables and updates to existing tables are fully supported in the ACPICA headers (for use by
device drivers), the disassembler, and the iASL Data Table Compiler. Note: ACPICA itself
consumes none of these tables since they do not contain AML byte code. ACPI 5.0 defines these
new tables:

BGRT /* Boot Graphics Resource Table */

DRTM /* Dynamic Root of Trust for Measurement table */

FPDT /* Firmware Performance Data Table */

GTDT /* Generic Timer Description Table */

MPST /* Memory Power State Table */

PCCT /* Platform Communications Channel Table */

PMTT /* Platform Memory Topology Table */

RASF /* RAS Feature table */

5.1.3 Operation Regions and Space IDs

All new operation regions are fully supported by the iASL compiler, the disassembler, and the
ACPICA runtime code (for dispatch to region handlers.) The new operation region Space IDs are:

GeneralPurposeIo

ACPI Component Architecture User Guide and Programmer Reference

62

5.1.4 Resource Descriptors

All new ASL resource descriptors are fully supported by the iASL compiler, the ASL/AML
disassembler, and the ACPICA runtime Resource Manager code (including all new predefined
resource tags). The new descriptors are:

FixedDma

GpioIo

GpioInt

I2cSerialBus

SpiSerialBus

UartSerialBus

5.1.5 ASL/AML Support

One new operator is added, the Connection operator, which is used to associate a GeneralPurposeIo
or GenericSerialBus resource descriptor with individual field objects within an operation region.
Several new protocols are associated with the AccessAs operator. All are fully supported by the
iASL compiler, disassembler, and runtime ACPICA AML interpreter:

Connection /* Declare Field Connection attributes */

AccessAs: AttribBytes (n) /* Read/Write N-Bytes Protocol */

AccessAs: AttribRawBytes (n) /* Raw Read/Write N-Bytes Protocol */

AccessAs: AttribRawProcessBytes (n) /* Raw Process Call Protocol */

RawDataBuffer /* Data type for Vendor Data fields */

5.1.6 Predefined ACPI Names

All new predefined objects/control-methods are supported by the iASL compiler and the ACPICA
runtime validation/repair (arguments and return values.) New predefined names include the
following:

Standard Predefined Names (Objects or Control Methods): _AEI, _CLS, _CPC, _CWS, _DEP,
_DLM, _EVT, _GCP, _CRT, _GWS, _HRV, _PRE, _PSE, _SRT, _SUB.

Resource Tags (Names used to access individual fields within resource descriptors): _DBT, _DPL,

_STB, _TXL, _VEN.
_DRS, _END, _FLC, _IOR, _LIN, _MOD, _PAR, _PHA, _PIN, _PPI, _POL, _RXL, _SLV, _SPE,

ACPI Component Architecture User Guide and Programmer Reference

63

5.1.7 ACPICA External Interfaces

Some existing interfaces have been modified and several new interfaces have been defined for use
by ACPI-related device drivers and other host OS services:

AcpiAcquireMutex and AcpiReleaseMutex: These interfaces allow the host OS to acquire and release
AML mutexes that are defined in the DSDT/SSDT tables provided by the BIOS. They are intended
to be used in conjunction with the ACPI 5.0 _DLM (Device Lock Method) in order to provide
transaction-level mutual exclusion with the AML code/interpreter. See sections 8.3.15and 8.3.16 for
the full definition of these interfaces. See the ACPI specification for more details concerning
_DLM.

Operation Region Handlers: For General Purpose IO and Generic Serial Bus operation regions,
information about the Connection() object and any optional length information is passed to the
region handler within the Context parameter. See section 8.8.6.4 for more information.

AcpiGetEventResources: New interface that returns the (formatted) resource descriptors as defined
by the ACPI 5.0 _AEI object (ACPI Event Information). This object provides resource descriptors
associated with hardware-reduced platform events, similar to the AcpiGetCurrentResources
interface. See section 8.9.4 for the full definition of this interface. See the ACPI specification for
more details concerning _AEI.

AcpiBufferToResource: New interface that converts a raw AML buffer containing a resource

2010 (See the iASL compiler User Guide).

template or resource descriptor to the ACPI_RESOURCE internal format suitable for use by device
drivers. Can be used by an operation region handler to convert the Connection() buffer object into a
ACPI_RESOURCE.

5.1.8 Miscellaneous and Tools

Support for extended _HID names (Four alpha characters instead of three).

Support for ACPI 5.0 features in the AcpiExec and AcpiHelp utilities.

Support for ACPI 5.0 features in the ASLTS test suite.

Fully updated documentation (ACPICA and iASL reference documents.)

5.1.9 ACPI Table Definition Language

Support for this language was implemented and released as a subsystem of the iASL compiler in

ACPI Component Architecture User Guide and Programmer Reference

64

5.1.10 GPIO Event Model for ACPICA

Events that are generated via GPIO hardware represent a major departure from the standard ACPI
event handling and dispatch. To support GPIO events, ACPICA has adopted this model for use by
the host operating system:

Host Initialization

1. During initialization, the host performs a scan of the namespace to detect devices and _HIDs.

2. When the host detects one or more GPIO _HIDs, the native GPIO device driver is loaded.

Native GPIO device driver initialization

3. Call AcpiGetEventResources which will in turn execute the _AEI object that appears under
the GPIO device in the namespace. This object provides the interrupt or interrupts that are
used for GPIO events via GPIO Interrupt Connection descriptors.

4. Install interrupt handler(s) for the interrupts defined by _AEI.

5. Execute _CRS, etc. for other required resources.

Native GPIO device driver execution

6. When the GPIO driver interrupt handler is invoked in response to a GPIO-generated event,
the driver handles the interrupt according to its level/edge mode and invokes the _EVT
method that appears under the GPIO device. The GPIO pin number is passed to _EVT to
identify the source of the event.

7. The _EVT method will decode the pin number and perform a Notify() operation on the
appropriate device. This is very similar to the operation of the standard GPE control methods
(_Lxx/_Exx).

8. The notify handler in the driver for the particular device then performs device-specific actions
as necessary.

5.2 AML Interpreter Slack Mode

When enabled, this mode provides better compatibility with other existing ACPI implementation(s)
by ignoring certain errors and improper AML sequences. It also enables the Implicit Return feature.

Implicit Return Value: This feature will automatically return the result of the last AML operation
in a control method, in the absence of an explicit Return() operator. Since other ACPI
implementations have implemented this feature by default, there are many existing machines whose
ASL/AML depends on this behavior.

Operation Region Range Checking: Allow access beyond the end of of a region. The default
behavior is to strictly limit access to the end of the operation region. Typically, access beyond the
end of the region occurs when the access data width causes the overrun. For example, a one-byte
operation region and a field with DWORD access. Normally, access to the field will cause an error.
This option will allow the access to continue.

Uninitialized Method Locals and Arguments: Allow access to uninitialized Locals and

enabled, an error is generated an the method is aborted.
Arguments as if they were initialized to an Integer object with a value of zero. If this feature is not

ACPI Component Architecture User Guide and Programmer Reference

65

Source Operand Types for Store Operator: Allow objects of any type to be the source for the
ASL/AML Store operator. The ACPI specification restricts the source operand to be one of a subset
of the available ACPI object types. This option overrides the ACPI specification and allows source
operands of any type.

Unresolved References within Packages: Allow references within Package objects to go

exception is returned.

unresolved with no error or warning. A NULL package element is inserted instead. This is another
compatibility issue with other AML interpreters, and there are existing machines that depend on this
feature.

5.3 AML Interpreter Math Mode (32-bit or 64-bit)

The integer size used by the AML interpreter is variable and is dynamically set via the DSDT that is
loaded. For ACPI 1.0 DSDTs with a version number of 1, the integer width used is always 32 bits
for backward compatibility. For ACPI 2.0 and later DSDTs with a version number larger than 1, full
64-bit integer math is used.

5.4 Predefined Control Method Validation

For the predefined control methods (methods that are defined in the ACPI specification and whose
names begin with a single underscore), the ACPICA subsystem performs a validation on the return
value, if any. There are over 230 such predefined ACPI names.

The input number of arguments and the type of the return object is validated against the ACPI
specification. If the method returns a package, the length of the package as well as the individual
elements of the package are validated. A warning message is issued if there are any problems found.

This feature is useful in finding problems with objects returned by BIOS AML code immediately
upon execution of the method – before the ACPI-related device drivers run into them.

5.5 I/O Port Protection

The ACPICA subsystem protects certain I/O ports from access via the AML code. Some ports are
always illegal, and some ports are illegal based upon the strings that the BIOS has requested via the
_OSI predefined control method. When an I/O request is made to a blocked port, the
AE_AML_ILLEGAL_ADDRESS

ACPI Component Architecture User Guide and Programmer Reference

66

The current list of protected ports is as follows:

{“DMA”, 0x0000, 0x000F, ACPI_OSI_WIN_XP}, /* DMA controller 1 */
{“PIC0”, 0x0020, 0x0021, ACPI_ALWAYS_ILLEGAL}, /* Interrupt Controller */
{“PIT1”, 0x0040, 0x0043, ACPI_OSI_WIN_XP}, /* System Timer 1 */
{“PIT2”, 0x0048, 0x004B, ACPI_OSI_WIN_XP}, /* System Timer 2 failsafe */
{“RTC”, 0x0070, 0x0071, ACPI_OSI_WIN_XP}, /* Real-time clock */
{“CMOS”, 0x0074, 0x0076, ACPI_OSI_WIN_XP}, /* Extended CMOS */
{“DMA1”, 0x0081, 0x0083, ACPI_OSI_WIN_XP}, /* DMA 1 page registers */
{“DMA1L”, 0x0087, 0x0087, ACPI_OSI_WIN_XP}, /* DMA 1 Ch 0 low page */
{“DMA2”, 0x0089, 0x008B, ACPI_OSI_WIN_XP}, /* DMA 2 Ch 2 low page */
{“DMA2L”, 0x008F, 0x008F, ACPI_OSI_WIN_XP}, /* DMA 2 low page refresh */
{“ARBC”, 0x0090, 0x0091, ACPI_OSI_WIN_XP}, /* Arbitration control */
{“SETUP”, 0x0093, 0x0094, ACPI_OSI_WIN_XP}, /* System board setup */
{“POS”, 0x0096, 0x0097, ACPI_OSI_WIN_XP}, /* POS channel select */
{“PIC1”, 0x00A0, 0x00A1, ACPI_ALWAYS_ILLEGAL}, /* Cascaded PIC */
{“IDMA”, 0x00C0, 0x00DF, ACPI_OSI_WIN_XP}, /* ISA DMA */
{“ELCR”, 0x04D0, 0x04D1, ACPI_ALWAYS_ILLEGAL}, /* PIC edge/level registers */
{“PCI”, 0x0CF8, 0x0CFF, ACPI_OSI_WIN_XP} /* PCI configuration space */

ACPI_ALWAYS_ILLEGAL: These ports are always blocked.

ACPI_OSI_WIN_XP: These ports are legal unless the BIOS AML has invoked _OSI with the XP
string “Windows 2001” or any Windows string representing a release of Windows later than XP.
Performed for Windows compatibility, this means that these ports are illegal on most modern x86
machines.

5.6 Debugging Support

Two styles of debugging are supported with the debugging tools available with the ACPICA
Subsystem:

1. Extraordinary amounts of trace and debug output can be generated from debug output and
trace statements that are embedded in the debug version of the ACPICA subsystem. This
data can be used to track down problems after the fact. So much data can be generated that
the debug output can be selectively enabled on a per-subcomponent basis and even a finer
granularity of the type of debug statement can be selected.

Displays a warning message.

2. An AML debugger is provided that has the ability to single step control methods to
examine the results of individual AML opcodes, and to change the values of local variables
and method arguments if necessary.

5.6.1 Error and Warning Messages

There are several macros used throughout the ACPICA subsystem to format and print error and
warning messages. In addition to the input message, each of these macros automatically print the
module name, line number, and current ACPICA version number.

These macros are conditionally compiled and can be removed if desired by defining
ACPI_NO_ERROR_MESSAGES during subsystem compilation. However, they are used only for
serious issues in order to limit their overhead.

ACPI_ERROR – Displays an error message.

ACPI_EXCEPTION – Displays an error message with a decoded ACPI_STATUS exception.

ACPI_WARNING –

ACPI Component Architecture User Guide and Programmer Reference

67

ACPI_FUNCTION_TRACE macro allow one of the function parameters to be displayed as well.

ACPI_INFO – Information message only.

The current statistics for the use of these macros within the ACPICA source are approximately as
follows:

ACPI_ERROR 310 invocations
ACPI_EXCEPTION 80 invocations
ACPI_WARNING 40 invocations
ACPI_INFO 20 invocations

Also, if ACPI_NO_ERROR_MESSAGES is defined, the module that formats and displays output
from the AML Debug Object is configured out completely.

5.6.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro)

The ACPI_DEBUG_PRINT macro is used throughout the source code of the ACPICA Subsystem
to selectively print debug messages. Over 400 invocations of the ACPI_DEBUG_PRINT are
scattered throughout the ACPICA subsystem source. This macro is compiled out entirely for non-
debug versions of the subsystem.

Output from ACPI_ DEBUG_PRINT can be enabled at two levels: on a per-subcomponent level
(Namespace manager, Parser, Interpreter, etc.), and on a per-type level (informational, warnings,
errors, and more.) There are two global variables that set these output levels:

1. AcpiDbgLayer Bit field that enables/disables debug output from entire subcomponents
within the ACPICA subsystem.

2. AcpiDbgLevel Bit field that enables/disables the various debug output levels

The example below shows some of the debug output from a namespace search. None of the output
of the function tracing is shown here, but the enter/exit traces would appear interspersed with the
other debug output.

Nsutils-0346: NsInternalizeName: returning [00821F30] (abs) “\BITZ”
nsaccess-0424: NsLookup: Searching from root [007F09B4]
nsaccess-0477: NsLookup: Multi Name (1 Segments, Flags=0)
nsaccess-0494: NsLookup: [BITZ/]
nssearch-0166: NsSearchOnly: Searching \/ [007F09B4]
nssearch-0168: NsSearchOnly: For BITZ (type 0)
nssearch-0239: NsSearchOnly: Name BITZ (actual type 8) found at 007FC384
nseval-0302: NsEvaluateByName: \BITZ [007FC384] Value 007FE0C0

5.6.3 Function Tracing (ACPI_FUNCTION_TRACE Macro)

Most of the functions within the subsystem use the ACPI_FUNCTION_TRACE macro upon entry
and the return_ACPI_STATUS macro upon exit. For the debug version of the subsystem, if the
function trace debug level is enabled, the ACPI_FUNCTION_TRACE macro displays the name of
the module and function and the current call nesting level. Upon exit, the return_ACPI_STATUS
macro again displays the name of the function, the call nesting level, and the return status code of
the call.

The next few lines show examples of the function tracing. On each invocation of the
ACPI_FUNCTION_TRACE macro, we see the module name and line number, followed by the call
nesting level (2 digits), followed by the name of the actual procedure entered. Some versions of the

ACPI Component Architecture User Guide and Programmer Reference

68

component itself.

Executing \BITZ

nsobject-0356 [07] NsGetAttachedObject : ----Entry 004A2CC8
nsobject-0373 [07] NsGetAttachedObject : ----Exit- 004A2728
dswscope-0186 [07] DsScopeStackPush : ----Entry
utalloc-0235 [07] UtAcquireFromCache : 004A1DC8 from State Cache
utmisc-0711 [08] UtPushGenericState : ----Entry
utmisc-0719 [08] UtPushGenericState : ----Exit-

dswscope-0223 [07] DsScopeStackPush : ----Exit- AE_OK
dsmthdat-0274 [07] DsMethodDataInitArgs : ----Entry 004A1438
dsmthdat-0655 [08] DsStoreObjectToLocal : ----Entry
dsmthdat-0657 [08] DsStoreObjectToLocal : Opcode=104 Idx=0 Obj=004A2F08

The function entry and exit macros have the ability to generate huge amounts of output data.
However, this is often the best way to determine the actual execution path taken by subsystem. If the
problem being debugged can be narrowed to a single control method, tracing can be enabled for that
method only, thus reducing the amount of debug data generated.

5.6.4 ACPICA Debugger

Provided as a subcomponent of the ACPICA Subsystem, the AML Debugger provides the capability
to display subsystem data structures and objects (such as the namespace and associated internal
object), and to debug the execution of control methods (including single step and breakpoint
support.) By using only two OSL interfaces, AcpiOsGetLine for input and AcpiOsPrint for output,
the debugger can operate standalone or as an extension to a host debugger.

The debugger provides a more active debugging environment where data can be examined and
altered during the execution of control methods.

5.7 Environmental Support Requirements

This section describes the environmental requirements of the ACPICA subsystem. This includes the
external functions and header files that the subsystem uses, as well as the resources that are
consumed from the host operating system.

5.7.1 Resource Requirements

Static Memory – example Code and Data Size: These are the sizes for the OS-independent acpica.lib
produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes
the debug output trace mechanism and has a much larger code and data size.

Non-Debug Version: 92.0K Code, 24.8K Data, 116.8K Total
Debug Version: 170.3K Code, 72.3K Data, 242.6K Total

Dynamic Memory: The size of the internal ACPI namespace is dependent on the size of the loaded
ACPI tables – DSDT and any SSDTs – and the number of named ACPI objects they create at table
load time. All resources used during control method execution are freed at control method
termination.

5.7.2 C Library Functions

In order to make the ACPICA Subsystem as portable and truly OS-independent as possible, there is
only extremely limited use of standard C library functions within the Subsystem

ACPI Component Architecture User Guide and Programmer Reference

69

The calls are limited to those that can generate code in-line or link to small, independent code
modules. Below is a comprehensive list of the C library functions that are used by the Subsystem
code.

Table 1. C Library Functions Used within the Subsystem

isalpha

isdigit

isprint

isspace

isupper

isxdigit

memcmp

memcpy

memset

strcat

strcmp

strcpy

strlen

strncat

strncmp

strncpy

strstr

strtoul

strupr

tolower

toupper

va_end

va_list

va_start

possible.

If ACPI_USE_SYSTEM_CLIBRARY is defined during the compilation of the subsystem, the
subsystem must be linked to a local C library to resolve these Clib references. If
ACPI_USE_SYSTEM_CLIBRARY is not set, the subsystem will automatically link to local
implementations of these functions. Note that the local implementations are written in portable
ANSI C, and may not be as efficient as local assembly code implementations of the same functions.
Therefore, it is recommended that the local versions of the C library functions be used if at all

ACPI Component Architecture User Guide and Programmer Reference

70

// iASL table template generation tests

5.7.3 Source Code Organization

The ACPICA source code as released is organized as below. At the top level, there are separate
directories for the ACPICA documentation, generation tools, and the actual C source code. The
source code itself is organized into a separate directory for each major ACPICA component, tool, or
test.

Acpica
documents // Acpica/iASL documentation
generate // Source generation tools:

lint // PC-lint files
linux // Linux makefiles
msvc // Microsoft VC++ 6.0 makefiles(obsolete)
msvc9 // Microsoft VC++ 9.0 makefiles
release // Release utilities
unix // Generic Unix/gcc makefiles

source // Entire ACPICA source code tree:
common // Common files
compiler // iASL compiler
components // Main ACPICA components:

debugger // AML Debugger
disassembler // AML Disassembler
dispatcher // AML Interpreter dispatcher
events // ACPI Event Manager (GPEs etc.)
executer // Main AML Interpreter
hardware // ACPI Hardware Manager
namespace // ACPI Namespace Manager
parser // AML Interpreter parser
resources // ACPI Resource Manager
tables // ACPI Table Manager
utilities // Miscellaneous utilities

include // Most ACPICA includes
platform // Platform-specific files

os_specific // OS-specific files
service_layers // Various OSLs

tools // ACPICA tools/utilities:
acpibin // Binary file utility
acpiexec // ACPI user space executer
acpihelp // ACPI help utility
acpinames // Example namespace dump utility
acpisrc // Source translation utility
acpixtract // Table extraction utility
examples // ACPICA example code

tests // ACPICA test suites:
aapits // ACPICA interface tests
aslts // ASL test suite
misc // Miscellaneous ASL tests
templates

ACPI Component Architecture User Guide and Programmer Reference

71

level component in most operating systems.

5.7.4 System Include Files

The following include files (header files) are useful for users of both the Acpi* and AcpiOs*
interfaces:

 acpi.h Includes all of the files below.

 acexcep.h The ACPI_STATUS exception codes

 acpiosxf.h The prototypes for all of the AcpiOs* interfaces

 acpixf.h The prototypes for all of the Acpi* interfaces

 actypes.h Common data types used across all interfaces

5.7.4.1 Customization to the Target Environment

The use of header files that are external to the ACPICA subsystem is confined to a single header file
named acenv.h. These external include files are used only if the following symbols are defined:

 ACPI_USE_SYSTEM_CLIBRARY
 ACPI_USE_STANDARD_HEADERS

Several of the standard C library headers are used:

 stdarg.h

 stdlib.h

 string.h

 ctype.h

When generating the ACPICA Subsystem component from source, the acenv.h header may be
modified if the filenames above are not appropriate for generation on the target system. For
example, some environments use a different set of header files for the kernel-level C library versus
the user-level C library. Use of C library routines within the Subsystem component has been kept to
a minimum in order to enhance portability and to ensure that the Subsystem will run as a kernel-

ACPI Component Architecture User Guide and Programmer Reference

72

Services Layer to validate all buffers passed to it by application code, create aliases if necessary to

6 Data Types and Interface
Parameters

6.1 ACPICA Interface Parameters

6.1.1 ACPI Names and Pathnames

As defined in the ACPI Specification, all ACPI object names (the names for all ACPI objects such
as control methods, regions, buffers, packages, etc.) are exactly four ASCII characters long. The
ASL compiler automatically pads names out to four characters if an input name in the ASL source is
shorter. (The padding character is the underscore.) Since all ACPI names are always of a fixed
length, they can be stored in a single 32-bit integer to simplify their use.

Pathnames are null-terminated ASCII strings that reference named objects in the ACPI namespace.
A pathname can be composed of multiple 4-character ACPI names separated by a period. In
addition, two special characters are defined. The backslash appearing at the start of a pathname
indicates to begin the search at the root of the namespace. A carat in the pathname directs the search
to traverse upwards in the namespace by one level. The ACPI namespace is defined in the ACPI
specification. The ACPICA subsystem honors all of the naming conventions that are defined in the
ACPI specification.

Frequently in this document, pathnames are referred to as “fully qualified pathname” or “absolute
pathname” or “relative pathname”. A pathname is fully qualified if it begins with the backslash
character (‘\’) since it defines the complete path to an object from the root of the namespace. All
other pathnames are relative since they specify a path to an object from somewhere in the
namespace besides the root.

The ACPI specification defines special search rules for single segment (4-character) or standalone
names. These rules are intended to apply to the execution of AML control methods that reference
named ACPI objects. The ACPICA Subsystem component implements these rules fully for the
execution of control methods. It does not implement the so-called “parent tree” search rules for the
external interfaces in order to avoid object reference ambiguities.

6.1.2 Pointers

Many of the interfaces defined here pass pointers as parameters. It is the responsibility of the caller
to ensure that all pointers passed to the ACPICA subsystem are valid and addressable. The
interfaces only verify that pointers are non-NULL. If a pointer is any value other than NULL, it will
be assumed to be a valid pointer and will be used as such.

6.1.3 Buffers

It is the responsibility of the caller to ensure that all input and output buffers supplied to the
ACPICA Subsystem component are at least as long as the length specified in the ACPI_BUFFER
structure, readable, and writable in the case of output buffers. The ACPICA Subsystem does not
perform addressability checking on buffer pointers, nor does it perform range validity checking on
the buffers themselves. In the ACPI Component Architecture, it is the responsibility of the OS

ACPI Component Architecture User Guide and Programmer Reference

73

this allows the caller

address buffers, and ensure that all buffers that it creates locally are valid. In other words, the
ACPICA Subsystem trusts the OS Services Layer to validate all buffers.

When the length field of ACPI_BUFFER is set to ACPI_ALLOCATE_BUFFER before a call that
returns data in an output buffer, the Subsystem will allocate a return buffer on behalf of the caller. It
is the responsibility of the caller to free this buffer when it is no longer needed (via AcpiOsFree).

6.2 ACPICA Basic Data Types

6.2.1 UINT64 and COMPILER_DEPENDENT_UINT64

Beginning with the ACPI version 2.0 specification, the width of integers within the AML interpreter
are defined to be 64 bits on all platforms (both 32- and 64-bit). The implementation of this
requirement requires the deployment of 64-bit integers across the entire ACPICA Subsystem. Since
there is (currently) no standard method of defining a 64-bit integer in the C language, the
COMPILER_DEPENDENT_UINT64 macro is used to allow the UINT64 typedef to be defined by
each host compiler. The UINT64 data type is used at the Acpi* interface level for both physical
memory addresses and ACPI (interpreter) integers.

6.2.2 ACPI_PHYSICAL_ADDRESS

The width of all physical addresses is fixed at 64 bits, regardless of the platform or operating
system. Logical addresses (pointers) remain the natural width of the machine (i.e. 32-bit pointers on
32-bit machines, 64-bit pointers on 64-bit machines.) This allows for a full 64-bit address space on
64-bit machines as well as “extended” physical addresses (above 4Gbytes) on 32-bit machines.

6.2.3 ACPI_IO_ADDRESS

Similar to ACPI_PHYSICAL_ADDRESS, except it is used for I/O addresses.

6.2.4 ACPI_SIZE

This data type is 32 bits or 64 bits depending on the platform. It is used in leiu of the C library
size_t, which cannot be guaranteed to be available.

6.2.5 ACPI_STRING – ASCII String

The ACPI_STRING data type is a conventional “char *” null-terminated ASCII string. It is used
whenever a full ACPI pathname or other variable-length string is required. This data type was
defined to strongly differentiate it from the ACPI_NAME data type.

6.2.6 ACPI_BUFFER – Input and Output Memory Buffers

Many of the ACPICA interfaces require buffers to be passed into them and/or buffers to be returned
from them. A common structure is used for all input and output buffers across the interfaces. The
buffer structure below is used for both input and output buffers. The ACPICA Subsystem
component only allocates memory for return buffers if requested to do so —

ACPI Component Architecture User Guide and Programmer Reference

74

AcpiOsFree.

complete flexibility in where and how memory is allocated. This is especially important in kernel
level code.

Typedef struct
{

UINT32 Length; // Length of the buffer in bytes;
void *Pointer; // pointer to buffer

} ACPI_BUFFER;

6.2.6.1 Input Buffer

An input buffer is defined to be a buffer that is filled with data by the user (caller) before it is passed
in as a parameter to one of the ACPI interfaces. When passing an input buffer to one of the
Subsystem interfaces, the user creates an ACPI_BUFFER structure and initializes it with a pointer
to the actual buffer and the length of the valid data in the buffer. Since the memory for the actual
ACPI_BUFFER structure is small, it will typically be dynamically allocated on the CPU stack. For
example, a user may allocate a 4K buffer for common storage. The buffer may be reused many
times with data of various lengths. Each time the number of bytes of significant data contained in
the buffer is entered in the Length field of the ACPI_BUFFER structure before an ACPICA
Subsystem interface is called.

6.2.6.2 Output Buffer

An output buffer is defined to be a buffer that is filled with data by an ACPI interface before it is
returned to the caller. When the ACPI_BUFFER structure is used as an output buffer the caller must
always initialize the structure by either

1. Placing a value in the Length field that indicates the maximum size of the buffer that is
pointed to by the Pointer field. The length is used by the ACPI interface to ensure that there is
sufficient user provided space for the return value.

2. Initializing the Length field to ACPI_ALLOCATE_BUFFER to cause the ACPICA
subsystem to allocate a buffer.

If a buffer that was passed in by the caller is too small, the ACPI interfaces that require output
buffers will indicate the failure by returning the error code AE_BUFFER_OVERFLOW. The
interfaces will never attempt to put more data into the caller’s buffer than is specified by the Length
field of the ACPI_BUFFER structure (unless ACPI_ALLOCATE_BUFFER is used). The caller
may recover from this failure by examining the Length field of the ACPI_BUFFER structure. The
interface will place the required length in this field in the event that the buffer was too small.

During normal operation, the ACPI interface will copy data into the buffer. It will indicate to the
caller the length of data in the buffer by setting the Length field of the ACPI_BUFFER to the actual
number of bytes placed in the buffer.

Therefore, the Length field is both an input and output parameter. On input, it indicates either the
size of the buffer or an indication to the ACPICA subsystem to allocate a return buffer on behalf of
the caller. On output, it either indicates the actual amount of data that was placed in the buffer (if the
buffer was large enough), or it indicates the buffer size that is required (if the buffer was too small)
and the exception is set to AE_BUFFER_OVERFLOW.

If ACPI_ALLOCATE_BUFFER is used, the returned buffer should be freed by the caller by using

ACPI Component Architecture User Guide and Programmer Reference

75

within the root scope are children of the root object.

6.2.7 ACPI_STATUS – Interface Exception Return Codes

Most of the external ACPI interfaces return an exception code of type ACPI_STATUS as the
function return value, as shown in the example below:

ACPI_STATUS Status;

Status = AcpiInitializeSubsystem ();
if (ACPI_FAILURE (Status))
{

// Exception handling code here
}

6.2.8 ACPI_HANDLE – Object Handle

References to ACPI objects managed by the ACPICA Subsystem component are made via the
ACPI_HANDLE data type. A handle to an object is obtained by creating an attachment to the object
via the AcpiPathnameToHandle or AcpiNameToHandle primitives. The concept is similar to
opening a file and receiving a connection – after the pathname has been resolved to an object
handle, no additional internal searching is performed whenever additional operations are needed on
the object.

References to object scopes also use the ACPI_HANDLE type. This allows objects and scopes to be
used interchangeably as parameters to Acpi interfaces. In fact, a scope handle is actually a handle to
the first object within the scope.

6.2.8.1 Predefined Handles

One predefined handle is provided in order to simplify access to the ACPI namespace:

ACPI_ROOT_OBJECT: A handle to the root object of the namespace. All objects contained

ACPI Component Architecture User Guide and Programmer Reference

76

6.2.9 ACPI_OBJECT_TYPE – Object Type Codes

Each ACPI object that is managed by the ACPICA subsystem has a type associated with it. The
valid ACPI object types are defined as follows:

Table 2. ACPI Object Type Codes

ACPI_TYPE_ANY

ACPI_TYPE_INTEGER

ACPI_TYPE_STRING

ACPI_TYPE_BUFFER

ACPI_TYPE_PACKAGE

ACPI_TYPE_FIELD_UNIT

ACPI_TYPE_DEVICE

ACPI_TYPE_EVENT

ACPI_TYPE_METHOD

ACPI_TYPE_MUTEX

ACPI_TYPE_REGION

ACPI_TYPE_POWER

ACPI_TYPE_PROCESSOR

ACPI_TYPE_THERMAL

ACPI_TYPE_BUFFER_FIELD

ACPI_TYPE_DDB_HANDLE

ACPI_TYPE_DEBUG_OBJECT

ACPI_OBJECT(s)

6.2.10 ACPI_OBJECT – Method Parameters and Return Objects

The general purpose ACPI_OBJECT is used to pass parameters to control methods, and to receive
results from the evaluation of namespace objects. The point of this data structure is to provide a
common object that can be used to contain multiple ACPI data types. Only a subset of the
ACPI_OBJECT_TYPEs are supported by the ACPI_OBJECT. The types that are supported
represent the types that are supported by control method arguments and return values as per the
ASL/AML grammar specification.

When passing parameters to a control method, each parameter is contained in an ACPI_OBJECT.
All of the parameters are then grouped together in an ACPI_OBJECT_LIST.

When receiving a result from the evaluation of a namespace object, a single ACPI_OBJECT is
returned in an ACPI_BUFFER structure. This allows variable length objects such as ACPI Packages
to be returned in the buffer. The first item in the buffer is always the base ACPI_OBJECT.

Some of the ACPI_OBJECT types (String, Buffer, Package) contain pointers to additional data.
These pointers reference additional storage within the same ACPI_OBJECT allocation. They are
guaranteed to be valid. Note: the entire ACPI_OBJECT cannot be simply copied, else any pointers
within the object(s) will be invalid.

 String: Pointer is a reference to the actual string data.

 Buffer: Pointer is a reference to the actual buffer data.

 Package: Pointer is a reference to the sub-object (elements) array of additional

ACPI Component Architecture User Guide and Programmer Reference

77

} ACPI_OBJECT;

When the device driver has completed processing of the ACPI_OBJECT, it can be deleted with one
call to free.

Typedef union acpi_object
{

ACPI_OBJECT_TYPE Type; /* See ACPI_OBJECT_TYPE for values */
struct
{

ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_INTEGER */
UINT64 Value; /* The integer value */

} Integer;

struct
{

ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_STRING */
UINT32 Length; /* # of bytes in string, minus null */
char *Pointer; /* points to the string value */

} String;

struct
{

ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_BUFFER */
UINT32 Length; /* # of bytes in buffer */
UINT8 *Pointer; /* points to the buffer */

} Buffer;

struct
{

ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PACKAGE */
UINT32 Count; /* # of elements in package */
union acpi_object *Elements; /* Pointer to array of ACPI_OBJECTs */

} Package;

struct
{

ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_LOCAL_REFERENCE */
ACPI_OBJECT_TYPE ActualType; /* Type associated with the Handle */
ACPI_HANDLE Handle; /* object reference */

} Reference;

struct
{

ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PROCESSOR */
UINT32 ProcId;
ACPI_IO_ADDRESS PblkAddress;
UINT32 PblkLength;

} Processor;

struct
{

ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_POWER */
UINT32 SystemLevel;
UINT32 ResourceOrder;

} PowerResource;

ACPI Component Architecture User Guide and Programmer Reference

78

6.2.10.1 Using the ACPI_OBJECT

In this example, the _PCT object is evaluated via the AcpiEvaluateObject. _PCT is defined to return
two buffers each containing a single Resource Template. The diagram shows the internal structure
of the ACPI_OBJECT that is returned from _PCT.

The original ASL source code is shown below:

Name (_PCT, Package (0x02)
{

ResourceTemplate ()
{

Register (SystemIO, 0x08, 0x00, 0x00000000000000B2)
},
ResourceTemplate ()
{

Register (SystemIO, 0x08, 0x00, 0x00000000000000B3)
}

})

This is the evalution of the _PCT object defined above, and the diagram shows the contents of the
returned ACPI_OBJECT:

Status = AcpiEvaluateObject (Node, “_PCT”, NULL, &ReturnObj);

Package Object

Buffer Object

Buffer Object

Buffer Data

Buffer Data

ACPI Component Architecture User Guide and Programmer Reference

79

needed to contain the routing table.

6.2.11 ACPI_OBJECT_LIST – List of Objects

This object is used to pass parameters to control methods via the AcpiEvaluateMethod interface. The
Count is the number of ACPI objects pointed to by the Pointer field. In other words, the Pointer
field must point to an array that contains Count ACPI objects.

Typedef struct AcpiObjList
{

UINT32 Count;
ACPI_OBJECT *Pointer;

} ACPI_OBJECT_LIST;

6.2.12 ACPI_EVENT_TYPE – Fixed Event Type Codes

The ACPI fixed events are defined in the ACPI specification. The event codes below are used to
install handlers for the individual events.

ACPI_EVENT_PMTIMER // Power Management Timer rollover
ACPI_EVENT_GLOBAL // Global Lock released
ACPI_EVENT_POWER_BUTTON // Power Button (pressed)
ACPI_EVENT_SLEEP_BUTTON // Sleep Button (pressed)
ACPI_EVENT_RTC // Real Time Clock alarm

6.2.13 ACPI_TABLE_HEADER – Common ACPI Table Header

This is the header used for most of the BIOS-provided ACPI tables.

Typedef struct /* ACPI common table header */
{

char Signature [4]; /* Identifies type of table */
UINT32 Length; /* Length of table, in bytes, */

* including header */
UINT8 Revision; /* Specification minor version # */
UINT8 Checksum; /* To make sum of entire table = 0 */
char OemId [6]; /* OEM identification */
char OemTableId [8]; /* OEM table identification */
UINT32 OemRevision; /* OEM revision number */
char AslCompilerId [4]; /* ASL compiler vendor ID */
UINT32 AslCompilerRevision;/* ASL compiler revision number */

} ACPI_TABLE_HEADER;

6.3 ACPI Resource Data Types

These data types are used by the ACPICA resource interfaces.

6.3.1 PCI IRQ Routing Tables

The AcpiGetIrqRoutingTable interface retrieves the PCI IRQ routing tables. This interface returns
the routing table in the ACPI_BUFFER provided by the caller. Upon return, the Length field of the
ACPI_BUFFER will indicate the amount of the buffer used to store the PCI IRQ routing tables. If
the returned status is AE_BUFFER_OVERFLOW, the Length indicates the size of the buffer

ACPI Component Architecture User Guide and Programmer Reference

80

Memory32

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer contains a series
of PCI_ROUTING_TABLE entries, each of which contains both a Length member and a Data
member. The Data member is a PRT_ENTRY. The Length member specifies the length of the
PRT_ENTRY and can be used to walk the PCI_ROUTING_TABLE entries. By incrementing a
buffer walking pointer by Length bytes, the pointer will reference each succeeding table element.
The final PCI_ROUTING_TABLE entry will contain no data and have a Length member of zero.

Each PRT_ENTRY contains the Address, Pin, Source, and Source Index information as described in
Chapter 6 of the ACPI Specification. While all structure members are UINT32 types, the valid
portion of both the Pin and SourceIndex members are only UINT8 wide. Although the Source
member is defined as “char Source[4]”, it can be de-referenced as a null-terminated string.

Typedef struct acpi_pci_routing_table
{

UINT32 Length;
UINT32 Pin; /* PCI Pin */
UINT64 Address; /* PCI Address of device */
UINT32 SourceIndex; /* Index of resource, allocating dev */
char Source[4]; /* pad to 64 bits so sizeof() works */

} ACPI_PCI_ROUTING_TABLE;

6.3.2 Device Resources

Device resources are returned by indirectly executing the _CRS and _PRS control methods via the
AcpiGetCurrentResources and AcpiGetPossibleResources interfaces. These device resources are
needed to properly execute the _SRS control method using the AcpiSetCurrentResources interface.

These interfaces require an ACPI_BUFFER parameter. If the Length member of the
ACPI_BUFFER is set to zero, the AcpiGet* interfaces will return an ACPI_STATUS of
AE_BUFFER_OVERFLOW with Length set to the size buffer needed to contain the resource
descriptors. If the Length member is non-zero and Pointer in non-NULL, it is assumed that Pointer
points to a memory buffer of at least Length size. Upon return, the Length member will indicate the
amount of the buffer used to store the resource descriptors.

6.3.2.1 ACPI_RESOURCE_TYPE – Resource Data Types

The following resource types are supported by the ACPICA subsystem. The resource types that
follow are use in the resource definitions used in the resource handling interfaces:
AcpiGetCurrentResources, AcpiGetPossibleResources, and AcpiSetCurrentResources.

 Irq

 Dma

 StartDependentFunctions

 EndDependentFunctions

 Io

 FixedIo

 FixedDma

 VendorSpecific

 EndTag

 Memory24

ACPI Component Architecture User Guide and Programmer Reference

81

RESOURCE_DATA union can be any of fourteen different types of resource descriptors. The

 FixedMemory32

 Address16

 Address32

 Address64

 ExtendedAddress64

 ExtendedIrq

 GenericRegister

 GpioIo

 GpioInt

 I2cSerialBus

 SpiSerialBus

 UartSerialBus

typedef union acpi_resource_data /* union of all resources */
{

ACPI_RESOURCE_IRQ Irq;
ACPI_RESOURCE_DMA Dma;
ACPI_RESOURCE_START_DEPENDENT StartDpf;
ACPI_RESOURCE_IO Io;
ACPI_RESOURCE_FIXED_IO FixedIo;
ACPI_RESOURCE_FIXED_DMA FixedDma;
ACPI_RESOURCE_VENDOR Vendor;
ACPI_RESOURCE_VENDOR_TYPED VendorTyped;
ACPI_RESOURCE_END_TAG EndTag;
ACPI_RESOURCE_MEMORY24 Memory24;
ACPI_RESOURCE_MEMORY32 Memory32;
ACPI_RESOURCE_FIXED_MEMORY32 FixedMemory32;
ACPI_RESOURCE_ADDRESS16 Address16;
ACPI_RESOURCE_ADDRESS32 Address32;
ACPI_RESOURCE_ADDRESS64 Address64;
ACPI_RESOURCE_EXTENDED_ADDRESS64 ExtAddress64;
ACPI_RESOURCE_EXTENDED_IRQ ExtendedIrq;
ACPI_RESOURCE_GENERIC_REGISTER GenericReg;
ACPI_RESOURCE_GPIO Gpio;
ACPI_RESOURCE_I2C_SERIALBUS I2cSerialBus;
ACPI_RESOURCE_SPI_SERIALBUS SpiSerialBus;
ACPI_RESOURCE_UART_SERIALBUS UartSerialBus;
ACPI_RESOURCE_COMMON_SERIALBUS CommonSerialBus;

} ACPI_RESOURCE_DATA;

typedef struct acpi_resource
{

UINT32 Type;
UINT32 Length;
ACPI_RESOURCE_DATA Data;

} ACPI_RESOURCE;

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer is filled with a
series of RESOURCE entries, each of which begins with an Id that indicates the type of resource
descriptor, a Length member and a Data member that is a RESOURCE_DATA union. The

ACPI Component Architecture User Guide and Programmer Reference

82

exception.

Length member will allow the caller to walk the RESOURCE entries. By incrementing a buffer
walking pointer by Length bytes, the pointer will reference each succeeding table element. The final
element in the list of RESOURCE entries will have an Id of EndTag. An EndTag entry contains no
additional data.

When walking the RESOURCE entries, the Id member determines how to interpret the structure.
For example, if the Id member evaluates to StartDependentFunctions, then the Data member is two
32-bit values, a CompatibilityPriority value and a PerformanceRobustness value. These values are
interpreted using the constant definitions that are found in actypes.h, GOOD_CONFIGURATION,
ACCEPTABLE_CONFIGURATION or SUB_OPTIMAL_CONFIGURATION. The interpretation
of these constant definitions is discussed in the Start Dependent Functions section of the ACPI
specification, Chapter 6.

As another, more complex example, consider a RESOURCE entry with an Id member that evaluates
to Address32, then the Data member is an ADDRESS32_RESOURCE structure. The
ADDRESS32_RESOURCE structure contains fourteen members that map to the data discussed in
the DWORD Address Space Descriptor section of the ACPI specification, Chapter 6. The
Data.Address32.ResourceType member is interpreted using the constant definitions
MEMORY_RANGE, IO_RANGE or BUS_NUMBER_RANGE. This value also effects the
interpretation of the Data.Address32.Attribute structure because it contains type specific
information.

The General Flags discussed in the ACPI specification are interpreted and given separate members
within the ADDRESS32_RESOURCE structure. Each of the bits in the General Flags that describe
whether the maximum and minimum addresses is fixed or not, whether the address is subtractively
or positively decoded and whether the resource simply consumes or both produces and consumes a
resource are represented by the members MaxAddressFixed, MinAddressFixed, Decode and
ProducerConsumer respectively.

The Attribute member is interpreted based upon the ResourceType member. For example, if the
ResourceType is MEMORY_RANGE, then the Attribute member contains two 16-bit values, a
Data.Address32.Attribute.Memory.CacheAttribute value and a ReadWriteAttribute value.

The Data.Address32.Granularity, MinAddressRange, MaxAddressRange, AddressTranslationOffset
and AddressLength members are simply interpreted as UINT32 numbers.

The optional Data.Address32.ResourceSourceIndex is valid only if the ResourceSourceStringLength
is non-zero. Although the ResourceSource member is defined as UINT8 ResourceSource[1], it can
be de-referenced as a null-terminated string whose length is ResourceSourceStringLength.

6.4 ACPICA Exception Codes

A common and consistent set of return codes is used throughout the ACPICA subsystem. For
example, all of the public ACPI interfaces return the exception AE_BAD_PARAMETER when an
invalid parameter is detected.

The exception codes are contained in the public acexcep.h file.

The entire list of available exception codes is given below, along with a generic description of each
code. See the description of each public primitive for a list of possible exceptions, along with
specific reason(s) for each

ACPI Component Architecture User Guide and Programmer Reference

83

Table 3. Exception Code Values

Exception Name Typical Meaning

AE_OK No error

Environmental Exceptions

AE_ERROR Unspecified error

AE_NO_ACPI_TABLES ACPI tables could not be found

AE_NO_NAMESPACE A namespace has not been loaded

AE_NO_MEMORY Insufficient dynamic memory

AE_NOT_FOUND The name was not found in the namespace

AE_NOT_EXIST A required entity does not exist

AE_ALREADY_EXISTS An entity already exists

AE_TYPE The object type is incorrect

AE_NULL_OBJECT A required object was missing

AE_NULL_ENTRY The requested object does not exist

AE_BUFFER_OVERFLOW The buffer provided is too small

AE_STACK_OVERFLOW An internal stack overflowed

AE_STACK_UNDERFLOW An internal stack underflowed

AE_NOT_IMPLEMENTED The feature is not implemented

AE_SUPPORT The feature is not supported

AE_LIMIT A predefined limit was exceeded

AE_TIME A time limit or timeout expired

AE_ACQUIRE_DEADLOCK Internal error – attempt was made to
acquire a mutex in improper order

AE_RELEASE_DEADLOCK Internal error – attempt was made to
release a mutex in improper order

AE_NOT_ACQUIRED An attempt to release a mutex or the Global
Lock without a previous acquire

AE_ALREADY_ACQUIRED Internal error – attempt was made to
acquire a mutex twice

AE_NO_HARDWARE_RESPONSE Hardware did not respond after an I/O
operation

AE_NO_GLOBAL_LOCK There is no FACS Global Lock

AE_ABORT_METHOD A control method was aborted

AE_SAME_HANDLER Attempt was made to install the same
handler that is already installed

AE_NO_HANDLER A handler for the operation is not
installed

AE_OWNER_ID_LIMIT There are no more Owner IDs available for
ACPI tables or control methods

AE_NOT_CONFIGURED The interface is not part of the current
subsystem configuration

Programmer Exceptions (ACPI external interfaces)

ACPI Component Architecture User Guide and Programmer Reference

84

Exception Name Typical Meaning

AE_BAD_PARAMETER A parameter is out of range or invalid

AE_BAD_CHARACTER An invalid character was found in a name

AE_BAD_PATHNAME An invalid character was found in a
pathname

AE_BAD_DATA A package or buffer contained incorrect
data

AE_BAD_HEX_CONSTANT Invalid character in a Hex constant

AE_BAD_OCTAL_CONSTANT Invalid character in an Octal constant

AE_BAD_DECIMAL_CONSTANT Invalid character in a Decimal constant

AE_MISSING_ARGUMENTS Too few arguments were passed to a control
method

AE_BAD_ADDRESS A null I/O address was passed as a
parameter to AcpiRead or AcpiWrite

ACPI Table Exceptions

AE_BAD_SIGNATURE An ACPI table has an invalid signature

AE_BAD_HEADER Invalid field in an ACPI table header

AE_BAD_CHECKSUM An ACPI table checksum is not correct

AE_BAD_VALUE An invalid value was found in a table

AE_INVALID_TABLE_LENGTH The FADT or FACS has improper length

AML (Interpreter) Exceptions

AE_AML_BAD_OPCODE Invalid AML opcode encountered

AE_AML_NO_OPERAND An operand is missing (such as a method
that did not return a required value)

AE_AML_OPERAND_TYPE An operand of an incorrect type was
encountered

AE_AML_OPERAND_VALUE The operand had an inappropriate or invalid
value

AE_AML_UNINITIALIZED_LOCAL Method tried to use an uninitialized local
variable

AE_AML_UNINITIALIZED_ARG Method tried to use an uninitialized
argument

AE_AML_UNINITIALIZED_ELEMENT Method tried to use an empty package
element

AE_AML_NUMERIC_OVERFLOW Overflow during BCD conversion or other

AE_AML_REGION_LIMIT Tried to access beyond the end of an
Operation Region

AE_AML_BUFFER_LIMIT Tried to access beyond the end of a buffer

AE_AML_PACKAGE_LIMIT Tried to access beyond the end of a package

AE_AML_DIVIDE_BY_ZERO During execution of AML Divide operator

AE_AML_BAD_NAME An ACPI name contains invalid character(s)

AE_AML_NAME_NOT_FOUND Could not resolve a named reference

AE_AML_INTERNAL An internal error within the interpreter

ACPI Component Architecture User Guide and Programmer Reference

85

Exception Name Typical Meaning

AE_AML_INVALID_SPACE_ID An Operation Region SpaceID is invalid

AE_AML_STRING_LIMIT String is longer than 200 characters

AE_AML_NO_RETURN_VALUE A method did not return a required value

AE_AML_METHOD_LIMIT A control method reached the maximum
reentrancy limit of 255

AE_AML_NOT_OWNER A thread tried to release a mutex that it
does not own

AE_AML_MUTEX_ORDER Mutex SyncLevel release mismatch

AE_AML_MUTEX_NOT_ACQUIRED Attempt to release a mutex that was not
previously acquired

AE_AML_INVALID_RESOURCE_TYPE Invalid resource type in resource list

AE_AML_INVALID_INDEX Invalid Argx or Localx (x too large)

AE_AML_REGISTER_LIMIT Bank value or Index value beyond range of
register

AE_AML_NO_WHILE Break or Continue without a While

AE_AML_ALIGNMENT Non-aligned memory transfer on platform
that does not support this

AE_AML_NO_RESOURCE_END_TAG No End Tag in a resource list

AE_AML_BAD_RESOURCE_VALUE Invalid value of a resource element

AE_AML_CIRCULAR_REFERENCE Two references refer to each other

AE_AML_BAD_RESOURCE_LENGTH The length of a Resource Descriptor in the
AML is incorrect

AE_AML_ILLEGAL_ADDRESS A memory, I/O, or PCI configuration address
is invalid

AE_AML_INFINITE_LOOP An apparent infinite AML While loop, method
was aborted

Internal Exceptions used for control

AE_CTRL_RETURN_VALUE A Method returned a value

AE_CTRL_PENDING Method is calling another method

AE_CTRL_TERMINATE Terminate the executing method

AE_CTRL_TRUE An If or While predicate result

AE_CTRL_FALSE An If or While predicate result

AE_CTRL_DEPTH Maximum search depth has been reached

AE_CTRL_END An If or While predicate is false

AE_CTRL_TRANSFER Transfer control to called method

AE_CTRL_BREAK A Break has been executed

AE_CTRL_CONTINUE A Continue has been executed

AE_CTRL_SKIP Not currently used

AE_CTRL_PARSE_CONTINUE Used to skip over bad opcodes

AE_CTRL_PARSE_PENDING Used to implement AML While loops

ACPI Component Architecture User Guide and Programmer Reference

86

routines.

7 Subsystem Configuration
There are several methods of configuring the OS-independent ACPICA Subsystem:

1. Selection of individual ACPICA components.

2. Configuration of platform-specific data types.

3. Per-machine configuration for machine-specific dependencies.

4. Per-compiler configuration for compiler dependencies.

5. Other compile-time configuration through the use of compiler switches.

6. Run-time global variables which are statically initialized from the configuration header file.

7.1 Configuration Files

The ACPICA subsystem has three types of configuration header files to allow the subsystem to be
tailored to the particular machine and compiler, as well as allowing for the tuning of subsystem
constants.

These three include files perform the subsystem configuration:

 An include file that is specific to the particular compiler being used to compile the ACPICA
subsystem provides macros and defines that must be implemented on a per-compiler basis.
These files appear in the include/platform directory.

 An include file that is specific to the particular machine being targeted for the ACPICA
subsystem provides macros and defines that must be implemented on a per-machine basis.
These files appear in the include/platform directory.

 A global include file, acconfig.h allows for the tailoring and tuning of various subsystem
constants and options. This file appears in the include directory

7.2 Component Selection

7.2.1 ACPI_DISASSEMBLER

This switch enables the AML Disassembler component, which is usually used in conjunction with
the ACPI Debugger.

7.2.2 ACPI_DEBUGGER

This switch enables the ACPICA Debugger component. It also enables the various object dumping

ACPI Component Architecture User Guide and Programmer Reference

87

AcpiGetGpeDevice

7.2.3 ACPI_REDUCED_HARDWARE

This switch generates a version of ACPICA that only supports “reduced hardware” platforms as
defined by ACPI 5.0. When set to TRUE, most of the hardware support component is configured
out. There is no support for the following ACPI features:

PM Event and Control registers
SCI Interrupt (and handler)
Fixed Events
General Purpose Events (GPEs)
Global Lock
ACPI PM Timer
FACS table (Waking vectors and Global Lock)

The following ACPICA public interfaces are configured out. They are still defined, but return the
AE_NOT_CONFIGURED status:

Handlers
AcpiInstallGlobalEventHandler
AcpiInstallFixedEventHandler
AcpiRemoveFixedEventHandler
AcpiInstallGpeHandler
AcpiRemoveGpeHandler

Global Lock
AcpiAcquireGlobalLock
AcpiReleaseGlobalLock

Fixed Events
AcpiEnable
AcpiDisable
AcpiEnableEvent
AcpiDisableEvent
AcpiClearEvent
AcpiGetEventStatus

General Purpose Events (GPEs)
AcpiUpdateAllGpes
AcpiEnableGpe
AcpiDisableGpe
AcpiSetGpe
AcpiSetupGpeForWake
AcpiSetGpeWakeMask
AcpiClearGpe
AcpiGetGpeStatus
AcpiFinishGpe
AcpiDisableAllGpes
AcpiEnableAllRuntimeGpes
AcpiInstallGpeBlock
AcpiRemoveGpeBlock

ACPI Component Architecture User Guide and Programmer Reference

88

not required.

PM Timer
AcpiGetTimerResolution
AcpiGetTimer
AcpiGetTimerDuration

ACPI Registers
AcpiReadBitRegister
AcpiWriteBitRegister

Sleep/Wake
AcpiSetFirmwareWakingVector
AcpiSetFirmwareWakingVector64
AcpiEnterSleepStateS4bios

7.3 Configurable Data Types

The configurable data types are used to help tailor the ACPICA subsystem to a particular operation
system or compiler. Any changes from the default values should be specified in a system-dependent
header file under the include/platform directory.

7.3.1 ACPI_SPINLOCK

This type is an OS-dependent handle for a spinlock. It is returned by the AcpiOsCreateLock
interface, and passed as a parameter to the AcpiOsAcquireLock and AcpiOsReleaseLock interfaces.
The default value for ACPI_SPINLOCK is (void *). It can be changed to whatever type the host
OS uses for spinlocks.

7.3.2 ACPI_SEMAPHORE

This type is an OS-dependent handle for a semaphore. It is returned by the AcpiOsCreateSemaphore
interface, and passed as a parameter to the AcpiOsWaitSemaphore and AcpiOsSignalSemaphore
interfaces. The default value for ACPI_SEMAPHORE is (void *). It can be changed to whatever
type the host OS uses for semaphore objects.

7.3.3 ACPI_MUTEX

This type is an OS-dependent handle for a mutex. It is returned by the AcpiOsCreateMutex
interface, and passed as a parameter to the AcpiOsAcquireMutex and AcpiOsReleaseMutex
interfaces. The default value for ACPI_MUTEX is (void *). It can be changed to whatever type the
host OS uses for mutex objects.

If mutex objects are not supported by the host operating system, use the ACPI_MUTEX_TYPE
with the ACPI_BINARY_SEMAPHORE option (described later). This option causes mutexes to
be automatically implemented via ACPI_SEMAPHORE objects, and the OSL mutex interfaces are

ACPI Component Architecture User Guide and Programmer Reference

89

C library headers are used:

7.3.4 ACPI_CPU_FLAGS

This type is used for the value returned from AcpiOsAcquireLock, and the value passed as a
parameter to AcpiOsReleaseLock. It can be configured to whatever type the host OS uses for CPU
flags that need to be saved and restored across the acquisition and release of a spinlock. The default
value is ACPI_SIZE.

7.3.5 ACPI_THREAD_ID

This type is defined as a UINT64 and is returned by the AcpiOsGetThreadId interface.

There is no standard "thread_id" across operating systems or even the various UNIX systems. Since
ACPICA only needs the thread ID as a unique thread identifier, it uses a UINT64 as the only
common data type – a UINT64 will accommodate any type of pointer or any type of integer. It is up
to the host-dependent OSL to cast the native thread ID type to a UINT64 (in AcpiOsGetThreadId)
before returning the value to ACPICA.

7.3.6 ACPI_CACHE_T

This type is used for the value returned from AcpiOsCreateCache. It is used as a parameter to the
various OSL cache interfaces to identify a cache object for operating systems that implement a
cache manager. If the local ACPICA cache memory manager is used (configured), the value for this
type is ACPI_MEMORY_LIST. Otherwise, the value is OS-dependent.

7.3.7 ACPI_UINTPTR_T

This type is introduced to assist compilation of ACPICA under a C99 compiler that implements the
uintptr_t type. It is used for casting of pointers to eliminate compiler warnings. The default value
for the non-C99 case is (void *).

7.4 Subsystem Compile-Time Options

These defines are used to customize the ACPICA Subsystem at compile time by selecting or
disabling various features.

7.4.1 ACPI_USE_SYSTEM_CLIBRARY

This switch allows the use of a system-supplied C library for the Clib functions used by the
subsystem. If this switch is not set, the subsystem uses its own implementations of these functions.
Use of a system C library (when available) may be more efficient in terms of reused system code
and efficiency of the function implementations.

7.4.2 ACPI_USE_STANDARD_HEADERS

This switch allows the use of standard C library headers that are provided by the host. The following

ACPI Component Architecture User Guide and Programmer Reference

90

#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

7.4.3 ACPI_DEBUG_OUTPUT

This switch enables all debug facilities within ACPICA. This includes the ACPI_DEBUG_PRINT
output statements, the ACPI_FUNCTION_TRACE tracing statements, and the various object
dumping routines. If disabled, all of these macros evaluate to NULL and no code is produced.

7.4.4 ACPI_USE_LOCAL_CACHE

This switch enable the local ACPICA cache manager code. The use of a cache can improve the
ACPICA performance considerably, since it frequently allocations and deallocates objects of
identical size. If the host OS provides a similar cache manager, the ACPICA cache manager is not
needed.

7.4.5 ACPI_DBG_TRACK_ALLOCATIONS

This switch enables the ACPICA cache statistics mechanism, and is only applicable if the local
ACPICA cache manager is enabled (ACPI_USE_LOCAL_CACHE.) When enabled, information
about each cache is saved, including the total memory allocated/freed, total requests, cache
hits/misses, etc. This information can be displayed via the ACPICA Debugger.

7.4.6 ACPI_MUTEX_TYPE

This macro is used to define the type of mutex support desired. Either native (host OS) mutexes may
be used, or binary semaphores may be used. The default behavior is to use binary semaphores.

The ACPI_MUTEX_TYPE must be one of the two following values:

ACPI_BINARY_SEMAPHORE (default)

Use this value if the host OS does not support mutex objects. If set, this switch enables the
automatic use of macros that implement the mutex interfaces via binary semaphores, and the various
mutex interfaces do not need to be implemented in the OSL.

ACPI_OSL_MUTEX

AcpiOsReleaseMutex

Use this value if the host OS supports mutex objects. The various mutex interfaces must be
implemented in the OSL:

 AcpiOsCreateMutex
 AcpiOsDeleteMutex
 AcpiOsAcquireMutex

ACPI Component Architecture User Guide and Programmer Reference

91

7.4.7 ACPI_MUTEX_DEBUG

Enables code that performs error checking on the use of mutex objects. It checks for possible
deadlock conditions by enforcing a mutex ordering rule. Use of this option can impact performance
considerably, so it it should only used for debugging.

7.4.8 ACPI_SIMPLE_RETURN_MACROS

Enables simplified return macros. The default implementation for the return macros has extra
protection so that the macro parameter is not evaluated twice. The simplified versions of these
macros are smaller, but the parameter can be evaluated twice

Protected macro:

#define return_ACPI_STATUS(s) \
ACPI_DO_WHILE0 ({ \

register ACPI_STATUS _s = (s); \
AcpiUtStatusExit (ACPI_DEBUG_PARAMETERS, _s); \
return (_s); })

Simplified macro:

#define return_ACPI_STATUS(s) \
ACPI_DO_WHILE0 ({ \

AcpiUtStatusExit (ACPI_DEBUG_PARAMETERS, (s)); \
return((s)); })

7.4.9 ACPI_USE_DO_WHILE_0

Inserts a do … while(0) statement around the return macros (see examples above). Prevents some
compilers from issuing warnings for these macros.

Default implementation:

#define ACPI_DO_WHILE0(a) do a while(0)

7.5 Per-Compiler Configuration

These macros and defines allow the ACPICA subsystem to be tailored to a particular compiler.

7.5.1 COMPILER_DEPENDENT_INT64

Defines the name of a signed 64-bit integer on for this compiler. This macro is required because
there is (currently) no standard method to define 64-bit integers in the C language. There is no
default, this macro must be defined by the platform configuration file.

Examples

4 long long

#define COMPILER_DEPENDENT_INT64 int64_t
#define COMPILER_DEPENDENT_INT64 long
#define COMPILER_DEPENDENT_INT64 __int64
#define COMPILER_DEPENDENT_INT6

ACPI Component Architecture User Guide and Programmer Reference

92

7.5.2 COMPILER_DEPENDENT_UINT64

Defines the name of an unsigned 64-bit integer on for this compiler. This macro is required because
there is (currently) no standard method to define 64-bit integers in the C language. There is no
default, this macro must be defined by the platform configuration file.

Examples

#define COMPILER_DEPENDENT_UINT64 uint64_t
#define COMPILER_DEPENDENT_UINT64 unsigned long
#define COMPILER_DEPENDENT_UINT64 unsigned __int64
#define COMPILER_DEPENDENT_UINT64 unsigned long long

7.5.3 ACPI_INLINE

Optionally defines the proper “inline” keyword for this compiler, since “inline” itself is not a
standard C keyword. A few ACPICA functions use ACPI_INLINE since they are very small. This
option can be defined to the appropriate keyword for this compiler. If an inline function is not
available, or if it is not needed, this function does not need to be defined, the default is “null”.

Examples

#define ACPI_INLINE inline
#define ACPI_INLINE __inline
#define ACPI_INLINE __inline__

7.5.4 ACPI_USE_NATIVE_DIVIDE

This switch enables native 64-bit divides. It is set by default for 64-bit machine widths. It is optional
for 32-bit platforms. Only use this option on a 32-bit platform if a 64-bit double-precision math
library is available for use by ACPICA. If the library is not available, then do not use this option and
a local ACPICA double-precision divide function is enabled instead.

7.5.5 ACPI_DIV_64_BY_32 (Short 64-bit Divide)

This macro performs a simple 64-bit divide with a 64-bit dividend and a 32-bit divisor. The purpose
of this macro is to perform a short divide on 32-bit platforms without invoking a double-precision
math library. Both the quotient and remainder must be returned. There is no default, this macro
must be defined by the platform configuration file.

Example 32-bit Implementation

}

#define ACPI_DIV_64_BY_32(n_hi, n_lo, d32, q32, r32) \
{ \

__asm mov edx, n_hi \
__asm mov eax, n_lo \
__asm div d32 \
__asm mov q32, eax \
__asm mov r32, edx \

ACPI Component Architecture User Guide and Programmer Reference

93

Example 64-bit Implementation

#define ACPI_DIV_64_BY_32(n, n_hi, n_lo, d32, q32, r32) \
{ \

q32 = n / d32; \
r32 = n % d32; \

}

7.5.6 ACPI_SHIFT_RIGHT_64 (64-bit Shift)

This macro performs a 64-bit right shift by one bit. The purpose of this macro is to perform a shift
right on 32-bit platforms without invoking a double-precision math library. There is no default, this
macro must be defined by the platform configuration file.

Example 32-bit Implementation

#define ACPI_SHIFT_RIGHT_64(n_hi, n_lo) \
{ \

__asm shr n_hi, 1 \
__asm rcr n_lo, 1 \

}

Example 64-bit Implementation

#define ACPI_SHIFT_RIGHT_64(n, n_hi, n_lo) \
{ \

n <<= 1; \
}

7.5.7 ACPI_EXPORT_SYMBOL

This macro is used to define the mechanism used to export public symbols, if applicable. Within
ACPICA, it is invoked for each of the public interfaces. The default value is NULL.

Example

#define ACPI_EXPORT_SYMBOL(Symbol) EXPORT_SYMBOL(Symbol);

7.5.8 ACPI_EXTERNAL_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA external interfaces (the Acpi* interfaces.) The default value is
NULL.

Example

#define ACPI_EXTERNAL_XFACE APIENTRY

ACPI Component Architecture User Guide and Programmer Reference

94

7.5.9 ACPI_INTERNAL_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA internal interfaces. The default value is NULL.

7.5.10 ACPI_INTERNAL_VAR_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA variable-argument list internal interfaces. The default value is
NULL.

Example

#define ACPI_INTERNAL_VAR_XFACE __cdecl

7.5.11 ACPI_SYSTEM_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all interfaces to the host OS. The default value is NULL.

Examples

#define ACPI_SYSTEM_XFACE __cdecl
#define ACPI_SYSTEM_XFACE APIENTRY

7.5.12 ACPI_PRINTF_LIKE

This macro defines a suffix to be used in the definitions and prototypes of internal print functions
that accept a printf-like format string. Some compilers have the ability to perform additional
typechecking on such functions. The default value is NULL.

Example

#define ACPI_PRINTF_LIKE(c) \
__attribute__ ((__format__ (__printf__, c, c+1)))

7.5.13 ACPI_UNUSED_VAR

This macro defines a prefix to be used in the definition of variables that may not be used in a
module (such as the ACPI_MODULE_NAME). This can prevent compiler warnings for such
variables. The default value is NULL.

Example

machine architecture.

#define ACPI_UNUSED_VAR __attribute__ ((unused))

7.6 Per-Machine Configuration

These macros and defines allow the ACPICA subsystem to be tailored to a particular machine or

ACPI Component Architecture User Guide and Programmer Reference

95

7.6.1 ACPI_MACHINE_WIDTH

This macro defines the standard integer width of the target machine, either 32 or 64. There is no
default, this macro must be defined by the platform configuration file.

Examples

#define ACPI_MACHINE_WIDTH 32
#define ACPI_MACHINE_WIDTH 64

7.6.2 ACPI_FLUSH_CPU_CACHE

Defines the instruction or instructions necessary to flush the CPU cache(s) on this machine.

Examples

#define ACPI_FLUSH_CPU_CACHE() __asm {WBINVD}
#define ACPI_FLUSH_CPU_CACHE() wbinvd()

7.6.3 ACPI_OS_NAME

This defines the string that is returned by the predefined “_OS_” method in the ACPI namespace.

#define ACPI_OS_NAME "Microsoft Windows NT"

The _OS_ object is essentially obsolete, but there is a large base of ASL/AML code in existing
machines that check for the string above. The use of this string usually guarantees that the ASL will
execute down the most tested code path. Also, there is some code that will not execute the _OSI
method unless _OS_ matches the string above. Therefore, change this string at your own risk.

7.6.4 ACPI_ACQUIRE_GLOBAL_LOCK

This macro defines the code (in assembly or C) necessary to acquire the ACPI Global Lock on this
machine.

ACPI_ACQUIRE_GLOBAL_LOCK (FacsPtr, Acquired)

Where:

is a boolean return value. TRUE if the lock was acquired; FALSE otherwise.

FacsPtr is a pointer to the FACS table.

Acquired

ACPI Component Architecture User Guide and Programmer Reference

96

Example:

#define ACPI_ACQUIRE_GLOBAL_LOCK(FacsPtr, Acq) __asm \
{ \

__asm mov eax, 0xFF \
__asm mov ecx, FacsPtr \
__asm or ecx, ecx \
__asm jz exit_acq \
__asm lea ecx, [ecx].GlobalLock \

\
__asm acq10: \
__asm mov eax, [ecx] \
__asm mov edx, eax \
__asm and edx, 0xFFFFFFFE \
__asm bts edx, 1 \
__asm adc edx, 0 \
__asm lock cmpxchg dword ptr [ecx], edx \
__asm jnz acq10 \

\
__asm cmp dl, 3 \
__asm sbb eax, eax \

\
__asm exit_acq: \
__asm mov Acq, al \

}

7.6.5 ACPI_RELEASE_GLOBAL_LOCK

This macro defines the code (in assembly or C) necessary to release the ACPI Global Lock on this
machine.

ACPI_RELEASE_GLOBAL_LOCK (FacsPtr, Pending)

Where:

otherwise.

FacsPtr is a pointer to the FACS table.

Pending is a boolean return value. TRUE if the global lock pending bit is set; FALSE

ACPI Component Architecture User Guide and Programmer Reference

97

Example:

ACPI_PM2_REGISTER_WIDTH

#define ACPI_RELEASE_GLOBAL_LOCK(FacsPtr, Pnd) __asm \
{ \

__asm xor eax, eax \
__asm mov ecx, FacsPtr \
__asm or ecx, ecx \
__asm jz exit_rel \
__asm lea ecx, [ecx].GlobalLock \

\
__asm Rel10: \
__asm mov eax, [ecx] \
__asm mov edx, eax \
__asm and edx, 0xFFFFFFFC \
__asm lock cmpxchg dword ptr [ecx], edx \
__asm jnz Rel10 \

\
__asm cmp dl, 3 \
__asm and eax, 1 \

\
__asm exit_rel: \
__asm mov Pnd, al \

}

7.7 Subsystem Runtime Configuration

This section describes features that may be enabled or disabled at run-time by setting various
ACPICA global option variables.

The global option variables are found in the include/acglobal.h header.

7.7.1 Interpreter Slack Mode

Enable or disable the AML Interpreter slack mode, as decribed earlier. The default is disabled.

ACPI_INIT_GLOBAL (AcpiGbl_EnableInterpreterSlack, FALSE);

7.7.2 ACPI Register Widths

This option can be used to override the ACPI register widths that are specified in the FADT in the
case where the FADT contains one or more incorrect register widths (lengths). The default value is
FALSE, do not use the default register widths -- use the values as specified in the FADT.

The default register widths are as follows:

PM1A Enable,
PM1A Status,
PM1A Control,
PM1B Enable,
PM1B Status,
PM1B Control -- 16 bits each, = ACPI_PM1_REGISTER_WIDTH

PM2 Control -- 8 bits, =

ACPI Component Architecture User Guide and Programmer Reference

98

ACPI_INIT_GLOBAL (AcpiGbl_TruncateIoAddresses, FALSE);

PM Timer -- 32 bits, = ACPI_PM_TIMER_WIDTH

ACPI_INIT_GLOBAL (AcpiGbl_UseDefaultRegisterWidths, FALSE);

7.7.3 Serialized Control Methods

This option can be used to force all control methods to be serialized. Meaning that only one thread
can enter the method at a time, similar to the Serialized control method option. The default is to not
force serialization and let each control method dictate the serialization mode for itself. The use of
this option essentially forces the AML interpreter to be single threaded.

ACPI_INIT_GLOBAL (AcpiGbl_AllMethodsSerialized, FALSE);

7.7.4 Output from the AML Debug Object

This option controls whether output from the AML “Debug Object” is enabled or not. If set to
TRUE, all system AML stores to the debug object will be formatted and printed via calls to the
AcpiOsPrintf interface. Note: the module that formats stores to the debug object can optionally be
configured out of the ACPICA build (via ACPI_NO_ERROR_MESSAGES). In this case, this
option will have no effect.

ACPI_INIT_GLOBAL (AcpiGbl_EnableAmlDebugObject, FALSE);

7.7.5 Copy the System DSDT to Local Memory

For memory efficiency, ACPICA does not normally copy the DSDT or any other ACPI tables from
their locations as presented by the system firmware; they are simply memory mapped. This is
especially important on large systems where the DSDT can be several megabytes in size.

However, on some rare systems, it has been seen that the DSDT can become corrupted or even
entirely replaced by a new (and invalid) DSDT during system operation. Reasons for this are
unclear, but they are assumed to be bugs in the firmware. For these systems, an option to copy the
DSDT to local memory is provided. When this option is specified, the DSDT is copied during
system initialization, and the original DSDT is never referenced again.

ACPI_INIT_GLOBAL (AcpiGbl_CopyDsdtLocally, FALSE);

7.7.6 Creation of_OSI Method

This option controls whether the predefined _OSI method is created or not. The _OSI method was
defined in ACPI 2.0 and is implemented internally within the ACPICA subsystem.

ACPI_INIT_GLOBAL (AcpiGbl_CreateOsiMethod, TRUE);

7.7.7 I/O Address Truncation

This option will truncate I/O addresses to 16 bits. Provides compatibility with other ACPI
implementations. NOTE: During ACPICA initialization, this value is set to TRUE if any Windows
OSI strings have been requested by the BIOS.

ACPI Component Architecture User Guide and Programmer Reference

99

useful and the default is to ignore checksum errors.

7.7.8 Runtime Validation/Repair of Predefined Names

This option disables runtime checking and repair of values returned by control methods. Use only if
the repair is causing a problem on a particular machine.

ACPI_INIT_GLOBAL (AcpiGbl_DisableAutoRepair, FALSE);

7.7.9 Reduced ACPI Hardware Flag

ACPI 5.0 introduces the concept of a "reduced hardware platform", meaning that the ACPI
hardware is no longer required. A flag in the FADT indicates a reduced HW machine, and that flag
is duplicated here for use by drivers.

BOOLEAN AcpiGbl_ReducedHardware;

7.7.10 Ignore XSDT, Use RSDT Instead

This option causes the subsystem to ignore an XSDT if present. Although the ACPI specification
requires the use of an XSDT if it is present in the RSDP, the XSDT has been found to be corrupt or
ill-formed on some machines. Setting this option to TRUE will use the RSDT instead of an XSDT.

ACPI_INIT_GLOBAL (AcpiGbl_DoNotUseXsdt, FALSE);

7.7.11 Use 32-bit FADT Addresses to Resolve Conflicts

This option causes the subsystem to prefer 32-bit ACPI register or table addresses within the FADT
when there is a conflict (address mismatch) between the 32-bit and 64-bit versions of the address.
Although ACPICA adheres to the ACPI specification which requires the use of the 64-bit version if
it is non-zero, some machines have been found to have one or more corrupted non-zero addresses.

ACPI_INIT_GLOBAL (AcpiGbl_Use32BitFadtAddresses, FALSE);

7.8 Subsystem Configuration Constants

The configurable subsystem constants are specified in the include/acconfig.h header file. These
constants may be modified at either compile time by changing the constants in acconfig.h, or at run-
time by changing the contents of the global variables where these constants are stored.

7.8.1 ACPI_CHECKSUM_ABORT

Defines whether the table manager should abort the loading of an ACPI table if the table checksum
is incorrect. Possible values are TRUE or FALSE. The default is FALSE.

In practice, often table checksums are found to be incorrect, not because of corruption, but because
the BIOS has modified the table on the fly according to BIOS configuration options, and has
inadvertently forgotten to update the checksum. Therefore, the ACPI table checksum isn’t very

ACPI Component Architecture User Guide and Programmer Reference

100

reduce memory fragmentation.

7.8.2 ACPI_MAX_LOOP_INTERATIONS

This defines the number of AML While() loop executions that are permitted before the infinite loop
break mechanism is invoked. The default is 64K iterations, which is a very large number of
interations for an AML loop. This mechanism prevents a catastrophic infinite loop which would
block the AML interpreter forever, effectively locking up most of the ACPICA subsystem.

Infinite loops can occur in poorly written AML in a hardware polling loop. For example, if the
hardware simply does not respond and the loop does not implement a timeout.

7.8.3 ACPI_MAX_STATE_CACHE_DEPTH

The maximum number of objects in the generic state object cache used to avoid recursive calls
within the subsystem. These are small objects, but are used frequently. A larger cache will improve
the performance of the entire subsystem (loading tables, parsing methods, and executing methods.)

7.8.4 ACPI_MAX_PARSE_CACHE_DEPTH

The maximum number of objects in the parse object cache. These are the objects used to build parse
trees. A larger cache will improve the execution performance of control methods (when the parse
just-in-time strategy is used) by improving the time to parse the AML.

7.8.5 ACPI_MAX_OBJECT_CACHE_DEPTH

The maximum number of objects in the interpreter operand object cache. These objects are used
during control methods to pass the operands for individual AML opcodes to the interpreter. A larger
cache will improve the performance of control method execution

7.8.6 ACPI_MAX_WALK_CACHE_DEPTH

The maximum number of objects in the parse tree walk object cache. These are relatively large
objects (about 512 bytes) that are used to contain the entire state of a control method during its
execution. Each nested control method requires an additional walk object. Since only one object is
required per control method, it is not necessary to cache a large number of these objects. A few
cached walk objects are sufficient to increase the performance of control method execution and

ACPI Component Architecture User Guide and Programmer Reference

101

8 ACPICA Subsystem - External
Interface Definition
This section contains documentation for the specific interfaces exported by the ACPICA Subsystem.
The interfaces are grouped based upon their functionality. These groups are closely related to the
internal modules (or sub-components) of the ACPICA Subsystem described earlier in this
document. These interfaces are intended to be used by the OSL only. The host OS does not call
these interfaces directly. All public/external interfaces to the ACPICA Subsystem are prefixed by
the letters “Acpi”.

8.1 ACPICA Subsystem Initialization and Control

8.1.1 AcpiInitializeSubsystem

Initialize all ACPICA globals and sub-components.

ACPI_STATUS
AcpiInitializeSubsystem (

void)

PARAMETERS

None

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully initialized.

AE_ERROR The system is not capable of supporting ACPI mode.

AE_NO_MEMORY Insufficient dynamic memory to complete the ACPI
initialization.

Functional Description:

these interfaces are independent and can be called at any time.)

This function initializes the entire ACPICA subsystem, including the OS Services Layer. It must be
called once before any of the other Acpi* interfaces are called (with the exception of the Table
Manager interfaces

ACPI Component Architecture User Guide and Programmer Reference

102

8.1.2 AcpiInstallInitializationHandler

Install a global handler for initialization handling.

ACPI_STATUS
AcpiInstallInitializationHandler (

ACPI_INIT_HANDLER Handler,
UINT32 Function)

PARAMETERS

Handler A pointer to the initialization handler.

Function Reserved.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_BAD_PARAMETER The Handler parameter is invalid.

AE_ALREADY_EXISTS A global initialization handler has already been installed.

Functional Description:

This function installs a global initialization handler that is called during the subsystem initialization.

Currently, the handler is called after each Device object within the namespace has been initialized
(The _INI and _STA methods have been run on the device.)

8.1.2.1 Interface to User Callback Function

Interface to the user function that is installed via AcpiInstallInitializationHandler.

Device that has just been initialized.

ACPI_STATUS (*ACPI_INIT_HANDLER) (
ACPI_HANDLE Object,
UINT32 Function)

PARAMETERS

Object A handle for the object that is being or has just been
initialized.

Function One of the following manifest constants:

ACPI_INIT_DEVICE_INI – the Object is a handle to a

ACPI Component Architecture User Guide and Programmer Reference

103

RETURN VALUE

Status AE_OK Continue the walk.

AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.

All others Abort the walk with this exception
code.

Functional Description:

This function is called during subsystem initialization.

8.1.3 AcpiEnableSubsystem

Complete the ACPICA Subsystem initialization and enable ACPI operations.

Insufficient memory to build the internal namespace.

ACPI_STATUS
AcpiEnableSubsystem (

UINT32 Flags)

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

ACPI_FULL_INITIALIZATION – Perform completed
initialization. This is the normal use of this interface.

ACPI_NO_ACPI_ENABLE. Do not attempt to enter
ACPI mode. For hardware-independent mode only.

ACPI_NO_ADDRESS_SPACE_INIT. Do not install the
default address space handlers. For debug purposes only.

ACPI_NO_HANDLER_INIT. Do not install the SCI and
global lock handlers. For hardware-independent mode only.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY

ACPI Component Architecture User Guide and Programmer Reference

104

Functional Description:

This function completes initialization of the ACPICA Subsystem.

8.1.4 AcpiInitializeObjects

Initialize objects within the ACPI namespace.

ACPI_STATUS
AcpiInitializeObjects (

UINT32 Flags)

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

ACPI_FULL_INITIALIZATION – Perform completed
initialization. This is the normal use of this interface.

ACPI_NO_ADDRESS_SPACE_INIT. Do not execute the
operation region _REG control methods. For debug
purposes only.

ACPI_NO_OBJECT_INIT. Do not run the final
initialization pass to complete initialization of all address
spaces and fields.

ACPI_NO_DEVICE_INIT. Do not attempt to run the
_STA and _INI methods on devices in the ACPI namespace.

ACPI_NO_EVENT_INIT. Do not initialize the FADT-
defined GPE blocks. For hardware independent mode only.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY Insufficient memory to build the internal namespace.

Functional Description:

(versus the size of the caches at runtime.)

This function completes initialization of the ACPICA Subsystem by initializing all ACPI Devices,
Operation Regions, Buffer Fields, Buffers, and Packages. It must be called and it should only be
called after a call to AcpiEnableSubsystem. The object cache is purged after these objects are
initialized, in case an overly large number of cached objects were created during initialization

ACPI Component Architecture User Guide and Programmer Reference

105

8.1.5 AcpiSubsystemStatus

Obtain initialization status of the ACPICA subsystem.

ACPI_STATUS
AcpiSubsystemStatus (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully initialized.

AE_ERROR The subsystem has not been initialized

Functional Description:

This function allows device drivers to determine the initialization status of the ACPICA subsystem.:

8.1.6 AcpiTerminate

Shutdown all ACPI Components.

dependent layer did not shutdown properly.

ACPI_STATUS
AcpiTerminate (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully shutdown.

AE_ERROR The OS-

ACPI Component Architecture User Guide and Programmer Reference

106

Functional Description:

This function performs a shutdown of the OS-independent portion of the ACPICA subsystem. The
namespace tables are unloaded, and all resources are freed to the host operating system. This
function should be called prior to unloading the ACPICA subsystem. In more detail, the terminate
function performs the following:

 Free all memory associated with the ACPI tables (either allocated or mapped memory).

 Free all internal objects associated with the namespace.

 Free all objects within the object caches.

 Free all OS resources associated with mutual exclusion.

8.1.7 AcpiInstallInterface

Install an interface into the list of interfaces recognized by the _OSI predefined method.

ACPI_STATUS
AcpiInstallInterface (

ACPI_STRING InterfaceName)

PARAMETERS

InterfaceName A pointer to a string containing the name of the interface.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The interface was successfully installed.

AE_BAD_PARAMETER Either InterfaceName is NULL or it points to a NULL
string.

AE_NO_MEMORY Insufficient memory to install the interface.

AE_ALREADY_EXISTS The interface already exists.

Functional Description:

.

This function installs an interface into the global list of interfaces that are recognized by the _OSI
predefined control method. Once installed, _OSI will return TRUE for a query that matches the
InterfaceName

ACPI Component Architecture User Guide and Programmer Reference

107

below.

8.1.7.1 Default Supported _OSI Strings

The following table lists the strings that are supported by ACPICA by default. This means that an
_OSI query on any of the default strings will return TRUE.

The AcpiInstallInterface function may be used to dynamically add additional strings to this list, or
the AcpiRemoveInterface function may be used to dynamically remove strings from this list.

/* Operating System Vendor Strings */

"Windows 2000" /* Windows 2000 */
"Windows 2001" /* Windows XP */
"Windows 2001 SP1" /* Windows XP SP1 */
"Windows 2001.1" /* Windows Server 2003 */
"Windows 2001 SP2" /* Windows XP SP2 */
"Windows 2001.1 SP1" /* Windows Server 2003 SP1 - Added 03/2006 */
"Windows 2006" /* Windows Vista - Added 03/2006 */
"Windows 2006.1" /* Windows Server 2008 - Added 09/2009 */
"Windows 2006 SP1" /* Windows Vista SP1 - Added 09/2009 */
"Windows 2006 SP2" /* Windows Vista SP2 - Added 09/2010 */
"Windows 2009" /* Windows 7 and Server 2008 R2 - Added 09/2009 */
"Windows 2012" /* Windows 8 and Server 2012 - Added 08/2012 */

/* Feature Group Strings */

"Extended Address Space Descriptor"

/*
* All "optional" feature group strings (features that are implemented
* by the host) should be dynamically modified to VALID by the host via
* AcpiInstallInterface or AcpiUpdateInterfaces. Such optional feature
* group strings are set as INVALID by default.
*
* "Module Device"
* "Processor Device"
* "3.0 Thermal Model"
* "3.0 _SCP Extensions"
* "Processor Aggregator Device"
*/

8.1.7.2 Why ACPICA responds TRUE to _OSI (Windows)

ACPICA responds TRUE to all known Windows strings because ACPICA attempts to be fully
compatible with the Windows implementation of ACPI. On the other hand, ACPICA responds
FALSE to other operating system strings (such as “Linux”, “FreeBSD”, or “HP-UX”) because doing
so has been seen to often cause serious problems. For example, on many platforms, the only path
through the ASL code that has been fully tested by the manufacturer is in fact the path for
“Windows”. By responding TRUE to other operating system strings, the ASL may execute paths
that have had only limited or even no evaluation.

An experience with the “Linux” _OSI string as experienced by Linux developers is documented

ACPI Component Architecture User Guide and Programmer Reference

108

The story of _OSI(Linux)

From pre-history through Linux-2.6.22, Linux responded TRUE upon a BIOS OSI(Linux)
query.

Unfortunately, reference BIOS writers got wind of this and put OSI(Linux) in their
example code, quickly exposing this string as ill-conceived and opening the door to
an un-bounded number of BIOS incompatibilities.

For example, OSI(Linux) was used on resume to re-POST a video card on one system,
because Linux at that time could not do a speedy restore in its native driver. But
then upon gaining quick native restore capability, Linux has no way to tell the
BIOS to skip the time-consuming POST -- putting Linux at a permanent performance
disadvantage. On another system, the BIOS writer used OSI(Linux) to infer native OS
support for IPMI! On other systems, OSI(Linux) simply got in the way of Linux
claiming to be compatible with other operating systems, exposing BIOS issues such
as skipped device initialization.

So "Linux" turned out to be a really poor choice of OSI string, and from Linux-
2.6.23 onward we respond FALSE.

BIOS writers should NOT query _OSI(Linux) on future systems. Linux will complain on
the console when it sees it, and return FALSE. To get Linux to return TRUE for your
system will require a kernel source update to add a DMI entry, or boot with
"acpi_osi=Linux"

8.1.8 AcpiUpdateInterfaces

Update _OSI interface strings. Used for debugging

supported_OSI strings.

ACPI_STATUS
AcpiUpdateInterfaces (

UINT8 Action)

PARAMETERS

Action Flags that specify the action to be performed. One of the
following manifest constants:

ACPI_DISABLE_ALL_VENDOR_STRINGS – Disable
all of the operating system vendor strings.

ACPI_DISABLE_ALL_FEATURE_STRINGS – Disable
all of the feature group strings.

ACPI_DISABLE_ALL_STRINGS – Disable all supported
_OSI strings.

ACPI_ENABLE_ALL_VENDOR_STRINGS – Enable
all of the operating system vendor strings.

ACPI_ENABLE_ALL_FEATURE_STRINGS – Enable
all of the feature group strings.

ACPI_ENABLE_ALL_STRINGS – Enable all

ACPI Component Architecture User Guide and Programmer Reference

109

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The action was successfully performed.

AE_BAD_PARAMETER Action is not one of the supported manifest constants.

Functional Description:

This function globally modifies the behavior of the _OSI function by disabling or enabling all of the
vendor strings, feature strings, or both. It is typically used for debugging purposes only.

8.1.9 AcpiRemoveInterface

Remove an interface from the list of interfaces recognized by the _OSI predefined method.

ACPI_STATUS
AcpiRemoveInterface (

ACPI_STRING InterfaceName)

PARAMETERS

InterfaceName A pointer to a string containing the name of the interface.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The interface was successfully removed.

AE_BAD_PARAMETER Either InterfaceName is NULL or it points to a NULL
string.

AE_NOT_EXIST The interface does not exist.

Functional Description:

FALSE.

This function removes an interface from the global list of interfaces that are recognized by the _OSI
predefined control method. Once removed, an _OSI query for the InterfaceName will return

ACPI Component Architecture User Guide and Programmer Reference

110

8.1.10 AcpiInstallInterfaceHandler

Install or remove a handler for _OSI invocations.

ACPI_STATUS
AcpiInstallInterfaceHandler (

ACPI_INTERFACE_HANDLER Handler)

PARAMETERS

Handler Address of the handler to be installed. A NULL pointer will
remove a previously installed handler.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed or removed.

AE_ALREADY_EXISTS A handler has already been installed.

Functional Description:

This function installs or removes a global handler for all _OSI invocations. The handler is invoked
whenever an _OSI invocation is encountered in the executing system AML.

An _OSI handler is entirely optional and should only be installed if it is necessary for the host OS to
know exactly when _OSI is invoked and/or what interfaces are being requested by the system AML.
Otherwise, the AcpiInstallInterface and AcpiRemoveInterface functions should be sufficient.

8.1.10.1 Interface to _OSI Interface Handlers

Definition of the handler interface for _OSI handlers.

found in the global _OSI interface table.

typedef
UINT32 (*ACPI_INTERFACE_HANDLER) (

ACPI_STRING InterfaceName,
UINT32 Supported)

PARAMETERS

InterfaceName A pointer to a string containing the name of the interface
that was requested via _OSI.

Supported TRUE or FALSE, indicates whether the InterfaceName was

ACPI Component Architecture User Guide and Programmer Reference

111

RETURN VALUE

Supported Value of Supported to be returned to the AML code from
the execution of _OSI. This allows the host to either accept
and return the input value of Supported, or override it with a
new value.

Functional Description:

This handler is installed via AcpiInstallInterfaceHandler. It is invoked whenever the _OSI
predefined control method is invoked from the system AML.

8.2 ACPI Table Management

8.2.1 AcpiInitializeTables

Initialize the ACPICA table manager.

Insufficient dynamic memory to complete the operation.

ACPI_STATUS
AcpiInitializeTables (

ACPI_TABLE_DESC *InitialTableArray,
UINT32 InitialTableCount,
BOOLEAN AllowResize)

PARAMETERS

InitialTableArray Pointer to an array of pre-allocated ACPI_TABLE_DESC
structures. If NULL, the array is dynamically allocated.

InitialTableCount Requested size of InitialTableArray, in number of
ACPI_TABLE_DESC structures.

AllowResize Flag to tell the Table Manager if a resize of the pre-allocated
array is allowed. Ignored if InitialTableArray is NULL.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table manager was successfully initialized.

AE_NOT_FOUND A valid RSDP could not be located.

AE_NO_MEMORY

ACPI Component Architecture User Guide and Programmer Reference

112

Functional Description:

This function initializes the table manager component. A memory array is required to store
information about the BIOS-provided ACPI tables. It can be pre-allocated by the caller (if dynamic
memory is not available yet) or it can be allocated by this function.

Specify a static memory array for the InitialTableArray if the Table Manager is to be used early
during kernel initialization, before dynamic memory is available. Otherwise, use a NULL pointer
and the Table Manager will use dynamic memory to allocate the array.

8.2.2 AcpiReallocateRootTable

Copy the root ACPI information table into dynamic memory.

ACPI_STATUS
AcpiReallocateRootTable (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully enlarged.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

array.

This function copies the root table into dynamic memory. The root table is used to store information
about the BIOS-provided ACPI tables. This function should be called after dynamic memory is
available within the kernel and if AcpiInitializeTables was called with a pre-allocated static table

ACPI Component Architecture User Guide and Programmer Reference

113

8.2.3 AcpiFindRootPointer

Locate the RSDP via memory scan (IA-32).

ACPI_STATUS
AcpiFindRootPointer (

ACPI_SIZE *TableAddress)

PARAMETERS

TableAddress A pointer to where the physical address of the ACPI RSDP
table will be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The RSDP was found and returned.

AE_NOT_FOUND A valid RSDP could not be located.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function locates and returns the ACPI Root System Description Pointer by scanning within the
first megabyte of physical memory for the RSDP signature. This mechanism is only applicable to
IA-32 systems.

This interface should only be called from the OSL function AcpiOsGetRootPointer if this memory
scanning mechanism is appropropriate for the current platform.

If the operation fails an appropriate status will be returned and the value of RsdpPhysicalAddress is
undefined.

This function is always available, regardless of the initialization state of the rest of ACPICA.

8.2.4 AcpiLoadTables

Load the BIOS-provided ACPI tables and build an internal ACPI namespace.

None

ACPI_STATUS
AcpiLoadTables (

void)

PARAMETERS

ACPI Component Architecture User Guide and Programmer Reference

114

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully loaded and a handle returned.

AE_BAD_CHECKSUM The computed table checksum does not match the checksum
in the table.

AE_BAD_HEADER The table header is invalid or is not a valid type.

AE_NO_ACPI_TABLES The ACPI tables (RSDT, DSDT, FADT, etc.) could not be
found in physical memory.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

If the operation fails an appropriate status will be returned.

This function loads ACPI tables that are pointed to by the RSDP/RSDT and installs them into the
internal ACPI namespace database. The Root System Description Pointer (RSDP) points to the Root
System Description Table (RSDT), and the remaining ACPI tables are found via pointers contained
in RSDT.

The minimum required set of ACPI tables that will allow the ACPICA Subsystem to initialize
consists of the following:

 RSDT/XSDT

 FADT

 FACS

 DSDT

Only tables that are used directly by the ACPICA subsystem are loaded. Other tables (such as the
MADT, SRAT, etc.) are obtained and consumed by different kernel subsystems and/or device
drivers.

All SSDTs found within the RSDT/XSDT are loaded.

ACPI Component Architecture User Guide and Programmer Reference

115

8.2.5 AcpiLoadTable

Load a single host-provided ACPI table.

ACPI_STATUS
AcpiLoadTable (

ACPI_TABLE_HEADER *Table)

PARAMETERS

Table The ACPI table to be loaded into the namespace. Must be a
buffer containing a valid ACPI table with a valid table
header.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully loaded.

AE_BAD_PARAMETER The Table parameter is NULL.

AE_BAD_CHECKSUM The computed table checksum does not match the checksum
in the table.

AE_BAD_HEADER The table header is invalid or is not a valid type.

AE_NO_ACPI_TABLES The standard ACPI tables (RSDT, DSDT, FADT, etc.) have
not been loaded.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

interface.

This function loads an ACPI table that is provided by the host in a buffer. It must be a valid ACPI
table with a valid ACPI header. The table is not copied, so the caller must manage the buffer that
contains the table.

This function is primarily intended for hotplug addition of SSDTs. The AcpiUnloadParentTable is
intended for hotplug removal of SSDTs.

NOTE: Should only be called after the namespace has been loaded and initialized via the
AcpiLoadTables

ACPI Component Architecture User Guide and Programmer Reference

116

8.2.6 AcpiUnloadParentTable

Unloads an ACPI table via a namespace object that is owned by the table.

ACPI_STATUS
AcpiUnloadParentTable (

ACPI_HANDLE Object)

PARAMETERS

Object An ACPI_HANDLE for any namespace object that is
owned by the table to be unloaded.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully unloaded.

AE_BAD_PARAMETER The Object parameter is NULL.

AE_NOT_EXIST The table is not actually loaded at this time.

AE_TYPE The Object is owned by the DSDT, which cannot be
unloaded.

Functional Description:

This function can unload an SSDT or OEMx table via any namespace object that is owned by the
table. Unloading the DSDT is not allowed.

This function is primarily intending for hotplug dynamic removal of ACPI tables. It is typically used
to remove a table that has been previously loaded via the AcpiLoadTable interface.

8.2.7 AcpiGetTableHeader

Get the header portion of a specific installed ACPI table.

.

ACPI_STATUS
AcpiGetTableHeader (

char *Signature,
UINT32 Instance,
ACPI_TABLE_HEADER *OutTableHeader)

PARAMETERS

Signature A pointer to the 4-character ACPI signature for the
requested table

ACPI Component Architecture User Guide and Programmer Reference

117

Instance For table types that support multiple tables (SSDT and
UEFI), the instance of the table to be returned (one based:
1…n). For table types that support only a single table, this
parameter must be set to one.

OutTableHeader A pointer to a location where the table header is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table header was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

The Signature pointer is NULL.

The OutTableHeader pointer is NULL.

AE_NOT_FOUND There is no table with this Signature currently loaded, or the
table of the specified Instance is not loaded.

AE_TYPE The table Signature is not supported (RSDP).

Functional Description:

This function obtains the header of an installed ACPI table. The header contains a length field that
can be used to determine the size of the buffer needed to contain the entire table. This function is not
valid for the RSDP table since it does not have a standard header and is fixed length.

For table types that support more than one table, the Instance parameter is used to specify which
table header of the given signature should be returned. This parameter is one-based. To retrieve
multiple tables, use the sequence 1…n until an exception is returned. For table types that only
support single tables, the Instance parameter must be set to one.

If the operation fails an appropriate status will be returned and the contents of OutTableHeader are
undefined.

8.2.8 AcpiGetTable

Obtain a specific installed ACPI table.

**Table)

ACPI_STATUS
AcpiGetTable (

char *Signature,
UINT32 Instance,
ACPI_TABLE_HEADER

ACPI Component Architecture User Guide and Programmer Reference

118

PARAMETERS

Signature A pointer to the 4-character ACPI signature for the
requested table.

Instance Which table instance, if multiple instances of the table are
allowed (SSDT or UEFI). One based (1…n).

Table A pointer to where the address of the requested ACPI table
is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested table was found and returned.

AE_BAD_PARAMETER At least one of the following is true:

The Signature pointer is NULL.

The OutTableHeader pointer is NULL.

AE_NO_ACPI_TABLES A valid RSDP could not be located.

AE_NOT_FOUND There is no table with this Signature currently loaded, or the
table of the specified Instance is not loaded.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

is undefined.

This function locates and returns one of the ACPI tables that are supplied by the system firmware.
On IA-32 systems, this involves scanning within the first megabyte of physical memory for the
RSDP signature.

This function may be called at any time after the Table Manager is initialized, even before the
ACPICA subsystem has been initialized. This allows early access to ACPI tables -- even before the
system virtual memory manager has been started.

For table types that support more than one table, the Instance parameter is used to specify which
table of the given signature should be returned. This parameter is one-based. To retrieve multiple
tables, use the sequence 1…n until an exception is returned. For table types that only support single
tables, the Instance parameter must be set to one.

If the operation fails an appropriate status will be returned and the value of Table

ACPI Component Architecture User Guide and Programmer Reference

119

8.2.9 AcpiGetTableByIndex

Obtain an installed ACPI table via an index into the Root Table

ACPI_STATUS
AcpiGetTableByIndex (

UINT32 TableIndex,
ACPI_TABLE_HEADER **OutTable)

PARAMETERS

TableIndex Index of the table within the internal Root Table list.

OutTable A pointer to location where the table is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

The OutTable pointer is NULL.

AE_NOT_EXIST There is no table of this type currently loaded, or the table of
the specified Instance is not loaded.

Functional Description:

This function obtains an installed ACPI table. It is useful for iterating through the entire set of
installed ACPI tables. To obtain a specific ACPI table, use AcpiGetTable or AcpiGetTableHeader.

If the operation fails an appropriate status will be returned and the contents of OutTable is
undefined.

8.2.10 AcpiInstallTableHandler

Install a global handler for ACPI table load and unload events.

Address of the handler to be installed.

ACPI_STATUS
AcpiInstallTableHandler (

ACPI_TABLE_HANDLER Handler,
void *Context)

PARAMETERS

Handler

ACPI Component Architecture User Guide and Programmer Reference

120

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

The Handler pointer is NULL.

AE_ALREADY_EXISTS A global table handler is already installed.

Functional Description:

This function installs a global handler for table load/unload events.

8.2.10.1 Interface to the Table Event Handler

Definition of the handler interface for Table Events.

None

typedef
ACPI_STATUS (*ACPI_TABLE_HANDLER) (

UINT32 Event,
void *Table,
void *Context)

PARAMETERS

Event The table event that occurred. One of these manifest
constants:

ACPI_TABLE_EVENT_LOAD – The table was just
loaded.

ACPI_TABLE_EVENT_UNLOAD – The table is about to
be unloaded.

Table The table that was either just loaded or is about to be
unloaded.

Context The Context value that was passed as a parameter to the
AcpiInstallTableHandler function.

RETURN VALUE

ACPI Component Architecture User Guide and Programmer Reference

121

Functional Description:

This handler is installed via AcpiInstallTableHandler. It is called whenever an ACPI table is either
loaded or unloaded.

This function does not execute in the context of an interrupt handler.

8.2.11 AcpiRemoveTableHandler

Remove a handler for ACPI table events.

ACPI_STATUS
AcpiRemoveTableHandler (

ACPI_TABLE_HANDLER Handler)

PARAMETERS

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

The Handler pointer is NULL.

The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for notifications on this object.

Functional Description:

AcpiInstallTableHandler.
This function removes a handler for notify events that was previously installed via a call to

ACPI Component Architecture User Guide and Programmer Reference

122

8.3 ACPI Namespace Management

8.3.1 AcpiEvaluateObject

Evaluate an ACPI namespace object and return the result.

invalid AML code.

ACPI_STATUS
AcpiEvaluateObject (

ACPI_HANDLE Object,
ACPI_STRING Pathname,
ACPI_OBJECT_LIST *MethodParams,
ACPI_BUFFER *ReturnBuffer)

PARAMETERS

Object One of the following:

A handle to the object to be evaluated.

A handle to a parent object that is a prefix to the pathname.

A NULL handle if the pathname is fully qualified.

Pathname Pathname of namespace object to evaluate. May be either an
absolute path or a path relative to the Object.

MethodParams If the object is a control method, this is a pointer to a list of
parameters to pass to the method. This pointer may be
NULL if no parameters are being passed to the method or if
the object is not a method.

ReturnBuffer A pointer to a location where the return value of the object
evaluation (if any) is placed. If this pointer is NULL, no
value is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object was successfully evaluated.

AE__LIMIT More than the maximum number of 7 arguments
were passed to a method.

AE_AML_ERROR An unspecified error occurred during the parsing of
the AML code.

AE_AML_PARSE The control method could not be parsed due to

ACPI Component Architecture User Guide and Programmer Reference

123

NULL.

AE_AML_BAD_OPCODE An invalid opcode was encountered in the AML
code.

AE_AML_NO_OPERAND An required operand was missing. This could be
caused by a method that does not return any object.

AE_AML_OPERAND_TYPE An operand object is not of the required ACPI type.

AE_AML_OPERAND_VALUE An operand object has an invalid value

AE_AML_UNINITIALIZED_LOCAL A method attempted to access a local variable that
was not initialized.

AE_AML_UNINITIALIZED_ARG A method attempted to access an argument that was
not part of the argument list, or was not passed into
the method properly.

AE_AML_UNITIALIZED_ELEMENT A method attempted to use (dereference) a reference
to an element of a package object that is empty
(uninitialized).

AE_AML_NUMERIC_OVERFLOW An overflow occurred during a numeric conversion
(Such as BCD conversion.)

AE_AML_REGION_LIMIT A method attempted to access beyond the end of an
Operation Region defined boundary.

AE_ AML_BUFFER_LIMIT A method attempted to access beyond the end of a
Buffer object.

AE_ AML_PACKAGE_LIMIT A method attempted to access beyond the end of a
Package object.

AE_ AML_DIVIDE_BY_ZERO A method attempted to execute a divide instruction
with a zero divisor.

AE_AML_BAD_NAME A name contained within the AML code has one or
more invalid characters.

AE_AML_NAME_NOT_FOUND A name reference within the AML code could not be
found and therefore could not be resolved.

AE_AML_INTERNAL An error that is internal to the ACPICA subsystem
occurred.

AE_BAD_CHARACTER An invalid character was found in the Pathname
parameter.

AE_BAD_DATA Bad or invalid data was found in a package object.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not
exactly four characters long.

AE_BAD_PARAMETER At least one of the following is true:

Both the Object and Pathname parameters are

ACPI Component Architecture User Guide and Programmer Reference

124

The Object handle is NULL, but the Pathname is not
absolute.

The Pathname is relative but the Object is invalid.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer
field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of the ReturnBuffer is too small to
hold the actual returned object. Upon return, the
Length field contains the minimum required buffer
length.

AE_ERROR An unspecified error occurred.

AE_NO_MEMORY Insufficient dynamic memory to complete the
request.

AE_NOT_FOUND The object referenced by the combination of the
Object and Pathname was not found within the
namespace.

AE_NULL_OBJECT A required object was missing. This is an internal
error.

AE_STACK_OVERFLOW An internal stack overflow occurred because of an
error in the AML, or because control methods or
objects are nested too deep.

AE_STACK_UNDERFLOW An internal stack underflow occurred during
evaluation.

AE_TYPE The object is of a type that cannot be evaluated.

Functional Description:

This function locates and evaluates objects in the namespace. This interface has two modes of
operation, depending on the type of object that is being evaluated:

1. If the target object is a control method, the method is executed and the result (if any) is
returned.

2. If the target is not a control method, the current “value” of that object is returned. The type of
the returned value corresponds to the type of the object; for example, the object (and the
corresponding returned result) may be a Integer, a String, or a Buffer.

Specifying a Target Object: The target object may be any valid named ACPI object. To specify the

handle is ignored.

object, a valid Object, a valid Pathname, or both may be provided. However, at least one of these
parameters must be valid.

If the Object is NULL, the Pathname must be a fully qualified (absolute) namespace path.

If the Object is non-NULL, the Pathname may be either:

1. A path relative to the Object handle (a relative pathname as defined in the ACPI specification)

2. An absolute pathname. In this case, the Object

ACPI Component Architecture User Guide and Programmer Reference

125

Parameters to Control Methods: If the object to be evaluated is a control method, the caller can
supply zero or more parameters that will be passed to the method when it is executed.. The
MethodParams parameter is a pointer to an ACPI_OBJECT_LIST that in turn is a counted array of
ACPI_OBJECTs. If MethodParams is NULL, then no parameters are passed to the control method.
If the Count field of MethodParams is zero, then the entire parameter is treated exactly as if it is a
NULL pointer. If the object to be evaluated is not a control method, the MethodParams field is
ignored.

Receiving Evaluation Results: The ReturnObject parameter optionally receives the results of the
object evaluation. If this parameter is NULL, the evaluation results are not returned and are
discarded. If there is no result from the evaluation of the object and no error occurred, the Length
field of the ReturnObject parameter is set to zero.

Unsupported Object Types: The object types that cannot be evaluated are the following:
ACPI_TYPE_DEVICE. Others TBD.

Exceptional Conditions: Any exceptions that occur during the execution of a control method result
in the immediate termination of the control methods. All nested control methods are also terminated,
up to and including the parent method.

EXAMPLES

Example 1: Executing the control method with an absolute path, two input parameters, with no
return value expected:

ACPI_OBJECT_LIST Params;
ACPI_OBJECT Obj[2];

/* Initialize the parameter list */

Params.Count = 2;
Params.Pointer = &Obj;

/* Initialize the parameter objects */

Obj[0].Type = ACPI_TYPE_STRING;
Obj[0].String.Pointer = “ACPI User”;

Obj[1].Type = ACPI_TYPE_NUMBER;
Obj[1].Number.Value = 0x0E00200A;

/* Execute the control method */

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._TWO” , &Params, NULL);

Example 2: Before executing a control method that returns a result, we must declare and initialize an

The three examples that follow are functionally identical.

ACPI_BUFFER to contain the return value:

ACPI_BUFFER Results;
ACPI_OBJECT Obj;

/* Initialize the return buffer structure */

Results.Length = sizeof (Obj);
Results.Pointer = &Obj;

ACPI Component Architecture User Guide and Programmer Reference

126

Example 3: Executing a control method using an absolute path. In this example, there are no input
parameters, but a return value is expected.

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._STA” , NULL, &Results);

Example 4: Executing a control method using a relative path. A return value is expected.

Status = AcpiPathnameToHandle (”_SB.PCI0”, &Object)
Status = AcpiEvaluateObject (Object, ”_STA” , NULL, &Results);

Example 5: Executing a control method using a relative path. A return value is expected.

Status = AcpiPathnameToHandle (”_SB.PCI0._STA”, &Object)
Status = AcpiEvaluateObject (Object, NULL, NULL, &Results);

8.3.2 AcpiEvaluateObjectTyped

Evaluate an ACPI namespace object and return the type-validated result.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiEvaluateObjectTyped (

ACPI_HANDLE Object,
ACPI_STRING Pathname,
ACPI_OBJECT_LIST *MethodParams,
ACPI_BUFFER *ReturnBuffer,
ACPI_OBJECT_TYPE ReturnType)

PARAMETERS

Object One of the following:

A handle to the object to be evaluated.

A handle to a parent object that is a prefix to the pathname.

A NULL handle if the pathname is fully qualified.

Pathname Pathname of namespace object to evaluate. May be either an
absolute path or a path relative to the Object.

MethodParams If the object is a control method, this is a pointer to a list of
parameters to pass to the method. This pointer may be
NULL if no parameters are being passed to the method or if
the object is not a method.

ReturnBuffer A pointer to a location where the return value of the object
evaluation (if any) is placed. If this pointer is NULL, no
value is returned.

ReturnType The expected type of the returned object.

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

127

EXCEPTIONS

AE_OK The object was successfully evaluated and the correct
object type was returned.

AE_NULL_OBJECT No object was returned from the evaluation.

AE_TYPE An object of the incorrect type was returned.

Others See the definition of AcpiEvaluateObject.

Functional Description:

This function locates and evaluates objects in the namespace and validates that the object returned
from the evaluation is of the expected type. It is a front-end to AcpiEvaluateObject. See the
description of AcpiEvaluateObject for more information.

8.3.3 AcpiGetObjectInfo

Get information about an ACPI namespace object.

Insufficient dynamic memory to complete the operation.

ACPI_STATUS
AcpiGetObjectInfo (

ACPI_HANDLE Object,
ACPI_DEVICE_INFO **OutBuffer)

PARAMETERS

Object A handle to an ACPI object for which information is to be
returned.

OutBuffer A pointer to a location where the device info pointer is
returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Device info was successfully returned. See the
ACPI_DEVICE_INFO structure for valid returned fields.

AE_BAD_PARAMETER At least one of the following is true:

The Object handle is invalid.

The OutBuffer pointer is NULL.

AE_NO_MEMORY

ACPI Component Architecture User Guide and Programmer Reference

128

Functional Description:

This function obtains information about an object contained within the ACPI namespace. For all
namespace objects, the following information is returned:

Type — The ACPI object type (ACPI_TYPE_INTEGER, etc.)

Name — The 4-character ACPI name of the object

For Control Method objects, this additional information is returned:

ParamCount — The required number of input parameters

For Device and Processor objects, this additional information is returned as a result of evaluating the
following standard ACPI device methods and objects on behalf of the device:

_ADR — The address of the object (bus and device specific)

_STA — The current status of the object/device

_HID — The hardware ID of the object (string)

_UID — The Unique ID of the object (string)

_SUB — The Subsystem ID of the object (string) (ACPI 5.0)

_CID — The Compatibility ID list of the object (strings)

_SxW — Methods that return the lowest D-state values (_S0W, _S1W, _S2W,
_S3W, _S4W)

_SxD — Methods that return the highest D-state values (_S1D, _S2D, _S3D, _S4D)

Returned Data Format: The device information is returned in the ACPI_DEVICE_INFO structure

Is the object type code.

that is defined as follows:

typedef struct
{

UINT32 InfoSize;
UINT32 Name;
ACPI_OBJECT_TYPE Type;
UINT8 ParamCount;
UINT8 Valid;
UINT8 Flags;
UINT8 HighestDstates[4];
UINT8 LowestDstates[5];
UINT32 CurrentStatus;
UINT64 Address;
ACPI_PNP_DEVICE_ID HardwareId;
ACPI_PNP_DEVICE_ID UniqueId;
ACPI_PNP_DEVICE_ID SubsystemId;
ACPI_PNP_DEVICE_ID_LIST CompatibleIdList;

} ACPI_DEVICE_INFO;

Where:

InfoSize Entire size of the returned structure, including all ID strings
that are appended to the end of the structure.

Name The 4-character ACPI name of the object.

Type

ACPI Component Architecture User Guide and Programmer Reference

129

field return structure will be set.

ParamCount If the object is a control method, this is the number of
parameters defined for the method.

Valid A bit field that indicates which of the optional fields below
contain valid values. See below.

Flags Miscellaneous information flags. The following flags are
defined:

ACPI_PCI_ROOT_BRIDGE: Indicates that either the
_HID or one of the _CID values matched either PNP0A03
(PCI root bridge) or PNP0A08 (PCI Express root bridge)

HighestDstates _SxD device state values. 0xFF indicates that the field is
invalid.

LowestDstates _SxW device wake state values. 0xFF indicates that the
field is invalid.

CurrentStatus The result of evaluating _STA method for this object. If a
_STA object does not exist for this device, then this status
field will indicate that the device is present, functional, and
enabled – as per the ACPI specification.

Address The result of evaluating _ADR for this object.

HardwareId A pointer to the string obtained as a result of evaluating
_HID for this object.

UniqueId A pointer to the string obtained as a result of evaluating
_UID for this object.

SubsystemId A pointer to the string obtained as a result of evaluating
_SUB for this object.

CompatibleIds An array of pointers to the string(s) obtained as a result of
evaluating _CID for this object (a list of _CIDs.)

The fields of the structure that are valid because the corresponding method or object has been
successfully found under the device are indicated by the values of the Valid bitfield via the
following constants:

ACPI_VALID_ADR
ACPI_VALID_STA
ACPI_VALID_HID
ACPI_VALID_UID
ACPI_VALID_SUB
ACPI_VALID_CID
ACPI_VALID_SXDS
ACPI_VALID_SXWS

Each bit should be checked before the corresponding value in the structure can be considered valid.
None of the methods/objects that are used by this interface are required by the ACPI specification.
Therefore, there is no guarantee that all or even any of them are available for a particular device.
Even if none of the methods are found, the interface will return an AE_OK status — but none of the
bits set in the Valid

ACPI Component Architecture User Guide and Programmer Reference

130

The sub-structures used for the variable-length PNP device ID strings are defined as follows:

typedef struct
{

UINT32 Length; /* Length of string + null */
char *String;

} ACPI_PNP_DEVICE_ID;

typedef struct
{

UINT32 Count; /* Number of IDs in Ids array */
UINT32 ListSize; /* Size of list, including ID strings */
ACPI_PNP_DEVICE_ID Ids[1]; /* ID array */

} ACPI_PNP_DEVICE_ID_LIST;

Within the original ACPI tables, the _HID, _UID, and _CID values can be of either type
ACPI_TYPE_STRING or ACPI_TYPE_INTEGER. However, in order to provide a consistent
data type in the external interface, these values are always returned as NULL terminated strings,
regardless of the original data type in the source ACPI table. An internal data type conversion is
performed if necessary, as follows:

 32-bit compressed EISAIDs within _HID and _CID objects are decompressed and
converted to strings.

 64-bit integer IDs within _UID objects are converted to decimal string representation.

The object returned from this function should be freed via ACPI_FREE.

Note: The string pointers for _HID, _UID, SUB, and _CID simply point to a reserved area within
the returned buffer af ter the ACPI_DEVICE_INFO structure. When the return object is freed, these
pointers will become invalid.

8.3.4 AcpiGetNextObject

Get a handle to the next child ACPI object of a parent object.

the value of NULL to get the first child of the parent.

ACPI_STATUS
AcpiGetNextObject (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE Parent,
ACPI_HANDLE Child,
ACPI_HANDLE *OutHandle)

PARAMETERS

Type The desired type of the next object.

Parent A handle to a parent object to be searched for the next child
object.

Child A handle to a child object. The next child object of the
parent object that matches the Type will be returned. Use

ACPI Component Architecture User Guide and Programmer Reference

131

OutHandle A pointer to a location where a handle to the next child
object is to be returned. If this pointer is NULL, the child
object handle is not returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The next object was successfully found and returned.

AE_BAD_PARAMETER At least one of the following is true:

The Parent handle is invalid.

The Child handle is invalid.

The Type parameter refers to an invalid type.

AE_NOT_FOUND The child object parameter is the last object of the given
type within the parent — a next child object was not found.
If Child is NULL, this exception means that the parent
object has no children.

Functional Description:

interface for additional details.

This function obtains the next child object of the parent object that is of type Type. Both the Parent
and the Child parameters are optional. The behavior for the various combinations of Parent and
Child is as follows:

1. If the Child is non-NULL, it is used as the starting point (the current object) for the search.

2. If the Child is NULL and the Parent is non-NULL, the search is performed starting at the
beginning of the scope.

3. If both the Parent and the Child parameters are NULL, the search begins at the start of the
namespace (the search begins at the Root Object).

If the search fails, an appropriate status will be returned and the value of OutHandle is undefined.

This interface is appropriate for use within a loop that looks up a group of objects within the internal
namespace. However, the AcpiWalkNamespace primitive implements such a loop and may be
simpler to use in your application; see the description of this

ACPI Component Architecture User Guide and Programmer Reference

132

8.3.5 AcpiGetParent

Get a handle to the parent object of an ACPI object.

ACPI_STATUS
AcpiGetParent (

ACPI_HANDLE Child,
ACPI_HANDLE *OutParent)

PARAMETERS

Child A handle to an object whose parent is to be returned.

OutParent A pointer to a location where the handle to the parent object
is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The parent object was successfully found and returned.

AE_BAD_PARAMETER At least one of the following is true:

The Child handle is invalid.

The OutParent pointer is NULL.

AE_NULL_ENTRY The referenced object has no parent. (Entries at the root
level do not have a parent object.)

Functional Description:

This function returns a handle to the parent of the Child object. If an error occurs, a status code is
returned and the value of OutParent is undefined.

8.3.6 AcpiGetType

Get the type of an ACPI object.

handle to an object whose type is to be returned.

ACPI_STATUS
AcpiGetType (

ACPI_HANDLE Object,
ACPI_OBJECT_TYPE *OutType)

PARAMETERS

Object A

ACPI Component Architecture User Guide and Programmer Reference

133

OutType A pointer to a location where the object type is to be
returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object type was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

The Object handle is invalid.

The OutType pointer is NULL.

Functional Description:

This function obtains the type of an ACPI namespace object. See the definition of the
ACPI_OBJECT_TYPE for a comprehensive listing of the available object types.

8.3.7 AcpiGetHandle

Get the object handle associated with an ACPI name.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiGetHandle (

ACPI_HANDLE Parent,
ACPI_STRING Pathname,
ACPI_HANDLE *OutHandle)

PARAMETERS

Parent A handle to the parent of the object specified by Pathname.
In other words, the Pathname is relative to the Parent. If
Parent is NULL, the pathname must be a fully qualified
pathname.

Pathname A name or pathname to an ACPI object (a NULL terminated
ASCII string). The string can be either a single segment
ACPI name or a multiple segment ACPI pathname (with
path separators).

OutHandle A pointer to a location where a handle to the object is to be
returned.

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

134

EXCEPTIONS

AE_OK The pathname was successfully associated with an object
and the handle was returned.

AE_BAD_CHARACTER An invalid character was found in the pathname.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly
four characters long.

AE_BAD_PARAMETER At least one of the following is true:

The Pathname pointer is NULL.

The Pathname does not begin with a backslash character.

The OutHandle pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

AE_NOT_FOUND One or more of the segments of the pathname refers to a
non-existent object.

Functional Description:

This function translates an ACPI pathname into an object handle. It locates the object in the
namespace via the combination of the Parent and Pathame parameters. Only the specified Parent
object will be searched for the name — this function will not perform a walk of the namespace tree

is undefined.

(See AcpiWalkNamespace).

The pathname is relative to the Parent. If the parent object is NULL, the Pathname must be fully
qualified (absolute), meaning that the path to the object must be a complete path from the root of the
namespace, and the pathname must begin with a backslash (‘\’).

Multiple instances of the same name under a given parent (within a given scope) are not allowed by
the ACPI specification. However, if more than one instance of a particular name were to appear
under a single parent in the ACPI DSDT, only the first one would be successfully loaded into the
internal namespace. The second attempt to load the name would collide with the first instance of the
name, and the second instance would be ignored.

If the operation fails an appropriate status will be returned and the value of OutHandle

ACPI Component Architecture User Guide and Programmer Reference

135

8.3.8 AcpiGetName

Get the name of an ACPI object.

The namespace has not been successfully loaded.

ACPI_STATUS
AcpiGetName (

ACPI_HANDLE Object,
UINT32 NameType,
ACPI_BUFFER *OutName)

PARAMETERS

Object A handle to an object whose name or pathname is to be
returned.

NameType The type of name to return; must be one of these manifest
constants:

ACPI_FULL_PATHNAME – return a complete pathname
(from the namespace root) to the object.

ACPI_SINGLE_NAME – return a single segment ACPI
name for the object (4 characters, null terminated).

OutName A pointer to a location where the fully qualified and NULL
terminated name or pathname is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The full pathname associated with the handle was
successfully retrieved and returned.

AE_BAD_PARAMETER At least one of the following is true:

The Parent handle is invalid.

The Object handle is invalid.

The OutName pointer is NULL.

The Length field of OutName is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutName is NULL.

AE_BUFFER_OVERFLOW The Length field of OutName indicates that the buffer is too
small to hold the actual pathname. Upon return, the Length
field contains the minimum required buffer length.

AE_NO_NAMESPACE

ACPI Component Architecture User Guide and Programmer Reference

136

Functional Description:

This function obtains the name that is associated with the Object parameter. The returned name can
be either a full pathname (from the root, with path segment separators) or a single segment, 4-
character ACPI name. This function and AcpiGetHandle are complementary functions, as shown in
the examples below.

EXAMPLES

Example 1: The following operations:

Status = AcpiGetName (Handle, ACPI_FULL_PATHNAME, &OutName)
Status = AcpiGetHandle (NULL, OutName.BufferPtr, &OutHandle))

Yield this result:

Handle == OutHandle;

Example 2: If Name is a 4-character ACPI name, the following operations:

Status = AcpiGetHandle (Parent, Name, &OutHandle))
Status = AcpiGetName (OutHandle, ACPI_SINGLE_NAME, &OutName)

Yield this result:

Name == OutName.BufferPtr

8.3.9 AcpiGetDevices

Walk the ACPI namespace to find all objects of type Device.

early. Otherwise, NULL is returned.

ACPI_STATUS
AcpiGetDevices (

char *HID,
ACPI_WALK_CALLBACK UserFunction,
void *UserContext,
void **ReturnValue)

PARAMETERS

HID A device Hardware ID to search for. If NULL, all objects of
type Device are passed to the UserFunction.

UseFunction A pointer to a function that is called when the namespace
object is deleted:

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated

ACPI Component Architecture User Guide and Programmer Reference

137

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending
on the value of the return parameter.

AE_BAD_PARAMETER The UserFunction address is NULL.

Functional Description:

This function performs a modified depth-first walk of the namespace tree. The UserFunction is
invoked whenever an object of type Device with a matching HID is found. If the user function
returns a non-zero value, the search is terminated immediately and this value is returned to the
caller.

If the HID parameter is NULL, all objects of type Device within the namespace are passed to the
User Function.

8.3.10 AcpiAttachData

Attach user data to an ACPI namespace object.

At least one of the following is true:

ACPI_STATUS
AcpiAttachData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler,
void *Data)

PARAMETERS

Object A handle to an object to which the data will be attached.

Handler A pointer to a function that is called when the namespace
object is deleted.

Data A pointer to arbitrary user data. The pointer is stored in the
namespace with the namespace object and can be retrieved
at any time via AcpiGetData.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully attached.

AE_BAD_PARAMETER

ACPI Component Architecture User Guide and Programmer Reference

138

The Object handle is invalid.

The Handler pointer is NULL.

The Data pointer is NULL.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function allows arbitrary data to be associated with a namespace object.

8.3.11 AcpiDetachData

Remove a data attachment to a namespace object.

ACPI_STATUS
AcpiAttachData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler)

PARAMETERS

Object A handle to an object to which the data will be attached.

Handler A pointer to a function that is called when the namespace
object is deleted. This must be the same pointer used when
the original call to AcpiAttachData was used.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully detached.

AE_BAD_PARAMETER At least one of the following is true:

The Object handle is invalid.

The Handler pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

between user data and a namespace object. This function removes a previous association

ACPI Component Architecture User Guide and Programmer Reference

139

8.3.12 AcpiGetData

Retrieve data that was associated with a namespace object.

ACPI_STATUS
AcpiGetData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler
void **Data)

PARAMETERS

Object A handle to an object to from which the attached data will
be returned.

Handler A pointer to a function that is called when the namespace
object is deleted: This must be the same pointer used when
the original call to AcpiAttachData was used.

Data A pointer to where the arbitrary user data pointer will be
returned. The pointer is stored in the namespace with the
namespace object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

The Object handle is invalid.

The Handler pointer is NULL.

The Data pointer is NULL.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function retrieves data that was previously associated with a namespace object.

ACPI Component Architecture User Guide and Programmer Reference

140

8.3.13 AcpiInstallMethod

Install a single control method into the namespace.

ACPI_STATUS
AcpiInstallMethod (

UINT8 *TableBuffer)

PARAMETERS

TableBuffer A pointer to a buffer containing a DSDT or SSDT table
which in turn contains a single control method.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The method was successfully installed.

AE_BAD_HEADER The buffer does not contain a valid ACPI table, or the table
is not a DSDT or SSDT.

AE_BAD_PARAMETER At least one of the following is true:

The TableBuffer pointer is NULL.

The table does not contain a valid control method as the first
(and only) element of the table.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE_TYPE The name of the method already exists in the namespace,
but the name is not an object of type method and cannot be
overwritten.

Functional Description:

been loaded and the namespace has been created.

This function installs a single control method into the ACPI namespace. It is intended to override an
existing method which may not work correctly or it can insert a completely new method in order to
create a missing method such as _OFF, _ON, _STA, _INI, etc. It can also be used to insert a
method for debugging purposes. For these cases, it is far simpler to dynamically install a single
control method rather than override the entire DSDT with a modified DSDT.

AcpiInstallMethod can be used to create a new method anywhere in the namespace or to overwrite
the AML for any existing control method. The name (and location) for the new method is defined
within the AML contained in the ACPI table pointed to by the TableBuffer parameter. Either single
(4 character) ACPI names may be used, or full ACPI pathnames may be used, each segment
separated by periods. This function should be called only after all BIOS-defined ACPI tables have

ACPI Component Architecture User Guide and Programmer Reference

141

The method must be defined and compiled within a DSDT or SSDT. The resulting table is then
passed as the parameter to AcpiInstallMethod. If the method needs to reference any objects that
already exist within the namespace, the ASL External operator should be used.

Example

}

The example ASL code below creates a DSDT that contains one method with the name
“_SI_.ABCD”. The name dictates where the method will be created within the namespace, and can
be a full pathname that references any portion of the namespace.

DefinitionBlock ("", "DSDT", 2, "Intel", "MTHDTEST", 0x20090512)
{

Method (_SI_.ABCD, 1, Serialized)
{

Store ("Example installed method", Debug)
Store (Arg0, Debug)
Return ()

}
}

The example is compiled via the iASL compiler using the “-tc” option to create a C hex file:

> iasl –tc method.asl

This produces the following output, which is “C” code that can be included into a C source file:

/*
* Intel ACPI Component Architecture
* ASL Optimizing Compiler version 20090422 [April 22 2009]
* Copyright (C) 2000 - 2009 Intel Corporation
* Supports ACPI Specification Revision 3.0a
*
* Compilation of "method.asl" - Tue May 12 14:55:53 2009
*
* C source code output
*/
unsigned char AmlCode[] =
{

0x44,0x53,0x44,0x54,0x53,0x00,0x00,0x00, /* 00000000 "DSDTS..." */
0x02,0x12,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 "..Intel." */
0x4D,0x54,0x48,0x44,0x54,0x45,0x53,0x54, /* 00000010 "MTHDTEST" */
0x12,0x05,0x09,0x20,0x49,0x4E,0x54,0x4C, /* 00000018 "... INTL" */
0x22,0x04,0x09,0x20,0x14,0x2E,0x2E,0x5F, /* 00000020 "".. ..._" */
0x53,0x49,0x5F,0x41,0x42,0x43,0x44,0x09, /* 00000028 "SI_ABCD." */
0x70,0x0D,0x45,0x78,0x61,0x6D,0x70,0x6C, /* 00000030 "p.Exampl" */
0x65,0x20,0x69,0x6E,0x73,0x74,0x61,0x6C, /* 00000038 "e instal" */
0x6C,0x65,0x64,0x20,0x6D,0x65,0x74,0x68, /* 00000040 "led meth" */
0x6F,0x64,0x00,0x5B,0x31,0x70,0x68,0x5B, /* 00000048 "od.[1ph[" */
0x31,0xA4,0x00,

};

The buffer above is then used in a call to AcpiInstallMethod, as shown in the example code below:

Status = AcpiInstallMethod (AmlCode);
if (ACPI_FAILURE (Status))
{

AcpiOsPrintf ("%s, Could not install method\n",
AcpiFormatException (Status));

ACPI Component Architecture User Guide and Programmer Reference

142

8.3.14 AcpiWalkNamespace

Traverse a portion of the ACPI namespace to find objects of a given type.

is zero.

ACPI_STATUS
AcpiWalkNamespace (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartObject,
UINT32 MaxDepth,
ACPI_WALK_CALLBACK DescendingCallback,
ACPI_WALK_CALLBACK AscendingCallback,
void *UserContext,
void **ReturnValue

PARAMETERS

Type The type of object desired.

StartObject A handle to an object where the namespace walk is to begin.
The constant ACPI_ROOT_OBJECT indicates to start the
walk at the root of the namespace (walk the entire
namespace.)

MaxDepth The maximum number of levels to descend in the
namespace during the walk.

DescendingCallback A pointer to a user-written function that is invoked during
tree descent for each matching object that is found. (See the
interface specification for the user function below.)

AscendingCallback A pointer to a user-written function that is invoked during
tree ascent for each matching object that is found. (See the
interface specification for the user function below.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated
early. Otherwise, NULL is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending
on the value of the return parameter.

AE_BAD_PARAMETER At least one of the following is true:

The MaxDepth

ACPI Component Architecture User Guide and Programmer Reference

143

The UserFunction address is NULL.

The StartObject handle is invalid.

The Type is invalid.

Functional Description:

This function performs a modified depth-first walk of the namespace tree, starting (and ending) at
the object specified by the StartObject handle. The User Functions (DescendingCallback and/or
AscendingCallback) are invoked whenever an object that matches the type parameter is found
during the walk. If the user function returns a non-zero value, the search is terminated immediately
and this value is returned to the caller.

The point of this procedure is to provide a generic namespace walk routine that can be called from
multiple places to provide multiple services; the user function can be tailored to each task —
whether it is a print function, a compare function, etc.

8.3.14.1 Interface to User Callback Function

Interface to the user function that is invoked from AcpiWalkNamespace.

.

ACPI_STATUS (*ACPI_WALK_CALLBACK) (
ACPI_HANDLE Object,
UINT32 NestingLevel,
void *Context,
void **ReturnValue)

PARAMETERS

Object A handle to an object that matches the search criteria.

Nesting Level Depth of this object within the namespace (distance from
the root.)

Context The UserContext value that was passed as a parameter to the
AcpiWalkNamespace function.

ReturnValue A pointer to a location where the return value (if any) from
the user function is to be stored.

RETURN VALUE

Status AE_OK Continue the walk.

AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.

All others Abort the walk with this exception
code

ACPI Component Architecture User Guide and Programmer Reference

144

Functional Description:

This function is called from AcpiWalkNamespace whenever a object of the desired type is found.
The walk can be modified by the exception code returned from this function. AE_TERMINATE
will abort the walk immediately, and AcpiWalkNamespace will return AE_OK to the original caller.
AE_DEPTH will prevent the walk from progressing any deeper down the current branch of the
namespace tree. AE_OK is the normal return that allows the walk to continue normally. All other
exception codes will cause the walk to terminate and the exception is returned to the original caller
of AcpiWalkNamespace.

8.3.15 AcpiAcquireMutex

Acquire an AML Mutex object.

does not begin with a backslash character.

ACPI_STATUS
AcpiAcquireMutex (

ACPI_HANDLE Parent,
ACPI_STRING Pathname,
UINT16 Timeout)

PARAMETERS

Parent A handle to the parent of the object specified by Pathname.
In other words, the Pathname is relative to the Parent. If
Parent is NULL, the pathname must be a fully qualified
pathname.

Pathname A name or pathname to an ACPI object (a NULL terminated
ASCII string). The string can be either a single segment
ACPI name or a multiple segment ACPI pathname (with
path separators).

Timeout Maximum time to wait for the mutex, in milliseconds. A
value of 0xFFFF means “wait forever”.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The mutex was successfully acquired.

AE_BAD_CHARACTER An invalid character was found in the pathname.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly
four characters long.

AE_BAD_PARAMETER At least one of the following is true:

The Pathname pointer is NULL.

The Pathname

ACPI Component Architecture User Guide and Programmer Reference

145

The OutHandle pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

AE_NOT_FOUND One or more of the segments of the pathname refers to a
non-existent object.

Functional Description:

This function is intended to be used in conjunction with the _DLM (Device Lock Method)
predefined name to directly acquire a mutex object that is defined in the ACPI namespace. The
purpose of this is to provide a mutual exclusion mechanism between the AML interpreter and an
ACPI-related device driver, in order to support multiple-operation transactions.

From the ACPI Specification: “The _DLM object appears in a device scope when AML access to
the device must be synchronized with the OS environment. It is used in conjunction with a standard
Mutex object. With _DLM, the standard Mutex provides synchronization within the AML
environment as usual, but also synchronizes with the OS environment.”

The AML mutex node is pointed to by Parent:Pathname. Either the Parent or the Pathname can be
NULL, but not both.

If the operation fails an appropriate status will be returned.

8.3.16 AcpiReleaseMutex

Release an AML Mutex object.

.

ACPI_STATUS
AcpiGetHandle (

ACPI_HANDLE Parent,
ACPI_STRING Pathname)

PARAMETERS

Parent A handle to the parent of the object specified by Pathname.
In other words, the Pathname is relative to the Parent. If
Parent is NULL, the pathname must be a fully qualified
pathname.

Pathname A name or pathname to an ACPI object (a NULL terminated
ASCII string). The string can be either a single segment
ACPI name or a multiple segment ACPI pathname (with
path separators).

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The AML mutex was successfully released

ACPI Component Architecture User Guide and Programmer Reference

146

AE_BAD_CHARACTER An invalid character was found in the pathname.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly
four characters long.

AE_BAD_PARAMETER At least one of the following is true:

The Pathname pointer is NULL.

The Pathname does not begin with a backslash character.

The OutHandle pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

AE_NOT_FOUND One or more of the segments of the pathname refers to a
non-existent object.

Functional Description:

This function releases an AML mutex object that was previously acquired via a successful call to
AcpiAcquireMutex.

If the operation fails an appropriate status will be returned.

8.4 ACPI Hardware Management

8.4.1 AcpiEnable

Put the system into ACPI mode.

The ACPI tables have not been successfully loaded.

ACPI_STATUS
AcpiEnable (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully enabled.

AE_ERROR Either ACPI mode is not supported by this system (legacy
mode only), the SCI interrupt handler could not be installed,
or the system could not be transitioned into ACPI mode.

AE_NO_ACPI_TABLES

ACPI Component Architecture User Guide and Programmer Reference

147

Functional Description:

This function enables ACPI mode on the host computer system. It ensures that the system control
interrupt (SCI) is properly configured, disables SCI event sources, installs the SCI handler, and
transfers the system hardware into ACPI mode.

8.4.2 AcpiDisable

Take the system out of ACPI mode.

ACPI_STATUS
AcpiDisable (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully disabled.

AE_ERROR The system could not be transitioned out of ACPI mode.

Functional Description:

This function disables ACPI mode on the host computer system. It returns the system hardware to
original ACPI/legacy mode, disables all events, and removes the SCI interrupt handler.

8.4.3 AcpiReset

Perform a system reset.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiReset (

void)

PARAMETERS

None

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

148

EXCEPTIONS

AE_OK The reset register was successfully written.

AE_NOT_EXIST The FADT flags indicate that the reset register is not
supported, or the reset register address is zero.

Functional Description:

This function performs a system reset by writing the FADT-defined Reset Value to the FADT-
defined Reset Register (if the register is supported, as indicated by the FADT Flags).

Reset registers in both memory and I/O space are supported. A reset register in PCI configuration
space is not supported by this function and must be handled by the host.

8.4.4 AcpiReadBitRegister

Get the contents of an ACPI-defined Bit Register.

ata is to be returned.

ACPI_STATUS
AcpiGetRegister (

UINT32 RegisterId,
UINT32 *ReturnValue)

PARAMETERS

RegisterId The ID of the desired bit register, one of the following
manifest constants:

ACPI_BITREG_TIMER_STATUS

ACPI_BITREG_BUS_MASTER_STATUS

ACPI_BITREG_GLOBAL_LOCK_STATUS

ACPI_BITREG_POWER_BUTTON_STATUS

ACPI_BITREG_SLEEP_BUTTON_STATUS

ACPI_BITREG_RT_CLOCK_STATUS

ACPI_BITREG_WAKE_STATUS

ACPI_BITREG_PCIEXP_WAKE_STATUS

ACPI_BITREG_TIMER_ENABLE

ACPI_BITREG_GLOBAL_LOCK_ENABLE

ACPI_BITREG_POWER_BUTTON_ENABLE

ACPI_BITREG_SLEEP_BUTTON_ENABLE

ACPI_BITREG_RT_CLOCK_ENABLE

ACPI_BITREG_PCIEXP_WAKE_DISABLE

ACPI_BITREG_SCI_ENABLE

ACPI_BITREG_BUS_MASTER_RLD

ACPI_BITREG_GLOBAL_LOCK_RELEASE

ACPI_BITREG_SLEEP_TYPE

ACPI_BITREG_SLEEP_ENABLE

ACPI_BITREG_ARB_DISABLE

ReturnValue A pointer to a location where the d

ACPI Component Architecture User Guide and Programmer Reference

149

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_PARAMETER Invalid RegisterId.

Other The function failed at the operating system level.

Functional Description:

This function reads the bit register specified in the RegisterId. The value returned is normalized to
bit zero. Can be used with interrupts enabled or disabled. The hardware is not locked during the
read, as it is not necessary

8.4.5 AcpiWriteBitRegister

Set the contents of an ACPI-defined Bit Register.

ACPI_BITREG_SLEEP_ENABLE

ACPI_STATUS
AcpiSetRegister (

UINT32 RegisterId,
UINT32 Value)

PARAMETERS

RegisterId The ID of the desired register, one of the following manifest
constants:

ACPI_BITREG_TIMER_STATUS

ACPI_BITREG_BUS_MASTER_STATUS

ACPI_BITREG_GLOBAL_LOCK_STATUS

ACPI_BITREG_POWER_BUTTON_STATUS

ACPI_BITREG_SLEEP_BUTTON_STATUS

ACPI_BITREG_RT_CLOCK_STATUS

ACPI_BITREG_WAKE_STATUS

ACPI_BITREG_PCIEXP_WAKE_STATUS

ACPI_BITREG_TIMER_ENABLE

ACPI_BITREG_GLOBAL_LOCK_ENABLE

ACPI_BITREG_POWER_BUTTON_ENABLE

ACPI_BITREG_SLEEP_BUTTON_ENABLE

ACPI_BITREG_RT_CLOCK_ENABLE

ACPI_BITREG_PCIEXP_WAKE_DISABLE

ACPI_BITREG_SCI_ENABLE

ACPI_BITREG_BUS_MASTER_RLD

ACPI_BITREG_GLOBAL_LOCK_RELEASE

ACPI_BITREG_SLEEP_TYPE

ACPI Component Architecture User Guide and Programmer Reference

150

ACPI_BITREG_ARB_DISABLE

Value The data to be written.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_PARAMETER Invalid RegisterId.

Other The function failed at the operating system level.

Functional Description:

This function writes the bit register specified in the RegisterId. The value written must be
normalized to bit zero before calling. Can be used with interrupts enabled or disabled.

8.4.6 AcpiRead

Read the contents of an ACPI Register (low-level read).

The function failed at the operating system level.

ACPI_STATUS
AcpiRead (

UINT64 *ReturnValue,
ACPI_GENERIC_ADDRESS *Register)

PARAMETERS

ReturnValue A pointer to where the data is returned. The entire 64-bit
ReturnValue is set, regardless of the width of the register.

Register A pointer to a valid ACPI register in generic address format.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_ADDRESS The Address element of the register is zero.

AE_BAD_PARAMETER The Register or ReturnValue parameters are NULL.

AE_SUPPORT The register width was not 8/16/32/64.

Other

ACPI Component Architecture User Guide and Programmer Reference

151

Functional Description:

This function reads a register defined in the generic address format. It supports reads from memory
or I/O space only. Registers must have a width of either 8, 16, 32, or 64 bits.

8.4.7 AcpiWrite

Write an ACPI Register (low-level write).

ACPI_STATUS
AcpiWrite (

UINT64 Value,
ACPI_GENERIC_ADDRESS *Register)

PARAMETERS

Value The data to be written.

Register A pointer to a valid ACPI register in generic address format.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_ADDRESS The Address element of the register is zero.

AE_BAD_PARAMETER The Register parameter is NULL.

AE_SUPPORT The register width was not 8/16/32/64.

Other The function failed at the operating system level.

Functional Description:

bits.
This function writes a register defined in the generic address format. It supports writes to memory or
I/O space only. Registers must have a width of either 8, 16, 32, or 64

ACPI Component Architecture User Guide and Programmer Reference

152

8.4.8 AcpiAcquireGlobalLock

Acquire the ACPI Global Lock.

ACPI_STATUS
AcpiAcquireGlobalLock (

UINT16 Timeout,
UINT32 *OutHandle)

PARAMETERS

Timeout The maximum time (in System Ticks) the caller is willing to
wait for the global lock.

OutHandle A pointer to where a handle to the lock is to be returned.
This handle is required to release the global lock.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully acquired.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_TIME The global lock could not be acquired within the specified
time limit.

Functional Description:

This function obtains exclusive access to the single system-wide ACPI Global Lock. The purpose of
the global lock is to ensure exclusive access to resources that must be shared between the operating
system and the firmware.

8.4.9 AcpiReleaseGlobalLock

Release the ACPI Global Lock.

release the lock, as long as they share the handle.

ACPI_STATUS
AcpiReleaseGlobalLock (

UINT32 Handle)

PARAMETERS

Handle The handle that was obtained when the Global Lock was
acquired. This allows different threads to acquire and

ACPI Component Architecture User Guide and Programmer Reference

153

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully released

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

This function releases the global lock. The releasing thread may be different from the thread that
acquired the lock. However, the Handle must be the same handle that was returned by
AcpiAcquireGlobalLock.

8.4.10 AcpiGetTimerResolution

Get the resolution of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimerResolution (

UINT32 *OutValue)

PARAMETERS

OutValue A pointer to where the current value of the PM Timer
resolution is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The PM Timer resolution was successfully retrieved and
returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

bit timers).This function returns the PM Timer resolution – either 24 (for 24-bit) or 32 (for 32-

ACPI Component Architecture User Guide and Programmer Reference

154

8.4.11 AcpiGetTimerDuration

Calculates the time elapsed (in microseconds) between two values of the ACPI Power
Management Timer.

ACPI_STATUS
AcpiGetTimer (

UINT32 StartTicks,
UINT32 EndTicks,
UINT32 *OutValue)

PARAMETERS

StartTicks The value of the PM Timer at the start of a time
measurement (obtained by calling AcpiGetTimer).

EndTicks The value of the PM Timer at the end of a time
measurement (obtained by calling AcpiGetTimer).

OutValue A pointer to where the elapsed time (in microseconds) is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The time elapsed was successfully calculated and returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function calculates and returns the time elapsed (in microseconds) between StartTicks and
EndTicks, taking into consideration the PM Timer frequency, resolution, and counter rollovers.

8.4.12 AcpiGetTimer

Get the current value of the ACPI Power Management Timer.

be returned.

ACPI_STATUS
AcpiGetTimer (

UINT32 *OutValue)

PARAMETERS

OutValue A pointer to where the current value of the ACPI Timer is to

ACPI Component Architecture User Guide and Programmer Reference

155

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The current value of the timer was successfully retrieved
and returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function returns the current value of the PM Timer (in ticks).

8.5 ACPI Sleep/Wake Support

8.5.1 AcpiSetFirmwareWakingVector

Set the 32-bit firmware wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector (

UINT32 Address32)

PARAMETERS

Address32 The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vector was set successfully.

AE_NO_ACPI_TABLES The FACS is not loaded or could not be found.

Functional Description:

undisturbed.

This function sets the 32-bit firmware (ROM BIOS) wake vector. If a 64-bit vector exists in the
current FACS, it is set to zero.

If the function fails an appropriate status will be returned and the value of the waking vector will be

ACPI Component Architecture User Guide and Programmer Reference

156

8.5.2 AcpiSetFirmwareWakingVector64

Set the 64-bit firmware wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector64 (

UINT64 Address64)

PARAMETERS

Address64 The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vector was set successfully.

AE_NOT_EXIST The 64-bit vector does not exist in the current FACS. Either
the table is too small or the revision is less than 1.

AE_NO_ACPI_TABLES The FACS is not loaded or could not be found.

Functional Description:

This function sets the 64-bit firmware (ROM BIOS) wake vector. The 32-bit vector is set to zero.

If the function fails an appropriate status will be returned and the value of the waking vector will be
undisturbed.

8.5.3 AcpiGetSleepTypeData

Get the SLP_TYP data for the requested sleep state.

be returned.

ACPI_STATUS
AcpiGetSleepTypeData (

UINT8 SleepState,
UINT8 *SleepTypeA,
UINT8 *SleepTypeB)

PARAMETERS

SleepState The SleepState value (0 through 5) for which the
SLP_TYPa and SLP_TYPb values will be returned.

SleepTypeA A pointer to a location where the value of SLP_TYPa will

ACPI Component Architecture User Guide and Programmer Reference

157

SleepTypeB A pointer to a location where the value of SLP_TYPb will
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Both SLP_TYP values were returned successfully.

AE_BAD_PARAMETER Either SleepState has an invalid value, or one of the
SleepType pointers is invalid.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE_AML_NO_OPERAND Could not locate one or more of the SLP_TYP values.

AE_AML_OPERAND_TYPE One or more of the SLP_TYP objects was not a numeric
type, or the object returned by the _Sx method was not a
package.

AE_ AML_PACKAGE_LIMIT The package object returned by the _Sx method contained
no objects.

Functional Description:

This function returns the SLP_TYP object for the requested sleep state. This data is obtained by
evaluating the _Sx object that corresponds to the input SleepState value.

Note: AcpiGetSleepTypeData automatically handles two types of return value from the _Sx object:

1) The returned package object contains a single encoded DWORD that contains both
sleep type values. This is in accordance with the ACPI specification.

2) The returned package object contains two Integer objects, one for each sleep type
value. Although this behavior is not in accordance with the ACPI specification, it is
often found in the field.

8.5.4 AcpiEnterSleepStatePrep

Prepare to enter a system sleep state (S1-S5).

through 5.

ACPI_STATUS
AcpiEnterSleepStatePrep (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to prepare to enter. Must be in the range 1

ACPI Component Architecture User Guide and Programmer Reference

158

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The _PTS and _SST methods were successfully run

Other Exception from AcpiEvaluateObject.

Functional Description:

Prepare to enter a system sleep state. This function should be called before a call to
AcpiEnterSleepState.

This function executes the _PTS and _SST methods.

Algorithm:
Get the sleep type data by executing the appropriate global method (_S0, _S1, etc.)
Execute the _PTS method (Prepare To Sleep)
Execute the _SST method with the appropriate value for the input SleepState.

8.5.5 AcpiEnterSleepState

Enter a system sleep state (S1-S5).

ACPI_STATUS
AcpiEnterSleepState (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to enter. Must be in the range 1 through 5.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The sleep state (S1) was successfully entered.

AE_BAD_PARAMETER Invalid SleepState value.

Other Hardware access exception.

Functional Description:

This function must be called with interrupts disabled.

This function only returns for transitions to the S1 state or when an error occurs. Sleep states S2-S4
use the firmware waking vector during wakeup. Should only be called after a call to
AcpiEnterSleepStatePrep.

ACPI Component Architecture User Guide and Programmer Reference

159

Note: works transparently with either the legacy sleep status/control bits in the ACPI PM registers,
or the standalone sleep status and sleep control registers defined in the version 5 FADT.

This function does NOT execute the _GTS method (Going To Sleep.) This method is untested on
many platforms, is not used by major operating systems, and may result in errors and incorrect
platform behavior.

Algorithm:
Clear the WAK_STS (wake status) bit
Clear all fixed and general purpose events
Enable all wakup GPEs
Write the SLP_TYP value
Flush CPU caches
Write the SLP_TYP and SLP_EN values
Wait for transition back to working state.

8.5.6 AcpiEnterSleepStateS4Bios

Enter S4 BIOS sleep

ACPI_STATUS
AcpiEnterSleepStateS4bios (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The sleep state (S1) was successfully entered.

Other Hardware access exception.

Functional Description:

disabled.

This function performs an S4 BIOS request.

This function must be called with interrupts

ACPI Component Architecture User Guide and Programmer Reference

160

8.5.7 AcpiLeaveSleepStatePrep

Preparation for leaving a system sleep state (S1-S5).

ACPI_STATUS
AcpiLeaveSleepStatePrep (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to leave.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cleanup was successful.

Other Hardware access exception.

Functional Description:

Begin cleanup after leaving a sleep state. This function should be called before a call to
AcpiLeaveSleepState.

Note: works transparently with either the legacy sleep status/control bits in the ACPI PM registers,
or the standalone sleep status and sleep control registers defined in the version 5 FADT.

This function does NOT exeucute the _BFS method (Back From Sleep.) This method is untested on
many platforms, is not used by major operating systems, and may result in errors and incorrect
platform behavior.

Algorithm:
Set SLP_TYP and SLP_EN to state S0

8.5.8 AcpiLeaveSleepState

Leave (cleanup) a system sleep state (S1-S5).

The sleep state to leave.

ACPI_STATUS
AcpiLeaveSleepState (

UINT8 SleepState)

PARAMETERS

SleepState

ACPI Component Architecture User Guide and Programmer Reference

161

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cleanup was successful.

Other Hardware access exception.

Functional Description:

Perform cleanup after leaving a sleep state. This function should be only called after a call to
AcpiLeaveSleepStatePrep.

Note: works transparently with either the legacy sleep status/control bits in the ACPI PM registers,
or the standalone sleep status and sleep control registers defined in the version 5 FADT.

This function executes the _WAK and _SST methods.

Algorithm:
Execute _SST method with “waking” value
Clear all GPEs then enable all runtime GPEs
Execute the _WAK method
Clear the WAK_STS bit
Enable the power button
Execute _SST method with “working” value

8.6 ACPI Fixed Event Management

8.6.1 AcpiEnableEvent

Enable an ACPI Fixed Event.

Reserved, set to zero.

ACPI_STATUS
AcpiEnableEvent (

UINT32 Event,
UINT32 Flags)

PARAMETERS

Event The fixed event to be enabled. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Flags

ACPI Component Architecture User Guide and Programmer Reference

162

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully enabled.

AE_BAD_PARAMETER The Event is invalid.

Other Hardware access exception.

Functional Description:

This function enables a single ACPI fixed event.

8.6.2 AcpiDisableEvent

Disable an ACPI Fixed Event.

ACPI_STATUS
AcpiDisableEvent (

UINT32 Event,
UINT32 Flags)

PARAMETERS

Event The fixed event to be disabled. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Flags Reserved, set to zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully disabled.

AE_BAD_PARAMETER The Event is invalid.

Other Hardware access exception.

Functional Description:

This function disables a single ACPI fixed event.

ACPI Component Architecture User Guide and Programmer Reference

163

8.6.3 AcpiClearEvent

Clear a pending ACPI Fixed Event.

ACPI_STATUS
AcpiClearEvent (

UINT32 Event)

PARAMETERS

Event The fixed event to be cleared. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully cleared.

AE_BAD_PARAMETER The Event is invalid.

Other Hardware access exception.

Functional Description:

This function clears (zeros the status bit for) a single ACPI fixed event.

8.6.4 AcpiGetEventStatus

Obtain the status of an ACPI Fixed Event.

ACPI_EVENT_GLOBAL

ACPI_STATUS
AcpiGetEventStatus (

UINT32 Event,
ACPI_EVENT_STATUS *EventStatus)

PARAMETERS

Event The fixed event for which status will be obtained. This
parameter must be one of the following manifest constants:

ACPI_EVENT_PMTIMER

ACPI Component Architecture User Guide and Programmer Reference

164

ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

EventStatus Where the event status is returned. The following bits may
be set:

ACPI_EVENT_FLAG_SET

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

The Event is invalid.

The EventStatus pointer is NULL or invalid

Other Hardware access exception.

Functional Description:

This function obtains the current status of a single ACPI fixed event.

8.6.5 AcpiInstallFixedEventHandler

Install a handler for ACPI Fixed Events.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiInstallFixedEventHandler (

UINT32 Event,
ACPI_EVENT_HANDLER Handler,
void *Context)

PARAMETERS

Event The fixed event to be managed by this handler.

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

165

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

The Event is invalid.

The Handler pointer is NULL.

AE_ERROR The fixed event enable register could not be written.

AE_ALREADY_EXISTS A handler for this event is already installed.

Functional Description:

This function installs a handler for a predefined fixed event.

8.6.5.1 Interface to Fixed Event Handlers

Definition of the handler interface for Fixed Events.

typedef
UINT32 (*ACPI_EVENT_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallFixedEventHandler function.

RETURN VALUE

Reserved Handler should return zero.

Functional Description:

is function executes in the context of an interrupt handler.

This handler is installed via AcpiInstallFixedEventHandler. It is called whenever the particular fixed
event it was installed to handle occurs.

Th

ACPI Component Architecture User Guide and Programmer Reference

166

8.6.6 AcpiRemoveFixedEventHandler

Remove an ACPI Fixed Event handler.

ACPI_STATUS
AcpiRemoveFixedEventHandler (

UINT32 Event,
ACPI_EVENT_HANDLER Handler)

PARAMETERS

Event The fixed event whose handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

The Event is invalid.

The Handler pointer is NULL.

The Handler address is not the same as the one that is
installed.

AE_ERROR The fixed event enable register could not be written.

AE_NOT_EXIST There is no handler installed for this event.

Functional Description:

AcpiInstallFixedEventHandler.
This function removes a handler for a predefined fixed event that was previously installed via a call
to

ACPI Component Architecture User Guide and Programmer Reference

167

8.7 ACPI General Purpose Event (GPE) Management

8.7.1 AcpiUpdateAllGpes

Finish GPE initialization and enable all runtime GPEs.

ACPI_STATUS
AcpiUpdateAllGpes (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK All GPEs were initialized and the runtime GPEs were
successfully enabled.

Functional Description:

This function completes the GPE initialization and enables all GPEs that have associated _Lxx or
_Exx methods and are not referenced by any device _PRW methods. Any GPE that is referenced
by a _PRW method indicates that the GPE is generally intended for system or device wakeup. Such
GPEs must be enabled directly (via AcpiEnableGpe) when the parent device is setup for wakeup.

The host must call this function at least once after the all system _PRW methods have been
executed. It should also be called after any new GPEs have been added to the system, either after a
GPE Block Device has been added or if any new GPE methods (_Lxx/_Exx) have been added via a
dynamic ACPI table load. It is safe to simply call this function after any dynamic table load, from a
global table handler.

8.7.2 AcpiEnableGpe

Enable an ACPI General Purpose Event.

indicate that the

ACPI_STATUS
AcpiEnableGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
enabled. Specify a NULL handle to

ACPI Component Architecture User Guide and Programmer Reference

168

permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be enabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

AE_LIMIT The specified GPE has more than 255 references.

AE_NO_HANDLER The specified GPE has neither a handler nor an _Lxx/_Exx
method associated with it, therefore it is useless.

Functional Description:

.

This function enables a single General Purpose Event. Both the FADT–defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

For shared GPEs, this function may be called multiple times, once for each device shared on the
GPE. In this way, device drivers may be written such that the fact that the underlying GPE is shared
is transparent. Physically, a runtime GPE is enabled on the first call to this interface. Additional
calls simply increment an internal reference count.

ACPI Component Architecture User Guide and Programmer Reference

169

8.7.3 AcpiDisableGpe

Disable an ACPI General Purpose Event.

ACPI_STATUS
AcpiDisableGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
disabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be disabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

AE_LIMIT There are currently no references to this GPE. This probably
means that AcpiEnableGpe was never called for this GPE.

Functional Description:

st call to AcpiEnableGpe.)

This function disables a single General Purpose Event. Both the FADT–defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

For shared GPEs, this function may be called multiple times, once for each device shared on the
GPE. In this way, device drivers may be written such that the fact that the underlying GPE is shared
is transparent. Physically, a runtime GPE is disabled on the last call to this interface (corresponding
to the fir

ACPI Component Architecture User Guide and Programmer Reference

170

8.7.4 AcpiClearGpe

Clear a pending ACPI General Purpose Event.

ACPI_STATUS
AcpiClearGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
cleared. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be cleared within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully cleared.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

driver.

This function clears a single General Purpose Event. Both the FADT–defined GPE blocks and GPE
Block Devices are supported. The GPE blocks defined in the FADT are permanent and installed
during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a single
logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are installed via
AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device

ACPI Component Architecture User Guide and Programmer Reference

171

8.7.5 AcpiSetGpe

Forced enable/disable for an individual ACPI General Purpose Event.

method associated with it, therefore it is useless.

ACPI_STATUS
AcpiSetGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT8 Action)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE.
Specify a NULL handle to indicate that the permanent GPE
blocks defined in the FADT (GPE0 and GPE1) are to be
used.

GpeNumber The GPE number within the specified GPE Block. The
GPE0 block always begins at zero. GPE1 begins at
GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Action ACPI_GPE_ENABLE – Enable this GPE. For runtime
GPEs, the hardware is updated immediately. For wake
GPEs, the hardware mask is updated for use when
sleeping/suspending.

ACPI_GPE_DISABLE – Disable this GPE. For runtime
GPEs, the hardware is updated immediately. For wake
GPEs, the hardware mask is updated for use when
sleeping/suspending.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The type of the GPE was successfully set.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

The Action is invalid.

AE_NO_HANDLER The specified GPE has neither a handler nor an _Lxx/_Exx

ACPI Component Architecture User Guide and Programmer Reference

172

Functional Description:

This function forces the enabling or disabling of a single General Purpose Event. It bypasses the
reference count mechanism implemented by AcpiEnableGpe and AcpiDisableGpe and must be used
carefully and sparingly. Its primary purpose is for use in device drivers like the Embedded
Controller driver where it may be necessary to disable a GPE for a short period of time.

Both the FADT–defined GPE blocks and GPE Block Devices are supported. The GPE blocks
defined in the FADT are permanent and installed during system initialization. These permanent
blocks, GPE0 and GPE1, are treated as a single logical block differentiated by non-overlapping GPE
numbers. GPE Block Devices are installed via AcpiInstallGpeBlock during bus/device enumeration.

8.7.6 AcpiFinishGpe

Clear and conditionally re-enable a GPE from a GPE handler.

.

ACPI_STATUS
AcpiFinishGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
disabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be disabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice

ACPI Component Architecture User Guide and Programmer Reference

173

Functional Description:

This function simplifies the GPE completion processing for GPE handlers. If the GPE is level-
triggered, the GPE status bit is cleared. If the GPE is currently logically enabled for runtime, it is
then re-enabled in the hardware

Call this function from a synchronous or asynchronous GPE handler after GPE processing is
complete.

8.7.7 AcpiSetupGpeForWake

Identify a GPE that has the ability to wake the system.

Block Device.

ACPI_STATUS
AcpiSetupGpeForWake (

ACPI_HANDLE WakeDevice,
ACPI_HANDLE GpeDevice,
UINT32 GpeNumber)

PARAMETERS

WakeDevice A handle to the parent device associated with the _PRW
method that references this GPE. ACPI_ROOT_OBJECT
may be used to take notifies on the namespace root device.

GpeDevice A handle for the parent GPE Block Device of the GPE to be
disabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be disabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully disabled.

AE_ALREADY_EXISTS The implicit notify feature is enabled for this GPE, but this
WakeDevice is already on the list of devices to implicitly
notify.

AE_BAD_PARAMETER At least one of the following is true:

The WakeDevice is invalid or is not of type
ACPI_TYPE_DEVICE.

The GpeDevice is invalid or does not refer to a valid GPE

ACPI Component Architecture User Guide and Programmer Reference

174

The GpeNumber is out of range for the referenced
GpeDevice.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function marks an individual GPE as having the ability to wake the system. It is intended to be
called as the host OS executes the system _PRW methods (Power Resources for Wake) in the
system ACPI tables and discovers GPEs that can wake the system.

Each _PRW method appears under a Device Object (The WakeDevice), and contains the
information for the wake GPE associated with the WakeDevice. The host should call this function
every time such a GPE is identified.

Calling this function also enables the Implicit Notify feature for the input WakeDevice. If there
neither a GPE method (_Lxx/_Exx) or a handler for the GPE, when the GPE occurs, a
Notify(DEVICE_WAKE) is automatically issued on the WakeDevice.

The Implicit Notify feature supports multiple WakeDevices for the same GPE. When the GPE
occurs, a notify is issued on each of the wake devices for the GPE.

8.7.8 AcpiSetGpeWakeMask

Set or clear the wakeup enable mask bit for an individual GPE.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiSetGpeWakeMask (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT8 Action)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
disabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be disabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Action Action to take. This parameter must be one of the following
manifest constants:

ACPI_GPE_ENABLE
ACPI_GPE_DISABLE

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

175

EXCEPTIONS

AE_OK The GPE was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

The Action is not one of the supported values.

AE_TYPE The GPE is not marked as a wakeup GPE.

Functional Description:

This function sets or clears the wakeup mask bit for an individual GPE. The GPE must already be
marked as a wake GPE (via AcpiSetupGpeForWake).

Individual drivers should call this function as the system prepares to sleep when a particular device
is to be allowed to wake the system.

8.7.9 AcpiGetGpeStatus

Obtain the status of an ACPI General Purpose Event.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiGetGpeStatus (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
ACPI_EVENT_STATUS *EventStatus)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which status is to be obtained. Specify a NULL handle to
indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber The GPE number to be enabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

EventStatus Where the event status is returned. The following bits may
be set:

ACPI_EVENT_FLAG_SET

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

176

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function obtains the status of a single General Purpose Event. Both the FADT–defined GPE
blocks and GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent
and installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver.

8.7.10 AcpiGetGpeDevice

Get the GPE Block Device associated with the GPE index.

is invalid.

ACPI_STATUS
AcpiGetGpeDevice (

UINT32 Index,
ACPI_HANDLE *GpeDevice)

PARAMETERS

Index The system index of the GPE, defined to be from zero to the
value of AcpiCurrentGpeCount.

GpeDevice A pointer to where the handle of the GPE block device is
returned. NULL indicates that the GPE is within one of the
FADT-defined GPE blocks.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE block device was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice pointer

ACPI Component Architecture User Guide and Programmer Reference

177

AE_NOT_EXIST The Index refers to a non-existent GPE (it is larger than
AcpiCurrentGpeCount).

Functional Description:

This function obtains the GPE block device associated with the Index parameter. A returned NULL
GPE device indicates that the Index refers to a GPE that is contained in one of the FADT-defined
GPE blocks.

The Index is a system index used to track all GPEs. First are the FADT GPE0 block GPEs, then the
FADT GPE1 GPEs (if present), then any GPE block device GPEs. Valid values for the Index are
from zero to the value of the public global variable AcpiCurrentGpeCount. Index values are
consecutive with no ‘holes’.

8.7.11 AcpiDisableAllGpes

Disable all system GPEs

ACPI_STATUS
AcpiDisableAllGpes (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK All GPEs were successfully disabled.

Other Hardware access exception.

Functional Description:

defined GPE blocks as well as any installed GPE block devices.
This function disables all GPEs currently defined in the system. This includes all runtime and wake
GPEs, in both the FADT-

ACPI Component Architecture User Guide and Programmer Reference

178

8.7.12 AcpiEnableAllRuntimeGpes

Enable all runtime GPEs

ACPI_STATUS
AcpiEnableAllRuntimeGpes (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK All runtime GPEs were successfully enabled.

Other Hardware access exception.

Functional Description:

This function enables all runtime GPEs currently defined in the system. This includes all runtime
GPEs in both the FADT-defined GPE blocks as well as any installed GPE block devices. Runtime
GPEs are defined to be any GPEs that are not Wake GPEs, as determined from the _PRW methods
within the system AML.

8.7.13 AcpiInstallGpeBlock

Install a GPE Block Device.

block.

ACPI_STATUS
AcpiInstallGpeBlock (

ACPI_HANDLE GpeDevice,
ACPI_GENERIC_ADDRESS *GpeBlockAddress,
UINT32 RegisterCount,
UINT32 Interrupt)

PARAMETERS

GpeDevice A handle for the GPE Block Device to be installed.

GpeBlockAddress The address and space ID for the registers that define the
new GPE block.

RegisterCount The number of status/enable GPE register pairs in this

ACPI Component Architecture User Guide and Programmer Reference

179

Interrupt The hardware interrupt level that this GPE block is to be
associated with. Can be SCI_INT or any other system
interrupt level.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function installs a GPE Block Device. It is intended for use by a device driver that supports the
enumeration of GPE Block Devices. The caller must identify each Block Device in the ACPI
namespace (each has a _HID of ACPI0006) and obtain the resource requirements (_CRS, etc.) and
make this call for each device found.

Gpe Block Device handling is supported in the ACPICA Subsystem because the SCI_INT is owned
by the subystem, and the FADT-defined GPE blocks are also owned by the subsystem. Via this
interface, the ACPICA subsystem also supports GPE Block Devices and the associated interrupts,
detection, dispatch, and GPE control method execution — thus centralizing all (system-wide) GPE
support to the subsystem.

8.7.14 AcpiRemoveGpeBlock

Remove a GPE Block Device.

The GPE was successfully enabled.

ACPI_STATUS
AcpiRemoveGpeBlock (

ACPI_HANDLE GpeDevice)

PARAMETERS

GpeDevice A handle for the GPE Block Device to be removed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK

ACPI Component Architecture User Guide and Programmer Reference

180

AE_BAD_PARAMETER At least one of the following is true:

The GpeDevice is invalid or does not refer to a valid GPE
Block Device.

The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function removed a GPE Block Device that was previously installed via AcpiInstallGpeBlock.

8.7.15 AcpiInstallGpeHandler

Install a handler for ACPI General Purpose Events.

At least one of the following is true:

ACPI_STATUS
AcpiInstallGpeHandler (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Type,
ACPI_GPE_HANDLER Handler,
void *Context)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which the handler is to be installed. Specify a NULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Type Whether this GPE is edge or level triggered:

ACPI_GPE_LEVEL_TRIGGERED
ACPI_GPE_EDGE_TRIGGERED

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER

ACPI Component Architecture User Guide and Programmer Reference

181

The GpeNumber is invalid.

The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this general-purpose event is already installed.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function installs a handler for a general-purpose event.

8.7.15.1 Interface to General Purpose Event Handlers

Definition of the handler interface for General Purpose Events.

typedef
UINT32 (*ACPI_GPE_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallGpeHandler function.

RETURN VALUE

Flags Return flags, defined as follows:

ACPI_REENABLE_GPE: If this flag is set, ACPICA will
automatically and immediately clear and re-enable the GPE.
Use this option only if the GPE has been completely
processed in the handler itself and there will be no
asynchronous processing. Otherwise, the handler should
return zero.

Functional Description:

instead.

This handler is installed via AcpiInstallGpeHandler. It is called whenever the referenced general-
purpose event occurs.

This function executes in the context of an interrupt handler.

Typically, a GPE handler will simply setup and initiate some later asynchronous processing for the
GPE. When the asynchronous processing is complete, the asynchronous thread should call
AcpiFinishGpe to clear and re-enable the GPE.

If the GPE handler does not initiate an asynchronous thread to complete the GPE processing and
completes the GPE processing by itself, it should return the ACPI_REENABLE_GPE flag. This
will cause ACPICA to clear and re-enable the GPE immediately upon the handler return. The GPE
handler should never call AcpiFinishGpe directly, since this interface cannot be called from interrupt
level. Use ACPI_REENABLE_GPE

ACPI Component Architecture User Guide and Programmer Reference

182

8.7.16 AcpiRemoveGpeHandler

Remove an ACPI General-Purpose Event handler.

ACPI_STATUS
AcpiRemoveGpeHandler (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
ACPI_EVENT_HANDLER Handler)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which the handler is to be removed. Specify a NULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

The GpeNumber is invalid.

The Handler pointer is NULL.

The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for this general-purpose event.

Functional Description:

AcpiInstallGpeHandler.
This function removes a handler for a general-purpose event that was previously installed via a call
to

ACPI Component Architecture User Guide and Programmer Reference

183

8.8 Miscellaneous Handler Support

8.8.1 AcpiInstallSciHandler

Install a handler for ACPI System Control Interrupts (SCIs).

ACPI_STATUS
AcpiInstallSciHandler (

ACPI_SCI_HANDLER Handler,
void *Context)

PARAMETERS

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER The Handler pointer is NULL.

AE_ALREADY_EXISTS This handler is already installed.

Functional Description:

This function installs a handler for the System Control Interrupt. Certain ACPI functionality
requires the host to handle raw SCIs. For example, the “SCI Doorbell” that is defined for memory
power state support requires the host device driver to handle SCIs to examine if the doorbell has
been activated.

8.8.1.1 Interface to SCI Handlers

Definition of the handler interface for SCIs.

function.

typedef
UINT32 (*ACPI_SCI_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallSciHandler

ACPI Component Architecture User Guide and Programmer Reference

184

RETURN VALUE

HandlerActionTaken The handler should return one of the following manifest
constants:

ACPI_INTERRUPT_HANDLED

ACPI_INTERRUPT_NOT_HANDLED

Functional Description:

This handler is installed via AcpiInstallSciHandler. It is called for each and every SCI received on
the platform.

This function executes in the context of an interrupt handler.

8.8.2 AcpiRemoveSciHandler

Remove an ACPI SCI handler.

ACPI_STATUS
AcpiRemoveSciHandler (

ACPI_SCI_HANDLER Handler)

PARAMETERS

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER The Handler pointer is NULL.

AE_NOT_EXIST This handler is not installed for the SCI.

Functional Description:

Handler.
This function removes a System Control Interrupt (SCI) handler that was previously installed via a
call to AcpiInstallSci

ACPI Component Architecture User Guide and Programmer Reference

185

8.8.3 AcpiInstallGlobalEventHandler

Install a global handler for all ACPI General Purpose and Fixed Events.

ACPI_STATUS
AcpiInstallGlobalEventHandler (

ACPI_GBL_EVENT_HANDLER Handler,
void *Context)

PARAMETERS

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER The Handler pointer is NULL.

AE_ALREADY_EXISTS A global event handler is already installed.

Functional Description:

This function installs a global handler for all general purpose and fixed ACPI events. The handler is
invoked at interrupt level. Such a handler is intended to be used to update global data structures
suchs as GPE and fixed event counters.

8.8.3.1 Interface to the Global Event Handler

Definition of the handler interface for the Global Event Handler.

ACPI_EVENT_TYPE_GPE

typedef
void (*ACPI_GBL_EVENT_HANDLER) (

UINT32 EventType,
ACPI_HANDLE Device,
UINT32 EventNumber,
void *Context)

PARAMETERS

EventType Type of this ACPI event. Currently, general purpose (GPE)
and fixed events are supported. One of the following
manifest constants:

ACPI Component Architecture User Guide and Programmer Reference

186

ACPI_EVENT_TYPE_FIXED

Device For GPE Block Devices, this is the parent device for the
GPE. This parameter is NULL for FADT-defined GPEs and
Fixed Events (ACPI_EVENT_TYPE_FIXED).

EventNumber For GPEs, this is the GPE number relative to the GPE
Device. For Fixed Events, this is the Fixed Event type, one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Context The Context value that was passed as a parameter to the
AcpiInstallGlobalEventHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallGlobalEventHandler. It is called whenever a general purpose
or fixed ACPI event occurs.

This function executes in the context of an interrupt handler.

8.8.4 AcpiInstallNotifyHandler

Install a handler for notification events on an ACPI object.

ACPI_TYPE_THERMAL

ACPI_STATUS
AcpiInstallNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
ACPI_NOTIFY_HANDLER Handler,
void *Context)

PARAMETERS

Object A Handle to the object for which notify events will be
handled. Notifies on this object will be dispatched to the
handler. If ACPI_ROOT_OBJECT is specified, the
handler will become a global handler that receives all
(system wide) notifications of the Type specified.
Otherwise, this object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR

ACPI Component Architecture User Guide and Programmer Reference

187

Type Specifies the type of notifications that are to be received by
this handler:

ACPI_SYSTEM_NOTIFY – Notification values
from 0x00 to 0x7F.

ACPI_DEVICE_NOTIFY – Notification values
from 0x80 to 0xFF.

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

The Object handle is invalid.

The Type is not a valid value.

The Handler pointer is NULL.

AE_ALREADY_EXISTS This notification handler for this object is already installed.

AE_TYPE The type of the Object is not one of the supported object
types.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

specific notify handler (if there is one)

This function installs a handler for notify events on an ACPI object. According to the ACPI
specification, the only objects that can receive notifications are Device, Thermal Zone, and
Processor objects.

With the exception of the global notify handlers, multiple notify handlers may be installed for the
same ACPI object and for the same notification type (system or device). During notification
dispatch, each installed handler is invoked in turn. This can simplify the host OS notification
implementation. This function may be called multiple times on the same object, as long as the
handler itself is different. A different Context parameter may be specified for each handler for the
device.

A single global handler for each notify type may be installed by using the ACPI_ROOT_OBJECT
constant as the object handle. When a notification is received, it is first dispatched to the global
handler (if there is one), and then to the device-

ACPI Component Architecture User Guide and Programmer Reference

188

8.8.4.1 Interface to Notification Event Handlers

Definition of the handler interface for Notification Events.

typedef
void (*ACPI_NOTIFY_HANDLER) (

ACPI_HANDLE Device
UINT32 Value,
void *Context)

PARAMETERS

Device A handle for the device on which the notify occurred.

Value The notify value that was passed as a parameter to the AML
Notify() operation.

Context The Context value that was passed as a parameter to the
AcpiInstallNotifyHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallNotifyHandler. It is called whenever a notify occurs on the
target object. If the handler is installed as a global notification handler, it is called for every notify of
the type specified when it was installed. If multiple handlers are installed for an object, each handler
is invoked in turn during the notification dispatch.

This function does not execute in the context of an interrupt handler.

8.8.5 AcpiRemoveNotifyHandler

Remove a handler for ACPI notification events.

ACPI_TYPE_PROCESSOR

ACPI_STATUS
AcpiRemoveNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
ACPI_NOTIFY_HANDLER Handler)

PARAMETERS

Object A handle to the object for which a notify handler will be
removed. If ACPI_ROOT_OBJECT is specified, the
global handler of the Type specified is removed. Otherwise,
this object must be one of the following types:

ACPI_TYPE_DEVICE

ACPI Component Architecture User Guide and Programmer Reference

189

ACPI_TYPE_THERMAL

Type Specifies the type of notify handler to be removed:

ACPI_SYSTEM_NOTIFY – Notification values
from 0x00 to 0x7F.

ACPI_DEVICE_NOTIFY – Notification values
from 0x80 to 0xFF.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

The Object handle is invalid.

The Type is not a valid value.

The Handler pointer is NULL.

AE_NOT_EXIST There is no handler installed for notifications on this object.

The Handler address is not the same as the one that is
installed.

AE_TYPE The type of the Object is not one of the supported object
types.

Functional Description:

AcpiInstallNotifyHandler.
This function removes a handler for notify events that was previously installed via a call to

ACPI Component Architecture User Guide and Programmer Reference

190

8.8.6 AcpiInstallAddressSpaceHandler

Install handlers for ACPI Operation Region events.

The Handler pointer is NULL.

ACPI_STATUS
AcpiInstallAddressSpaceHandler (

ACPI_HANDLE Object,
ACPI_ADR_SPACE_TYPE SpaceId,
ACPI_ADR_SPACE_HANDLER Handler,
ACPI_ADR_SPACE_SETUP Setup,
void *Context)

PARAMETERS

Object A handle for the object for which a address space handler
will be installed. This object may be specified as the
ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

SpaceId The ID of the Address Space or Operation Region to be
managed by this handler.

Handler Address of the handler to be installed if the special value
ACPI_DEFAULT_HANDLER is used the handler
supplied with by the ACPICA for that address space will be
installed.

Setup Address of a start/stop initialization/termination function
that is called when the region first becomes available and
also if and when it becomes unavailable.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

The object handle does not refer to an object of type Device,
Processor, ThermalZone, or the root object.

The SpaceId is invalid.

ACPI Component Architecture User Guide and Programmer Reference

191

AE_ALREADY_EXISTS A handler for this address space or operation region is
already installed.

AE_NOT_EXIST ACPI_DEFAULT_HANDLER was specified for an
address space that has no default handler.

AE_NO_MEMORY There was insufficient memory to install the handler.

Functional Description:

This function installs a handler for an Address Space.

NOTE: This function should only be called after AcpiEnableSubsystem has been called. This is
because any _REG methods associated with the Space ID are executed here, and these methods can
only be safely executed after the default handlers have been installed and the hardware has been
initialized (via AcpiEnableSubsystem.)

8.8.6.1 Interface to Address Space Setup Handlers

Definition of the setup (Address Space start/stop) handler interface for Operation Region
Events.

None

typedef
void (*ACPI_ADR _SPACE_SETUP) (

ACPI_HANDLE Region,
UINT32 Function
void *HandlerContext)
void **ReturnContext)

PARAMETERS

Region A handle to the region that is initializing or terminating.

Function The type of function to be performed; must be one of the
following manifest constants:

ACPI_REGION_ACTIVATE (init)
ACPI_REGION_DEACTIVATE (terminate)

HandlerContext An address space specific Context value. Typically this is
the context that was passed as a parameter to the
AcpiInstallAddressSpaceHandler function.

ReturnContext An address space specific Context value. This context
subsumes the HandlerContext, and this is the context value
that is passed to the actual address space handler routine.

RETURN VALUE

ACPI Component Architecture User Guide and Programmer Reference

192

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler. It is invoked to both initialize and
terminate the operation region handling code. The setup handler is first invoked with a function
value of ACPI_REGION_ACTIVATE upon the first access to the region from AML code. It is
called again with a function value of ACPI_REGION_DEACTIVATE just before the address
space handler is removed.

This function does not execute in the context of an interrupt handler.

8.8.6.2 Interface to Address Space Handlers

Definition of the handler interface for Operation Region Events.

None

typedef
void (*ACPI_ADR _SPACE_HANDLER) (

UINT32 Function,
ACPI_PHYSICAL_ADDRESS Address,
UINT32 BitWidth,
UINT64 *Value,
void *HandlerContext,
void *RegionContext)

PARAMETERS

Function The type of function to be performed; must be one of the
following manifest constants:

ACPI_READ
ACPI_WRITE

Address A space-specific address where the operation is to be
performed.

BitWidth The width of the operation, typically 8, 16, 32, or 64.

Value A pointer to the value to be written (ACPI_WRITE), or
where the value that was read should be returned
(ACPI_READ).

HandlerContext An address space specific Context value. Typically this is
the context that was passed as a parameter to the
AcpiInstallAddressSpaceHandler function.

RegionContext An operation region specific context. Created during the
region setup.

RETURN VALUE

ACPI Component Architecture User Guide and Programmer Reference

193

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler. It is invoked whenever AML code
attempts to access the target Operation Region.

This function does not execute in the context of an interrupt handler.

8.8.6.3 Context for the Default PCI Address Space Handler

Definition of the context required for installation of the default PCI address space handler.

UINT32 PCIContext

Where PCIContext contains the PCI bus number and the PCI segment number. The bus number is in
the low 16 bits and the segment number in the high 16 bits.

Functional Description:

This data is passed via the Context parameter when a handler for the PCI_Config address space is
invoked. If a Context parameter is passed to the InstallAddressSpaceHandler interface, ACPICA
will reserve and use the beginning of the context data field for the PCIContext. The caller should
ensure that the area pointed to by Context is large enough for this data.

Locations after the PCIContext are available for use by the handler.

8.8.6.4 Context for the GPIO/SerialBus Address Space Handlers

Definition of the context required for installation of GPIO/SerialBus address space handlers.

)

typedef struct acpi_connection_info
{

UINT8 *Connection;
UINT16 Length;
UINT8 AccessLength;

} ACPI_CONNECTION;

Where:

Connection points to a buffer that contains the raw AML ResourceTemplate associated with the
Field object being accessed. This association is created via the use of the ASL/AML Connection
operator.

Length is the length of the Connection buffer in bytes.

AccessLength is the value associated with an AccessAs operator that utilizes the ACPI 5.0
AccessAttribute extensions that contain a length field:

AccessAs: AttribBytes (AccessLength)

AccessAs: AttribRawBytes (AccessLength)

AccessAs: AttribRawProcessBytes (AccessLength

ACPI Component Architecture User Guide and Programmer Reference

194

Functional Description:

This data is passed via the Context parameter when handlers for the GeneralPurposeIo and
GenericSerialBus address spaces are invoked. If a Context parameter is passed to the
InstallAddressSpaceHandler interface, ACPICA will reserve and use the beginning of the context
data field for the GSBUS context. The caller should ensure that the area pointed to by Context is
large enough for this data.

Locations after the ACPI_CONNECTION_INFO structure are available for use by the handler.

The Connection buffer can be converted to an ACPI_RESOURCE structure via the
AcpiBufferToResource interface. For example:

ACPI_RESOURCE *Resource;

Status = AcpiBufferToResource (Context->Connection,
Context->Length, &Resource);

8.8.7 AcpiRemoveAddressSpaceHandler

Remove an ACPI Operation Region handler.

The handler was successfully removed.

ACPI_STATUS
AcpiRemoveAddressSpaceHandler (

ACPI_HANDLE Object,
ACPI_ADR_SPACE_TYPE SpaceId,
ACPI_ADR _SPACE_HANDLER Handler)

PARAMETERS

Object A handle for the object for which a address space handler
will be installed. This object may be specified as the
ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

SpaceId The ID of the Address Space or Operation Region whose
handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK

ACPI Component Architecture User Guide and Programmer Reference

195

AE_BAD_PARAMETER At least one of the following is true:

The object handle does not refer to an object of type Device,
Processor, ThermalZone, or the root object.

The SpaceId is invalid.

The Handler pointer is NULL.

The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for this address space or
operation region.

Functional Description:

This function removes a handler for an Address Space or Operation Region that was previously
installed via a call to AcpiInstallAddressSpaceHandler.

8.8.8 AcpiInstallExceptionHandler

Install a handler for ACPI interpreter run-time exceptions.

ACPI_STATUS
AcpiInstallExceptionHandler (

ACPI_EVENT_HANDLER Handler)

PARAMETERS

Handler Address of the handler to be installed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this general-purpose event is already installed.

Functional Description:

hods. Useful for error logging and debugging.
This function installs a global handler for exceptions generated during the execution of control
met

ACPI Component Architecture User Guide and Programmer Reference

196

8.8.8.1 Interface to Exception Handlers

Definition of the handler interface for General Purpose Events.

typedef
ACPI_STATUS (*ACPI_EXCEPTION_HANDLER) (

ACPI_STATUS AmlStatus,
ACPI_NAME Name,
UINT16 Opcode,
UINT32 AmlOffset,
void *Context)

PARAMETERS

AmlStatus The exception code that was raised.

Name Name of the executing control method.

Opcode AML opcode whose execution caused the exception.

AmlOffset Offset of the AML opcode within the control method.

Context Reserved for future use. Currently NULL.

RETURN VALUE

None

Functional Description:

the original exception code.

This handler is installed via AcpiInstallExceptionHandler. It is called whenever an exception is
raised within the AML interpreter during control method execution.

The ACPI_STATUS that is returned by the handler is then used by the AML interpreter instead of

ACPI Component Architecture User Guide and Programmer Reference

197

8.9 ACPI Resource Management

8.9.1 AcpiGetCurrentResources

Get the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the current resources
are to be returned.

OutBuffer A pointer to a location where the current resource list is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

The Device handle is invalid.

The OutBuffer pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource list. Upon return, the Length field
contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

is undefined.

This function obtains the current resources for a specific device. The caller must first acquire a
handle for the desired device. The resource data is placed in the buffer pointed contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer

ACPI Component Architecture User Guide and Programmer Reference

198

8.9.2 AcpiGetPossibleResources

Get the possible resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetPossibleResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the possible resources
are to be returned.

OutBuffer A pointer to a location where the possible resource list is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

The Device handle is invalid.

The OutBuffer pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource table. Upon return, the Length
field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

is undefined.

This function obtains the list of the possible resources for a specific device. The caller must first
acquire a handle for the desired device. The resource data is placed in the buffer contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer

ACPI Component Architecture User Guide and Programmer Reference

199

8.9.3 AcpiSetCurrentResources

Set the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiSetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *Buffer)

PARAMETERS

Device A handle to a device object for which the current resource
list is to be set.

Buffer A pointer to an ACPI_BUFFER containing the resources to
be set for the device.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resources were set successfully.

AE_BAD_PARAMETER At least one of the following is true:

The Device handle is invalid.

The InBuffer pointer is NULL.

The Pointer field of InBuffer is NULL.

The Length field of InBuffer is zero.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

variable.

This function sets the current resources for a specific device. The caller must first acquire a handle
for the desired device. The resource data is passed to the routine the buffer pointed to by the
InBuffer

ACPI Component Architecture User Guide and Programmer Reference

200

8.9.4 AcpiGetEventResources

Get the event resource information for an ACPI-related device (via _AEI method)

ACPI_STATUS
AcpiGetEventResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the event resource
information is to be returned.

OutBuffer A pointer to a location where the event resource information
is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

The Device handle is invalid.

The OutBuffer pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the event information. Upon return, the
Length field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

is undefined.

This function obtains the event resource information for a specific device. It does so by attempting
to execute the _AEI method (ACPI Event Information) contained in the scope of the device whose
handle is passed as a parameter.

From the ACPI Specification: “The _AEI object designates those GPIO interrupts that shall be
handled by OSPM as ACPI events. This object appears within the scope of the GPIO controller
device whose pins are to be used as GPIO-signaled events.”

If the function fails an appropriate status will be returned and the value of OutBuffer

ACPI Component Architecture User Guide and Programmer Reference

201

8.9.5 AcpiGetIRQRoutingTable

Get the ACPI Interrupt Request (IRQ) Routing Table for an ACPI-related device.

ACPI_STATUS
AcpiGetIRQRoutingTable (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the IRQ routing table
is to be returned.

OutBuffer A pointer to a location where the IRQ routing table is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

The Device handle is invalid.

The OutBuffer pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the IRQ table. Upon return, the Length
field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

ned.

This function obtains the IRQ routing table for a specific bus. It does so by attempting to execute the
_PRT method contained in the scope of the device whose handle is passed as a parameter.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefi

ACPI Component Architecture User Guide and Programmer Reference

202

8.9.6 AcpiGetVendorResource

Find a resource of type Vendor-Defined

ACPI_STATUS
AcpiGetVendorResource (

ACPI_HANDLE Device,
char *Name,
ACPI_VENDOR_UUID *Uuid,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to the parent Device that owns the vendor
resource.

Name Name of the parent resource list (_CRS or _PRS).

Uuid A pointer to the UUID to be matched. The
ACPI_VENDOR_UUID structure includes both the subtype
and the 16-byte UUID.

OutBuffer Where the vendor resource is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vendor resource was successfully acquired.

AE_BAD_PARAMETER At least one of the following is true:

The DeviceHandle is invalid.

The Name does not refer to a _CRS or _PRS control
method.

The OutBuffer of UUID pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_NOT_EXIST The Name could not be found.

Functional Description:

.
This function retrieves a resource of type vendor-defined that matches the supplied UUID and
UUID subtype

ACPI Component Architecture User Guide and Programmer Reference

203

8.9.7 AcpiBufferToResource

Convert a raw AML ResourceTemplate to an ACPI_RESOURCE list

ACPI_STATUS
AcpiBufferToResource (

UINT8 *AmlBuffer,
UINT16 AmlBufferLength,
ACPI_RESOURCE **OutResource)

PARAMETERS

AmlBuffer Raw AML resource template to be converted.

AmlBufferLength Length of the AmlBuffer in bytes.

OutResource Where the converted resource is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource was successfully converted.

AE_NO_MEMORY Could not allocate memory for the OutResource buffer.

AE_AML_INVALID_RESOURCE_TYPE The input buffer is not a valid resource
template buffer

AE_AML_INVALID_RESOURCE_LENGTH The input buffer is not a valid resource
template buffer

Functional Description:

sible for the deletion of the *OutResource buffer (via ACPI_FREE.)

This utility function converts a raw AML resource template (such as a template buffer returned from
a predefined ACPI method) into an ACPI_RESOURCE list which is easier to use.

The caller is respon

ACPI Component Architecture User Guide and Programmer Reference

204

8.9.8 AcpiResourceToAddress64

Convert an address resource descriptor to 64 bits

ACPI_STATUS
AcpiResourceToAddress64 (

ACPI_RESOURCE *Resource,
ACPI_RESOURCE_ADDRESS64 *OutResource)

PARAMETERS

Resource The resource descriptor to be converted. This resource must
be one of the following types:

ACPI_RESOURCE_TYPE_ADDRESS16
ACPI_RESOURCE_TYPE_ADDRESS32
ACPI_RESOURCE_TYPE_ADDRESS64

OutResource Where the converted resource is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource was successfully converted.

AE_BAD_PARAMETER The resource is not of the correct type.

Functional Description:

This utility function converts resources of type ADDRESS16 and ADDRESS32 to ADDRESS64.
This saves the caller from having to duplicate code for different-sized address descriptors. If the
input descriptor is of type ADDRESS64, a simple copy is performed.

8.9.9 AcpiWalkResourceBuffer

Walk a list of ACPI Resources (Resource Template)

interfaces:

ACPI_STATUS
AcpiWalkResourceBuffer (

ACPI_BUFFER *Buffer,
ACPI_WALK_RESOURCE_CALLBACK UserFunction,
void *UserContext)

PARAMETERS

Buffer A pointer to an ACPI_BUFFER object containing an ACPI
Resource Template as returned by one of the following

ACPI Component Architecture User Guide and Programmer Reference

205

AcpiGetCurrentResources
AcpiGetPossibleResources
AcpiGetEventResources
AcpiGetVendorResource
AcpiBufferToResource

UserFunction A pointer to a user-written function that is invoked for each
resource object within the resource list. (See the interface
specification for the user function below.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successfully completed.

AE_BAD_PARAMETER At least one of the following is true:

The Buffer is invalid.

The UserFunction pointer is invalid.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function walks a resource list contained in the input buffer. The User Function is called once
for each resource in the list – freeing the caller from having to parse the list itself.

8.9.9.1 Interface to User Callback Function

Interface to the user function that is invoked from either AcpiWalkResourceBuffer or
AcpiWalkResources.

Continue the walk.

ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) (
ACPI_RESOURCE *Resource,
void *Context)

PARAMETERS

Resource A pointer to a single resource within the resource list.

Context The UserContext value that was passed as a parameter to the
AcpiWalkResourceBuffer or AcpiWalkResources function.

RETURN VALUE

Status AE_OK

ACPI Component Architecture User Guide and Programmer Reference

206

AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.

All others Abort the walk with this exception
code.

Functional Description:

This function is called from either AcpiWalkResourceBuffer or AcpiWalkResource for each resource
object in the resource list.

8.9.10 AcpiWalkResources

Create and walk a list of ACPI Resources (Resource Template)

is invalid.

ACPI_STATUS
AcpiWalkResources (

ACPI_HANDLE Device,
char *Name,
ACPI_WALK_RESOURCE_CALLBACK UserFunction,
void *UserContext)

PARAMETERS

Device A handle to the Device for which one of the resource lists
will be walked:

Name A string containing the name of a resource method (either a
_CRS, _PRS, or _AEI method) to be invoked.

UserFunction A pointer to a user-written function that is invoked for each
resource object within the resource list. (See the interface
specification for the user function for the
AcpiWalkResourceBuffer above.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successfully completed.

AE_BAD_PARAMETER At least one of the following is true:

The Device is not a valid handle.

The UserFunction pointer

ACPI Component Architecture User Guide and Programmer Reference

207

The Name string does not refer to a _CRS, _PRS, or _AEI
control method.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function retrieves the current or possible resource list for the specified device by executing
either the _CRS, _PRS, or _AEI method for the device. The User Function is called once for each
resource in the list – freeing the caller from having to parse the list itself. See the description of
AcpiWalkResourceBuffer for the definition of the user function interface.

8.10 Memory Management

The ACPICA Subsystem provides memory management services that are built upon the memory
management services exported by the OS services layer. If enabled (in debug mode), the local
ACPICA memory manager tracks and logs each allocation to detect the following conditions:

1) Detect attempts to release (free) an allocated memory block more than once.

2) Detect memory leaks by keeping a list of all outstanding allocated memory blocks. This list
can be examined at any time; however, the best time to find memory leaks is after the
subsystem is shutdown -- any remaining allocations represent leaked blocks.

Do not mix memory manager calls. In other words, if the ACPICA memory manager is used to
allocate memory, do not free memory via the OS Services Layer (AcpiOsFree), via the C library
(free), or directly call the host OS memory management primitives. The automatic buffer
allocation mechanism that is used with ACPI_BUFFER and ACPI_ALLOCATE_BUFFER
bypasses the local memory manager, thus AcpiOsFree should be used to free the allocated buffer.

To summarize:

 If ACPI_ALLOCATE is used to allocate memory, ACPI_FREE should be used to free the
memory.

 For the various ACPICA external interfaces that return data in a buffer, if
ACPI_ALLOCATE_BUFFER is used to request ACPICA to allocate memory on behalf
of the caller, AcpiOsFree should be used to free the buffer.

8.10.1 ACPI_ALLOCATE

Allocate memory from the dynamic memory pool.

Amount of memory to allocate.

void *
ACPI_ALLOCATE (

ACPI_SIZE Size)

PARAMETERS

Size

ACPI Component Architecture User Guide and Programmer Reference

208

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory cannot be assumed to be
initialized to any particular value or values.

8.10.2 ACPI_ALLOCATE_ZEROED

Allocate and initialize memory.

void *
ACPI_ALLOCATE_ZEROED (

ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates and initializes memory. The returned memory is guaranteed to
be initialized to all zeros.

8.10.3 ACPI_FREE

Free previously allocated memory.

None

void
ACPI_FREE (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

ACPI Component Architecture User Guide and Programmer Reference

209

Functional Description:

This function frees memory that was previously allocated via ACPI_ALLOCATE or
ACPI_ALLOCATE_ZEROED.

8.11 Formatted Output

8.11.1 AcpiInfo and ACPI_INFO

Print a formatted information/comment string.

void
AcpiInfo (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI: (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_INFO macro

Produces this output:

The front-end to this function is the ACPI_INFO macro.

Example: The following invocation of the ACPI_INFO macro:

ACPI_INFO ((AE_INFO, "ACPICA example info message"));

ACPI Component Architecture User Guide and Programmer Reference

210

ACPI: ACPICA example info message

The AE_INFO macro is required and automatically injects the module name and line number into
the invocation of AcpiInfo. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

8.11.2 AcpiWarning and ACPI_WARNING

Print a formatted warning string.

void
AcpiWarning (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Warning (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_WARNING macro

message [20080926]

The front-end to this function is the ACPI_WARNING macro.

Example: The following invocation of the ACPI_WARNING macro:

ACPI_WARNING ((AE_INFO, "ACPICA example warning message"));

Produces this output:

ACPI Warning: ACPICA example warn

ACPI Component Architecture User Guide and Programmer Reference

211

The AE_INFO macro is required and automatically injects the module name and line number into
the invocation of AcpiWarning. Note the use of double parentheses which are required in order to
pass the parameters to the printf OSL functions.

8.11.3 AcpiError and ACPI_ERROR

Print a formatted error string.

void
AcpiError (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Error (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_ERROR macro

ACPI Error: ACPICA example error message [20080926]

The front-end to this function is the ACPI_ERROR macro.

Example: The following invocation of the ACPI_ERROR macro:

ACPI_ERROR ((AE_INFO, "ACPICA example error message"));

Produces this output:

ACPI Component Architecture User Guide and Programmer Reference

212

The AE_INFO macro is required and automatically injects the module name and line number into
the invocation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

8.11.4 AcpiException and ACPI_EXCEPTION

Print a formatted error string with decoded ACPICA exception code

void
AcpiException (

const char *ModuleName,
UINT32 LineNumber,
ACPI_STATUS Status,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Status ACPICA status to be decoded and displayed.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Exception (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_EXCEPTION macro

[20080926]

The front-end to this function is the ACPI_EXCEPTION macro.

Example: The following invocation of the ACPI_EXCEPTION macro:

ACPI_EXCEPTION ((AE_INFO, Status, "ACPICA example error message"));

Produces this output:

ACPI Exception: AE_ERROR, ACPICA status

ACPI Component Architecture User Guide and Programmer Reference

213

The AE_INFO macro is required and automatically injects the module name and line number into
the invocation of AcpiException. Note the use of double parentheses which are required in order to
pass the parameters to the printf OSL functions.

8.11.5 AcpiBiosWarning and ACPI_BIOS_WARNING

Print a formatted warning string for BIOS/firmware issues.

void
AcpiBiosWarning (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. It is intended to be used when the host detects a problem that is specific to the platform
BIOS/firmware. The format of the output string is as follows:

ACPI Firmware Warning (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_BIOS_WARNING macro

message [20080926]

The front-end to this function is the ACPI_BIOS_WARNING macro.

Example: The following invocation of the ACPI_BIOS_WARNING macro:

ACPI_BIOS_WARNING ((AE_INFO, "ACPICA example warning message"));

Produces this output:

ACPI BIOS Bug: Warning: ACPICA example warn

ACPI Component Architecture User Guide and Programmer Reference

214

The AE_INFO macro is required and automatically injects the module name and line number into
the invocation of AcpiBiosWarning. Note the use of double parentheses which are required in order
to pass the parameters to the printf OSL functions.

8.11.6 AcpiBiosError and ACPI_BIOS_ERROR

Print a formatted error string for BIOS/firmware issues.

void
AcpiBiosError (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. It is intended to be used when the host detects a problem that is specific to the platform
BIOS/firmware. The format of the output string is as follows:

ACPI Firmware Error (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_BIOS_ERROR macro

ACPICA example error message [20080926]

The front-end to this function is the ACPI_BIOS_ERROR macro.

Example: The following invocation of the ACPI_BIOS_ERROR macro:

ACPI_BIOS_ERROR ((AE_INFO, "ACPICA example error message"));

Produces this output:

ACPI BIOS Bug: Error:

ACPI Component Architecture User Guide and Programmer Reference

215

The AE_INFO macro is required and automatically injects the module name and line number into
the invocation of AcpiBiosError. Note the use of double parentheses which are required in order to
pass the parameters to the printf OSL functions.

8.11.7 AcpiDebugPrint and ACPI_DEBUG_PRINT

Print a formatted debug string.

ACPI_DB_ALL

void
AcpiDebugPrint (

UINT32 RequestedDebugLevel,
UINT32 LineNumber,
const char *FunctionName,
const char *ModuleName,
UINT32 ComponentId,
const char *Format,
…)

PARAMETERS

RequestedDebugLevel The debug level for this statement. This value is compared
to the current AcpiDbgLevel mask to determine if this
message will be output or not. Must be one of the following:

ACPI_DB_INIT
ACPI_DB_DEBUG_OBJECT
ACPI_DB_INFO
ACPI_DB_ALL_EXCEPTIONS
ACPI_DB_INIT_NAMES
ACPI_DB_PARSE
ACPI_DB_LOAD
ACPI_DB_DISPATCH
ACPI_DB_EXEC
ACPI_DB_NAMES
ACPI_DB_OPREGION
ACPI_DB_BFIELD
ACPI_DB_TABLES
ACPI_DB_VALUES
ACPI_DB_OBJECTS
ACPI_DB_RESOURCES
ACPI_DB_USER_REQUESTS
ACPI_DB_PACKAGE
ACPI_DB_ALLOCATIONS
ACPI_DB_FUNCTIONS
ACPI_DB_OPTIMIZATIONS
ACPI_DB_MUTEX
ACPI_DB_THREADS
ACPI_DB_IO
ACPI_DB_INTERRUPTS
ACPI_DB_EVENTS

ACPI Component Architecture User Guide and Programmer Reference

216

LineNumber The current line number within the currently executing
module.

FunctionName The name of the currently executing function.

ModuleName The name of the currently executing module or filename.

ComponentId The ID of the executing component. Currently defined IDs
are:

ACPI_UTILITIES
ACPI_HARDWARE
ACPI_EVENTS
ACPI_TABLES
ACPI_NAMESPACE
ACPI_PARSER
ACPI_DISPATCHER
ACPI_EXECUTER
ACPI_RESOURCES
ACPI_CA_DEBUGGER
ACPI_OS_SERVICES
ACPI_CA_DISASSEMBLER
ACPI_COMPILER
ACPI_TOOLS
ACPI_EXAMPLE
ACPI_DRIVER

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints debug messages only if the debug level and the component ID match in the
global level/layer masks. This mechanism is useful to pare down the amount of debug output that is
produced. In addition to the input string, the module name, the line number, and the function name
are added to the output.

The ACPI_DEBUG_PRINT macro

ebug output

The front end to the AcpiDebugPrint interface

Example: The following invocation of the ACPI_ DEBUG_PRINT macro

ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Example Debug output"));

Produces this output:

examples-0200 [00] Examples-main : Example D

ACPI Component Architecture User Guide and Programmer Reference

217

8.11.8 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW

Print a formatted debug string, with no extra data.

void
AcpiDebugPrintRaw (

UINT32 RequestedDebugLevel,
UINT32 LineNumber,
const char *FunctionName,
const char *ModuleName,
UINT32 ComponentId,
const char *Format,
…)

PARAMETERS

See the definition of AcpiDebugPrint

Functional Description:

This function prints debug messages only if the debug level and the component ID match in the
global level/layer masks. This mechanism is useful to pare down the amount of debug output that is
produced. The message produced by this function is not embellished with the line number, function
name, and module name as is performed by ACPI_DEBUG_PRINT.

The ACPI_DEBUG_PRINT_RAW macro

The front end to the AcpiDebugPrintRaw interface.

Example: The following invocation of the ACPI_ DEBUG_PRINT_RAW macro

ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INFO, "Example Debug output"));

Produces this output:

Example Debug output

8.12 Miscellaneous Utilities

8.12.1 AcpiCheckAddressRange

Check a Memory or I/O address range for conflict(s) with ACPI Operation Regions.

)

UINT32
AcpiCheckAddressRange (

ACPI_ADR_SPACE_TYPE SpaceId,
ACPI_PHYSICAL_ADDRESS Address,
ACPI_SIZE Length,
BOOLEAN EmitWarning

ACPI Component Architecture User Guide and Programmer Reference

218

PARAMETERS

SpaceId The ACPI address space to be checked. Must be one of the
following constants (Note: for values other than the two
below, the request is simply ignored and zero is returned.)

ACPI_ADR_SPACE_SYSTEM_MEMORY

ACPI_ADR_SPACE_SYSTEM_IO

Address The physical address of the address range to be checked.

Length Length of the address range to be checked.

EmitWarning If TRUE, emit a warning string for each of the conflicts
discovered. Otherwise, remain quiet and simply return the
number of detected conflicts.

RETURN VALUE

ConflictCount Count of the total number of conflicts detected in the
SpaceId:Address:Length range. Zero is returned if no
conflicts were detected or the SpaceId is not Memory or
I/O.

EXCEPTIONS

None

Functional Description:

This function checks all defined ACPI Operation Regions (in the ACPI namespace) for a conflict
with the input address range. It is useful for detecting possible address conflicts between host device
drivers and the ACPI namespace. An “address conflict” is defined by any overlap (partial or
complete) between the input address range and an ACPI Operation Region of the same SpaceId.

8.12.2 AcpiDebugTrace

Enable debug tracing of control method execution

The debug level used for the trace.

ACPI_STATUS
AcpiDebugTrace (

char *Name,
UINT32 DebugLevel,
UINT32 DebugLayer,
UINT32 Flags)

PARAMETERS

Name Name of the control method to be traced. Currently, only a
4-character ACPI name is supported.

DebugLevel

ACPI Component Architecture User Guide and Programmer Reference

219

DebugLayer The debug layer used for the trace.

Flags Sets the type of trace:

1 – One shot trace
0 – Persistent trace

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

Functional Description:

This function enables debug tracing of an individual control method.

8.12.3 AcpiDecodePldBuffer

Decode a bit-packed buffer returned from the _PLD reserved name/method.

pointer is invalid.

ACPI_STATUS
AcpiCheckAddressRange (

UINT8 *Buffer,
ACPI_SIZE Length,
ACPI_PLD_INFO **ReturnBuffer)

PARAMETERS

Buffer A bit-packed data buffer as returned from the _PLD method
(Physical Location of Device.)

Length Length of the input buffer.

ReturnBuffer Where the decoded buffer is returned. The caller is
responsible for deallocating this buffer via the ACPI_FREE
macro.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The buffer was successfully decoded.

AE_BAD_PARAMETER At least one of the following is true:

The Buffer pointer is invalid.

The ReturnBuffer

ACPI Component Architecture User Guide and Programmer Reference

220

The Length is less than 16.

AE_NO_MEMORY A return buffer could not be allocated.

Functional Description:

This function decodes the bit-packed buffer that is returned by the _PLD reserved method (Physical
Location of Device) to a local buffer/struct that is easily accessed and thus much more useful to a
host ACPI driver. The returned structure contains no fields smaller than a UINT8.

The definition of the ACPI_PLD_INFO struct appears in the acbuffer.h ACPICA header.

Note, the caller is responsible for deallocating the returned buffer via the ACPI_FREE macro.

8.12.4 AcpiFormatException

Return the ASCII name of an ACPI exception code.

const char *
AcpiFormatException (

ACPI_STATUS Status)

PARAMETERS

Status The ACPI status/exception code to be translated.

RETURN VALUE

Exception String A pointer to the formatted exception string.

EXCEPTIONS

None

Functional Description:

This function converts an ACPI exception code into a human-readable string. It returns the
exception name string as the function return value. The string is a const value that does not require
deletion by the caller.

8.12.5 AcpiGetStatistics

Returns miscellaneous run-time statistics.

*OutStats)

ACPI_STATUS
AcpiGetStatistics (

ACPI_STATISTICS

ACPI Component Architecture User Guide and Programmer Reference

221

PARAMETERS

OutStats Where the statistics are returned.

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK Statistics were successfully returned.

Functional Description:

This function returns execution statistics of the subsystem. Included are the number of GPEs, SCIs,
and Fixed Events. Also, the number of control methods executed.

The returned ACPI_STATISTICS structure is shown below:

typedef struct acpi_statistics
{

UINT32 SciCount;
UINT32 GpeCount;
UINT32 FixedEventCount[ACPI_NUM_FIXED_EVENTS];
UINT32 MethodCount;

} ACPI_STATISTICS;

8.12.6 AcpiGetSystemInfo

Get global ACPI-related system information.

At least one of the following is true:

ACPI_STATUS
AcpiGetSystemInfo (

ACPI_BUFFER *OutBuffer)

PARAMETERS

OutBuffer A pointer to a location where the system information is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER

ACPI Component Architecture User Guide and Programmer Reference

222

The OutBuffer pointer is NULL.

The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the system information. Upon return, the
Length field contains the minimum required buffer length.

Functional Description:

layers whose debug output is enabled.

This function obtains information about the current state of the ACPI system. It will return system
information in the OutBuffer structure. Upon completion the Length field of OutBuffer will indicate
the number of bytes copied into the Pointer field of the OutBuffer buffer. This routine will never
return a partial resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

The structure that is returned in OutBuffer is defined as follows:

typedef struct _AcpiSysInfo
{

UINT32 AcpiCaVersion;
UINT32 Flags;
UINT32 TimerResolution;
UINT32 Reserved1;
UINT32 Reserved2;
UINT32 DebugLevel;
UINT32 DebugLayer;

} ACPI_SYSTEM_INFO;

Where:

AcpiCaVersion Version number of the ACPICA Subsystem, in the form
0xYYYYMMDD.

Flags Static information about the system:

ACPI_SYS_MODE_ACPI ACPI mode is supported
on this system.

ACPI_SYS_MODE_LEGACY Legacy mode is supported.

TimerResolution Resolution of the ACPI Power Management Timer. Either
24 or 32 indicating the corresponding number of bits of
resolution.

DebugLevel Current value of the global variable that controls the debug
output verbosity.

DebugLayer Current value of the global variable that controls the internal

ACPI Component Architecture User Guide and Programmer Reference

223

8.12.7 AcpiPurgeCachedObjects

Empty all internal object caches.

ACPI_STATUS
AcpiPurgeCachedObjects (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The caches were successfully purged.

Functional Description:

FADT, as well as any installed GPE block devices. This is a dynamic value that can increase or

This function purges all internal object caches, freeing all memory blocks: It can be used to purge
the cache after particularly large operations, or the cache can be periodically flushed to ensure that
no large amounts of stagnant cache objects are present. It is implemented by calling
AcpiOsPurgeCache for each of the object caches.

8.13 Global Variables

There are several global variables that are useful for ACPICA users.

8.13.1 AcpiDbgLevel & AcpiDbgLayer

These globals control the debug output mechanism. AcpiDbgLevel specifies the current debug level
and AcpiDbgLayer specifies which ACPICA components will output debug information.

See the description of ACPI_DEBUG_PRINT for more information.

8.13.2 AcpiGbl_FADT

This is a local copy of the system FADT, converted to a common internal format. ACPI-related
device drivers often require information directly from the FADT. The table can be directly accessed
via this symbol.

8.13.3 AcpiCurrentGpeCount

The current number of active (available) system GPEs. This includes the GPE blocks defined in the

ACPI Component Architecture User Guide and Programmer Reference

224

wakes.

decrease as GPE block devices are installed or removed. This value also serves as the maximum
index value for the AcpiGetGpeDevice interface.

8.13.4 AcpiGbl_SystemAwakeAndRunning

This boolean is set to FALSE just before the system sleeps. It is then set to TRUE as the system

ACPI Component Architecture User Guide and Programmer Reference

225

9 OS Services Layer - External
Interface Definition
This section contains the definitions of the interfaces that must be exported by the OS Services
Layer. The ACPICA Subsystem requires that all of these interfaces be present. All interfaces to the
OS Services Layer that are intended for use by the ACPICA Subsystem are prefixed by the letters
“AcpiOs”.

Only the external definitions of the AcpiOs* interfaces are clearly defined by this document. The
actual implementation of the services and interfaces is by definition OS dependent and may be very
different for different operating systems.

9.1 Environmental and ACPI Tables

9.1.1 AcpiOsInitialize

Initialize the OSL subsystem.

ACPI_STATUS
AcpiOsInitialize (

void)

PARAMETERS

None

RETURN VALUE

Status Initialization status.

Functional Description:

.
This function allows the OSL to initialize itself. It is called during initialization of the ACPICA
subsystem

ACPI Component Architecture User Guide and Programmer Reference

226

9.1.2 AcpiOsTerminate

Terminate the OSL subsystem.

ACPI_STATUS
AcpiOsTerminate (

void)

PARAMETERS

None

RETURN VALUE

Status Termination status.

Functional Description:

This function allows the OSL to cleanup and terminate. It is called during termination of the
ACPICA subsystem.

9.1.3 AcpiOsGetRootPointer

Obtain the Root ACPI table pointer (RSDP).

ACPI_PHYSICAL_ADDRESS
AcpiOsGetRootPointer (

void)

PARAMETERS

None.

RETURN VALUE

Address The physical address of the RSDP.

Functional Description:

pointer in the EFI information block that is passed to the OS at OS startup.

This function returns the physical address of the.ACPI RSDP (Root System Description Pointer)
table. The mechanism used to obtain this pointer is platform and/or OS dependent. There are two
primary methods used to obtain this pointer and thus implement this interface:

1) On IA-32 platforms, the RSDP is obtained by searching the first megabyte of physical memory
for the RSDP signature (“RSD PTR “). On these platforms, this interface should be implemented via
a call to the AcpiFindRootPointer interface.

2) On IA-64 platforms, the RSDP is obtained from the EFI (Extended Firmware Interface). The

ACPI Component Architecture User Guide and Programmer Reference

227

9.1.4 AcpiOsPredefinedOverride

Allow the host OS to override a predefined ACPI object.

ACPI_STATUS
AcpiOsPredefinedOverride (

const ACPI_PREDEFINED_NAMES *PredefinedObject,
ACPI_STRING *NewValue)

PARAMETERS

PredefinedObject A pointer to a predefined object (name and initial value.)

NewValue Where a new value for the predefined object is returned.
NULL if there is no override for this object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function allows the host to override the predefined objects in the ACPI namespace.

9.1.5 AcpiOsTableOverride

Allow the host OS to override a firmware ACPI table via a logical address.

ACPI_STATUS
AcpiOsTableOverride (

ACPI_TABLE_HEADER *ExistingTable,
ACPI_TABLE_HEADER **NewTable)

PARAMETERS

ExistingTable A pointer to the header of the existing ACPI table.

NewTable Where the pointer to the replacement table is returned. The
OSL returns NULL if no replacement is provided.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

header is guaranteed to be valid and accessible, not the entire table. Further, the header is only

This function allows the host to override an ACPI table that was found in the firmware via a logical
address (pointer). The host OS can examine the existing table header for the table signature and
version number(s) and decide to replace it if desired. Note: for the existing table, only the table

ACPI Component Architecture User Guide and Programmer Reference

228

guaranteed to be valid and accessible for the duration of the execution of this function. It may be
unmapped immediately afterwards. Also see AcpiOsPhysicalTableOverride.

The full identification of an ACPI table includes the following header items:

 The 4-character ACPI signature
 The Revision
 The table Length
 The OEM ID string
 The OEM Table ID string
 The OEM Revision

ACPI Table Header Definition

executed.

typedef struct /* ACPI common table header */
{

char Signature [4]; /* Identifies type of table */
UINT32 Length; /* Length of table, in bytes, */

* including header */
UINT8 Revision; /* Specification minor version # */
UINT8 Checksum; /* To make sum of entire table = 0 */
char OemId [6]; /* OEM identification */
char OemTableId [8]; /* OEM table identification */
UINT32 OemRevision; /* OEM revision number */
char AslCompilerId [4]; /* ASL compiler vendor ID */
UINT32 AslCompilerRevision;/* ASL compiler revision number */

} ACPI_TABLE_HEADER;

During initialization, ACPICA will invoke this interface once for each table defined in the
RSDT/XSDT, and once for the DSDT (pointed to by the FADT). This includes all tables in the
RSDT/XSDT, even tables that are not directly consumed by ACPICA such as ECDT, MADT,
SRAT, SLIT, etc., and all of the OEMx tables.

Tables are installed and AcpiOsTableOverride is called in the order that they appear in the
RSDT/XSDT. This may be important for tables that can have multiple instantiations such as the
SSDT or UEFI tables. If the host wishes to replace an individual SSDT, it can keep track of the
SSDT instantiations, or it can differentiate SSDTs based upon the full ACPI table identification
described above.

ACPICA will also call this interface for each table that is dynamically loaded via the Load AML
operator. Tables that are loaded via this mechanism are typically SSDTs and OEMx tables.

The LoadTable AML operator is used to load the namespace from tables that appear in the
RSDT/XSDT with signatures other than SSDT, typically the OEMx tables that contain executable
AML code. These tables can be replaced during the initialization phase when ACPICA traverses the
RSDT/XSDT as above. AcpiOsTableOverride is therefore not invoked when a LoadTable is

ACPI Component Architecture User Guide and Programmer Reference

229

9.1.6 AcpiOsPhysicalTableOverride

Allow the host OS to override a firmware ACPI table via a physical address.

ACPI_STATUS
AcpiOsPhysicalTableOverride (

ACPI_TABLE_HEADER *ExistingTable,
ACPI_PHYSICAL_ADDRESS *NewAddress,
UINT32 *NewTableLength)

PARAMETERS

ExistingTable A pointer to the header of the existing ACPI table.

NewAddress Where the physical address of the replacement table is
returned. The OSL returns NULL if no replacement is
provided.

NewLength Where the length of the replacement table is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

AcpiOsTableOverride.

This function allows the host to override an ACPI table that was found in the firmware with a new
table via a physical address and length. The host OS can examine the existing table header for the
table signature and version number(s) and decide to replace it if desired. Note: for the existing table,
only the table header is guaranteed to be valid and accessible, not the entire table. Further, the
header is only guaranteed to be valid and accessible for the duration of the execution of this
function. It may be unmapped immediately afterwards. When this function exits, ACPICA will
create a mapping for the new table and manage it for the life of the table. Also see

ACPI Component Architecture User Guide and Programmer Reference

230

9.2 Memory Management

These interfaces provide an OS-independent memory management interface.

9.2.1 AcpiOsCreateCache

Create a memory cache object

ACPI_STATUS
AcpiOsCreateCache (

char *CacheName,
UINT16 ObjectSize,
UINT16 MaxDepth,
ACPI_CACHE_T **ReturnCache)

PARAMETERS

CacheName An ASCII identifier for the cache. May or may not be used
by the host.

ObjectSize The size of each object in the cache.

MaxDepth Maximum depth of the cache (max number of objects.) May
or may not be used by the host.

ReturnCache Where a pointer to the cache object is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER At least one of the following is true:

The ReturnCache pointer is NULL.

The ObjectSize is less than 16.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

considerably.

This function creates a cache object. Many host operating systems have a cache manager that can be
used to implement the cache functions. The ACPICA code uses many dynamic objects of the same
size (such as the ACPI_OPERAND_OBJECT), and the use of a cache can improve performance

ACPI Component Architecture User Guide and Programmer Reference

231

9.2.2 AcpiOsDeleteCache

Delete a memory cache object.

ACPI_STATUS
AcpiOsDeleteCache (

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object to be deleted.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache pointer is NULL.

Functional Description:

This function deletes a cache object that was created via AcpiOsCreateCache. Any objects currently
within the cache must also be deleted.

9.2.3 AcpiOsPurgeCache

Free all objects currently within a cache object.

pointer is NULL.

ACPI_STATUS
AcpiOsPurgeCache (

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object to be deleted.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache

ACPI Component Architecture User Guide and Programmer Reference

232

Functional Description:

This function deletes all objects that currently reside within a cache.

9.2.4 AcpiOsAcquireObject

Acquire an object from a cache.

void *
AcpiOsAcquireObject (

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object from which to acquire an object.

RETURN VALUE

Object A pointer to a cache object. NULL if the object could not be
acquired.

EXCEPTIONS

NULL is returned if an object could not be acquired.

Functional Description:

This function acquires an object from the specified cache.

9.2.5 AcpiOsReleaseObject

Release an object to a cache.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiOsReleaseObject (

ACPI_CACHE_T *Cache,
void *Object)

PARAMETERS

Cache The cache object to which the object will be released.

Object The object to be released.

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

233

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache or Object pointer is NULL.

Functional Description:

This function releases an object back to the specified cache. It must have been previously acquired
from the same cache via AcpiOsAcquireObject.

9.2.6 AcpiOsMapMemory

Map physical memory into the caller’s address space.

void *
AcpiOsMapMemory (

ACPI_PHYSICAL_ADDRESS PhysicalAddress,
ACPI_SIZE Length)

PARAMETERS

PhysicalAddress A full physical address of the memory to be mapped into the
caller’s address space.

Length The amount of memory to be mapped starting at the given
physical address.

RETURN VALUE

LogicalAddress Pointer to the mapped memory. A NULL pointer indicates
failure.

EXCEPTIONS

NULL is returned if there was a mapping failure.

Functional Description:

.This function maps a physical address into the caller’s address space. A logical pointer is returned

ACPI Component Architecture User Guide and Programmer Reference

234

9.2.7 AcpiOsUnmapMemory

Remove a physical to logical memory mapping.

void
AcpiOsUnmapMemory (

void *LogicalAddress,
ACPI_SIZE Length)

PARAMETERS

LogicalAddress The logical address that was returned from a previous call to
AcpiOsMapMemory.

Length The amount of memory that was mapped. This value must
be identical to the value used in the call to
AcpiOsMapMemory.

RETURN VALUE

None

Functional Description:

This function deletes a mapping that was created by AcpiOsMapMemory.

9.2.8 AcpiOsGetPhysicalAddress

Translate a logical address to a physical address.

attempted.

ACPI_STATUS
AcpiOsGetPhysicalAddress (

void *LogicalAddress,
ACPI_PHYSICAL_ADDRESS *PhysicalAddress)

PARAMETERS

LogicalAddress The logical address to be translated.

PhysicalAddress The physical memory address of the logical address.

RETURN VALUE

AE_OK The logical address translation was successfully.

AE_ERROR An error occurred in the translation system call.

AE_BAD_PARAMETER One or both of the parameters are NULL, no translation was

ACPI Component Architecture User Guide and Programmer Reference

235

Functional Description:

This function translates a logical address to its physical address location.

9.2.9 AcpiOsAllocate

Allocate memory from the dynamic memory pool.

void *
AcpiOsAllocate (

ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory is not assumed to be initialized
to any particular value or values.

9.2.10 AcpiOsFree

Free previously allocated memory.

void
AcpiOsFree (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

.This function frees memory that was previously allocated via AcpiOsAllocate

ACPI Component Architecture User Guide and Programmer Reference

236

9.2.11 AcpiOsReadable

Check if a memory region is readable.

BOOLEAN
AcpiOsReadable (

void *Memory
ACPI_SIZE Length)

PARAMETERS

Memory A pointer to the memory region to be checked.

Length The length of the memory region, in bytes.

RETURN VALUE

TRUE If the entire memory region is readable without faults.

FALSE If one or more bytes within the region are unreadable.

Functional Description:

This function validates that a pointer to a memory region is valid and the entire region is readable.
Used to validate input parameters to the ACPICA subsystem.

9.2.12 AcpiOsWritable

Check if a memory region is writable (and readable).

.

BOOLEAN
AcpiOsWritable (

void *Memory,
ACPI_SIZE Length)

PARAMETERS

Memory A pointer to the memory region to be checked.

Length The length of the memory region, in bytes.

RETURN VALUE

TRUE If the entire memory region is both readable and writable
without faults

FALSE If one or more bytes within the region are unreadable or
unwritable

ACPI Component Architecture User Guide and Programmer Reference

237

Functional Description:

This function validates that a pointer to a memory region is valid and the entire region is both
writable and readable. Used to validate input parameters to the ACPICA subsystem..

9.3 Multithreading and Scheduling Services

9.3.1 AcpiOsGetThreadId

Obtain the ID of the currently executing thread.

ACPI_THREAD_ID
AcpiOsGetThreadId (

void)

PARAMETERS

None

RETURN VALUE

ThreadId A unique non-zero value that represents the ID of the
currently executing thread. For single threaded
implementations, a constant integer > zero is acceptable.
The value 0xFFFFFFFFFFFFFFFF (-1) is reserved and
must not be returned by this interface.

Functional Description:

This function returns the ID of the currently executing thread. The value must be non-zero and must
be unique to the executing thread. The ACPI_THREAD_ID is an unsigned, 64-bit value. It is up to
the host OSL to cast the native thread ID to an ACPI_THREAD_ID.

A 64-bit ACPI_THREAD_ID is used since it is the only data type that can be used to handle all of
the various native thread ID types (32-bit integer, 64-bit integer, 32-bit pointer, 64-bit pointer.)

9.3.2 AcpiOsExecute

Schedule a procedure for deferred execution.

xt)

ACPI_STATUS
AcpiOsExecute (

ACPI_EXECUTE_TYPE Type,
ACPI_OSD_EXEC_CALLBACK Function,
void *Conte

ACPI Component Architecture User Guide and Programmer Reference

238

PARAMETERS

Type Type of the callback function:

OSL_GLOBAL_LOCK_HANDLER
OSL_NOTIFY_HANDLER
OSL_GPE_HANDLER
OSL_DEBUGGER_THREAD
OSL_EC_POLL_HANDLER
OSL_EC_BURST_HANDLER

Function Address of the procedure to execute.

Context A context value to be passed to the called procedure.

RETURN VALUE

Status Exception code that indicates success or reason for
failure.

EXCEPTIONS

AE_OK The procedure was successfully queued for execution by
the host operating system. This does not indicate that the
procedure has actually executed, however.

AE_BAD_PARAMETER At least one of the following is true:

The Priority is invalid.

The Function pointer is NULL.

Functional Description:

This function queues a procedure for later scheduling and execution.

9.3.3 AcpiOsSleep

Suspend the running task (course granularity).

None

void
AcpiOsSleep (

UINT64 Milliseconds)

PARAMETERS

Milliseconds The amount of time to sleep, in milliseconds.

RETURN VALUE

ACPI Component Architecture User Guide and Programmer Reference

239

Functional Description:

This function sleeps for the specified time. Execution of the running thread is suspended for this
time. The sleep granularity is one millisecond.

9.3.4 AcpiOsStall

Wait for a short amount of time (fine granularity).

void
AcpiOsStall (

UINT32 Microseconds)

PARAMETERS

Microseconds The amount of time to delay, in microseconds.

RETURN VALUE

None

Functional Description:

This function waits for the specified time. Execution of the running thread is not suspended for this
time. The time granularity is one microsecond.

9.3.5 AcpiOsWaitEventsComplete

Wait for completion of asynchronous events.

void
AcpiOsWaitEventsComplete (

void)

PARAMETERS

None

RETURN VALUE

None

Functional Description:

completion.

This function blocks until all asynchronous events initiated by AcpiOsExecute have completed.
Within ACPICA, this function is called before removal of Notify and GPE handlers. For the host,
this function may be useful in related areas, such as blocking for Embedded Controller event

ACPI Component Architecture User Guide and Programmer Reference

240

9.4 Mutual Exclusion and Synchronization

Thread synchronization and locking.

These interfaces MUST perform parameter validation of the input handle to at least the extent of
detecting a null handle and returning the appropriate exception.

9.4.1 AcpiOsCreateMutex

Create a mutex object.

ACPI_STATUS
AcpiOsCreateMutex (

ACPI_MUTEX *OutHandle)

PARAMETERS

OutHandle A pointer to a location where a handle to the mutex is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The mutex was successfully created.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the mutex.

Functional Description:

Create a mutex object. Some host operating systems have separate mutex interfaces that can be used
to implement this and the other OSL mutex interfaces. If not, the the mutex interfaces can be
implemented with semaphore interfaces.

9.4.2 AcpiOsDeleteMutex

Delete a mutex object.

The mutex to be deleted.

void
AcpiOsDeleteMutex (

ACPI_MUTEX Handle)

PARAMETERS

Handle

ACPI Component Architecture User Guide and Programmer Reference

241

RETURN VALUE

None.

Functional Description:

Deletes a mutex object.

9.4.3 AcpiOsAcquireMutex

Acquire ownership of a mutex object.

ACPI_STATUS
AcpiOsAcquireMutex (

ACPI_MUTEX Handle,
UINT16 Timeout)

PARAMETERS

Handle The mutex to be acquired.

Timeout How long the caller is willing to wait for the requested
units. The timeout is specified in milliseconds. A value of
0xFFFF (-1) indicates that the calling thread is willing to
wait forever.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The mutex was successfully acquired.

AE_BAD_PARAMETER The Handle pointer is NULL.

AE_TIME The mutex could not be acquired within the specified time
limit.

Functional Description:

Acquire ownership of a mutex object.

ACPI Component Architecture User Guide and Programmer Reference

242

9.4.4 AcpiOsReleaseMutex

Release ownership of a mutex object.

void
AcpiOsReleaseMutex (

ACPI_MUTEX Handle)

PARAMETERS

Handle The mutex to be released.

RETURN VALUE

None

Functional Description:

Release a mutex object. The mutex must have be previously acquired via AcpiOsAcquireMutex.

9.4.5 AcpiOsCreateSemaphore

Create a semaphore.

is invalid.

ACPI_STATUS
AcpiOsCreateSemaphore (

UINT32 MaxUnits,
UINT32 InitialUnits,
ACPI_SEMAPHORE *OutHandle)

PARAMETERS

MaxUnits The maximum number of units this semaphore will be
required to accept.

InitialUnits The initial number of units to be assigned to the semaphore.

OutHandle A pointer to a location where a handle to the semaphore is
to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully created.

AE_BAD_PARAMETER At least one of the following is true:

The InitialUnits

ACPI Component Architecture User Guide and Programmer Reference

243

The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

Create a standard semaphore. The MaxUnits parameter allows the semaphore to be tailored to
specific uses. For example, a MaxUnits value of one indicates that the semaphore is to be used as a
mutex. The underlying OS object used to implement this semaphore may be different than if
MaxUnits is greater than one (thus indicating that the semaphore will be used as a general purpose
semaphore.) The ACPICA Subsystem creates semaphores of both the mutex and general-purpose
variety.

9.4.6 AcpiOsDeleteSemaphore

Delete a semaphore.

ACPI_STATUS
AcpiOsDeleteSemaphore (

ACPI_SEMAPHORE Handle)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully deleted.

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Delete a semaphore.

9.4.7 AcpiOsWaitSemaphore

Wait for units from a semaphore.

Timeout)

ACPI_STATUS
AcpiOsWaitSemaphore (

ACPI_SEMAPHORE Handle,
UINT32 Units,
UINT16

ACPI Component Architecture User Guide and Programmer Reference

244

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

Units The number of units the caller is requesting.

Timeout How long the caller is willing to wait for the requested
units. The timeout is specified in milliseconds. A value of
0xFFFF (-1) indicates that the calling thread is willing to
wait forever.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested units were successfully received.

AE_BAD_PARAMETER The Handle is invalid.

AE_TIME The units could not be acquired within the specified time
limit.

Functional Description:

Wait for the specified number of units from a semaphore.

Implementation notes:

1. The implementation of this interface must support timeout values of zero. This is frequently
used to determine if a call to the interface with an actual timeout value would block. In this
case, AcpiOsWaitSemaphore must return either an E_OK if the units were obtained
immediately, or an AE_TIME to indicate that the requested units are not available. Single
threaded OSL implementations should always return AE_OK for this interface.

2. The implementation must also support arbitrary timed waits in order for ASL functions such
as Wait () to work properly.

9.4.8 AcpiOsSignalSemaphore

Send units to a semaphore.

.

ACPI_STATUS
AcpiOsSignalSemaphore (

ACPI_SEMAPHORE Handle,
UINT32 Units)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore

ACPI Component Architecture User Guide and Programmer Reference

245

Units The number of units to send to the semaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully signaled.

AE_BAD_PARAMETER The Handle is invalid.

AE_LIMIT The semaphore has already been signaled MaxUnits times.
No more units can be accepted.

Functional Description:

Send the requested number of units to a semaphore. Single threaded OSL implementations should
always return AE_OK for this interface.

9.4.9 AcpiOsCreateLock

Create a spin lock.

ACPI_STATUS
AcpiOsCreateLock (

ACPI_SPINLOCK *OutHandle)

PARAMETERS

OutHandle A pointer to a location where a handle to the lock is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully created.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

for mutual exclusion on data structures that are accessed by both interrupt handlers and normal code.
Create a spin lock. Spin locks are used in the ACPICA subsystem only when there is requirement

ACPI Component Architecture User Guide and Programmer Reference

246

9.4.10 AcpiOsDeleteLock

Delete a spin lock.

void
AcpiOsDeleteLock (

ACPI_HANDLE Handle)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

RETURN VALUE

None Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The Lock was successfully deleted.

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Delete a spin lock.

9.4.11 AcpiOsAcquireLock

Acquire a spin lock.

ACPI_CPU_FLAGS
AcpiOsAcquireLock (

ACPI_SPINLOCK Handle)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

RETURN VALUE

Flags Platform-dependent CPU flags. To be used when the lock is
released.

Functional Description:

interface.

Wait for and acquire a spin lock. May be called from interrupt handlers, GPE handlers, and Fixed
event handlers. Single threaded OSL implementations should always return AE_OK for this

ACPI Component Architecture User Guide and Programmer Reference

247

9.4.12 AcpiOsReleaseLock

Release a spin lock.

void
AcpiOsReleaseLock (

ACPI_SPINLOCK Handle,
ACPI_CPU_FLAGS Flags)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

Flags CPU flags that were returned from AcpiOsAcquireLock

RETURN VALUE

None Exception code that indicates success or reason for failure.

Functional Description:

Release a previouslly acquired spin lock. Single threaded OSL implementations should always
return AE_OK for this interface.

9.5 Interrupt Handling

Interrupt handler installation and removal.

9.5.1 AcpiOsInstallInterruptHandler

Install a handler for a hardware interrupt level.

interrupt is dispatched.

ACPI_STATUS
AcpiOsInstallInterruptHandler (

UINT32 InterruptLevel,
ACPI_OSD_HANDLER Handler,
void *Context)

PARAMETERS

InterruptLevel Interrupt level that the handler will service.

Handler Address of the handler.

Context A context value that is passed to the handler when the

ACPI Component Architecture User Guide and Programmer Reference

248

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

The InterruptNumber is invalid.

The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this interrupt level is already installed.

Functional Description:

This function installs an interrupt handler for a hardware interrupt level. The ACPI driver must
install an interrupt handler to service the SCI (System Control Interrupt) which it owns. The
interrupt level for the SCI interrupt is obtained from the ACPI tables.

9.5.1.1 Interface to OS-independent Interrupt Handlers

Definition of the interface for OS-independent interrupt handlers.

typedef
UINT32 (*ACPI_OSD_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiOsInstallInterruptHandler function.

RETURN VALUE

HandlerActionTaken The handler should return one of the following manifest
constants:

ACPI_INTERRUPT_HANDLED

ACPI_INTERRUPT_NOT_HANDLED

Functional Description:

installed interrupt handler(s), and dispatch interrupts to the handler(s) appropriately.

The OS-independent interrupt handler must be called from an OSL interrupt handler “wrapper” that
exists within the OS Services Layer. It is the responsibility of the OS Services Layer to manage the

ACPI Component Architecture User Guide and Programmer Reference

249

9.5.2 AcpiOsRemoveInterruptHandler

Remove an interrupt handler.

ACPI_STATUS
AcpiOsRemoveInterruptHandler (

UINT32 InterruptNumber,
ACPI_OSD_HANDLER Handler)

PARAMETERS

InterruptNumber Interrupt number that the handler is currently servicing.

Handler Address of the handler that was previously installed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

The InterruptNumber is invalid.

The Handler pointer is NULL.

The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for this interrupt level.

Functional Description:

(SystemMemory) space.

Remove a previously installed hardware interrupt handler.

9.6 Memory Access and Memory Mapped I/O

These interfaces allow the OS Services Layer to implement memory access in any manner that is
acceptable to the host OS. The actual hardware I/O instructions may execute within the OS Services
Layer itself, or these calls may be translated into additional OS calls — such as calls to a Hardware
Abstraction Component. Up to 64-bit transfers are supported by the read/write memory interfaces.

These interfaces are used by the ACPICA for small amounts of data transfer only, such as memory
mapped I/O. For large transfers (such as reading the ACPI tables), the ACPICA code will call
AcpiOsMapMemory instead.

Supports Operation Region access to the ACPI_ADR_SPACE_SYSTEM_MEMORY

ACPI Component Architecture User Guide and Programmer Reference

250

9.6.1 AcpiOsReadMemory

Read a value from a memory location.

ACPI_STATUS
AcpiOsReadMemory (

ACPI_PHYSICAL_ADDRESS Address,
UINT64 *Value,
UINT32 Width)

PARAMETERS

Address Memory address to be read.

Value A pointer to a location where the data is to be returned.

Width The memory width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function is used to read a data from the specified memory location. The data is zero extended to
fill the 64-bit return value even if the bit width of the location is less than 64. In other words, a full
64 bits are written to the return Value regardless of the number of bits that were read from the
memory at Address. The caller must ensure that no data will be overwritten by this call.

9.6.2 AcpiOsWriteMemory

Write a value to a memory location.

Exception code that indicates success or reason for failure.

ACPI_STATUS
AcpiOsWriteMemory (

ACPI_PHYSICAL_ADDRESS Address,
UINT64 Value,
UINT32 Width)

PARAMETERS

Address Memory address where data is to be written.

Value Data to be written to the memory location.

Width The memory width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status

ACPI Component Architecture User Guide and Programmer Reference

251

Functional Description:

This function writes data to the specified memory location. If the bit width of the memory location
is less than 64, only the lower significant bits of the Value parameter are written.

9.7 Port Input/Output

These interfaces allow the OS Services Layer to implement hardware I/O services in any manner
that is acceptable to the host OS. The actual hardware I/O instructions may execute within the OS
Services Layer itself, or these calls may be translated into additional OS calls — such as calls to a
Hardware Abstraction Component.

Supports Operation Region access to the ACPI_ADR_SPACE_SYSTEM_IO (SystemIO) space.

The ACPICA subsystem checks each request against a list of protected I/O ports before calling these
interfaces.

9.7.1 AcpiOsReadPort

Read a value from an input port.

ACPI_STATUS
AcpiOsReadPort (

ACPI_IO_ADDRESS Address,
UINT32 *Value,
UINT32 Width)

PARAMETERS

Address Hardware I/O port address to read from.

Value A pointer to a location where the data is to be returned.

Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

bit width of the port is less than 32.
This function reads data from the specified input port. The data is zero extended to fill the 32-bit
return value even if the

ACPI Component Architecture User Guide and Programmer Reference

252

9.7.2 AcpiOsWritePort

Write a value to an output port.

ACPI_STATUS
AcpiOsWritePort (

ACPI_IO_ADDRESS Address,
UINT32 Value,
UINT32 Width)

PARAMETERS

Address Hardware I/O port address to read from.

Value The value to be written.

Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

i_Config) space.

This function writes data to the specified input port. If the bit width of the port is less than 32, only
the lower significant bits of the Value parameter are written.

9.8 PCI Configuration Space Access

These interfaces allow the OS Services Layer to implement PCI Configuration Space services in any
manner that is acceptable to the host OS. The actual hardware I/O instructions may execute within
the OS Services Layer itself, or these calls may be translated into additional OS calls — such as
calls to a Hardware Abstraction Component.

Supports Operation Region access to the ACPI_ADR_SPACE_PCI_CONFIG (Pc

ACPI Component Architecture User Guide and Programmer Reference

253

9.8.1 AcpiOsReadPciConfiguration

Read a value from a PCI configuration register.

ACPI_STATUS
AcpiOsReadPciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
UINT64 *Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be read from.

Value A pointer to a location where the data is to be returned.

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified PCI configuration port. The data is zero extended to fill
the 64-bit return value even if the bit width of the location is less than 64.

9.8.2 AcpiOsWritePciConfiguration

Write a value to a PCI configuration register.

Data to be written.

ACPI_STATUS
AcpiOsWritePciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
UINT64 Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be written to.

Value

ACPI Component Architecture User Guide and Programmer Reference

254

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified PCI configuration port. If the bit width of the register is
less than 64, only the lower significant bits of the Value are written.

9.9 Formatted Output

These interfaces provide formatted stream output. Used mainly for debug output, these functions
may be redirected to whatever output device or file is appropriate for the host operating system.

9.9.1 AcpiOsPrintf

Formatted stream output.

void ACPI_INTERNAL_VAR_XFACE
AcpiOsPrintf (

const char *Format,
… <variable argument list>)

PARAMETERS

Format A standard print format string.

… Variable printf parameter list.

RETURN VALUE

None.

Functional Description:

.This function provides formatted output to an open stream

ACPI Component Architecture User Guide and Programmer Reference

255

9.9.2 AcpiOsVprintf

Formatted stream output.

void
AcpiOsVprintf (

const char *Format,
va_list Args)

PARAMETERS

Format A standard printf format string.

Args A variable parameter list.

RETURN VALUE

None

Functional Description:

This function provides formatted output to an open stream via the va_list argument format.

9.9.3 AcpiOsRedirectOutput

Redirect the debug output.

void
AcpiOsRedirectOutput (

void *Destination)

PARAMETERS

Destination An open file handle or pointer. Debug output will be
redirected to this handle/pointer. The format of this
parameter is OS-specific.

RETURN VALUE

None

Functional Description:

Usually used to redirect output to a file.
This function redirects the output of AcpiOsPrintf and AcpiOsVprintf to the specified destination.

ACPI Component Architecture User Guide and Programmer Reference

256

9.10 System ACPI Table Access

These interfaces are required only by the AcpiDump utility. They must be implemented to interface
to each host OS.

9.10.1 AcpiOsGetTableByAddress

Obtain an ACPI table via a physical address

ACPI_STATUS
AcpiOsGetTableByAddress (

ACPI_PHYSICAL_ADDRESS Address,
ACPI_TABLE_HEADER **OutTable)

PARAMETERS

Address Memory physical address of the requested ACPI table.

OutTable A pointer to location where the table is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully located and returned.

AE_BAD_PARAMETER The OutTable pointer is NULL.

AE_NO_ACPI_TABLES The ACPI tables could not be located.

AE_NO_MEMORY Insufficient dynamic memory to create a buffer for the
ACPI table.

AE_NOT_FOUND A valid ACPI table was not found at the specified Address.

AE_SUPPORT This function is not currently supported by the host.

Functional Description:

when finished with it.

This function obtains an ACPI table by specifying a physical address. It is most useful for getting a
table that is dynamically loaded and is not actually present in the RSDT/XSDT. NOTE: It may not
be possible to support this function on all hosts.

If the operation fails, an appropriate status will be returned and the contents of OutTable is
undefined.

AcpiOsGetTableByAddress allocates a buffer for the ACPI table that should be freed by the caller

ACPI Component Architecture User Guide and Programmer Reference

257

9.10.2 AcpiOsGetTableByIndex

Obtain an installed ACPI table via an index

This function is not currently supported by the host.

ACPI_STATUS
AcpiOsGetTableByIndex (

UINT32 TableIndex,
ACPI_TABLE_HEADER **OutTable,
ACPI_PHYSICAL_ADDRESS **OutAddress)

PARAMETERS

TableIndex Index of the requested table. The index does not necessarily
correspond to the ordering of the RSDT/XSDT.

OutTable A pointer to location where the table is to be returned.

OutAddress A pointer to location where the physical address of the table
is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

The OutTable pointer is NULL.

The OutAddress pointer is NULL.

AE_LIMIT The last valid TableIndex value has been reached. There is
no table that corresponds to the TableIndex.

AE_NO_ACPI_TABLES The ACPI tables could not be located.

AE_NO_MEMORY Insufficient dynamic memory to create a buffer for the
ACPI table.

AE_SUPPORT

ACPI Component Architecture User Guide and Programmer Reference

258

Functional Description:

}

This function obtains an installed ACPI table by specifying a table index value. Valid table index
values are 0 through n-1, where n is the number of currently installed ACPI tables. This function is
useful for iterating through the entire set of installed ACPI tables. To obtain a specific ACPI table,
use AcpiOsGetTableByName or AcpiOsGetTableByAddress.

If the operation fails, an appropriate status will be returned and the contents of OutTable and
OutAddress are undefined.

AcpiOsGetTableByIndex allocates a buffer for the ACPI table that should be freed by the caller
when finished with it.

Example:

/* Get and dump all available ACPI tables */

for (i = 0; ; i++)
{

Status = AcpiOsGetTableByIndex (i, &Table, &Address);
if (ACPI_FAILURE (Status))
{

/* AE_LIMIT means that no more tables are available */

if (Status == AE_LIMIT)
{

return (0);
}
else if (i == 0)
{

fprintf (stderr, "Could not get ACPI tables, %s\n",
AcpiFormatException (Status));

return (-1);
}
else
{

fprintf (stderr, "Could not get ACPI table at index %u, %s\n",
i, AcpiFormatException (Status));

continue;
}

}

if (ApDumpTableBuffer (Table, Address))
{

return (-1);
}
free (Table);

ACPI Component Architecture User Guide and Programmer Reference

259

9.10.3 AcpiOsGetTableByName

Obtain an installed ACPI table via a specific name

This function is not currently supported by the host.

ACPI_STATUS
AcpiOsGetTableByName (

char *Signature,
UINT32 Instance,
ACPI_TABLE_HEADER **OutTable,
ACPI_PHYSICAL_ADDRESS **OutAddress)

PARAMETERS

Signature The uppercase ACPI signature for the requested table. This
must be a 4-character null-terminated ASCII string.

Instance Used to obtain tables that are allowed to have multiple
instances (SSDT or UEFI). For regular ACPI tables, this
parameter is ignored.

OutTable A pointer to location where the table is to be returned.

OutAddress A pointer to location where the physical address of the table
is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

The OutTable pointer is NULL.

The OutAddress pointer is NULL.

AE_LIMIT The last valid Instance value has been reached. There is no
table that corresponds to the Instance.

AE_NO_ACPI_TABLES The ACPI tables could not be located.

AE_NO_MEMORY Insufficient dynamic memory to create a buffer for the
ACPI table.

AE_NOT_FOUND An ACPI table with Signature was not found.

AE_SUPPORT

ACPI Component Architecture User Guide and Programmer Reference

260

Functional Description:

This function obtains an installed ACPI table by specifying a table signature. Tables that can have
multiple instances (such as SSDT or UEFI) are also supported via the Instance parameter. Valid
instance values are 0 through n-1, where n is the number of currently installed SSDTs.

If the operation fails, an appropriate status will be returned and the contents of OutTable and
OutAddress are undefined.

The OutAddress parameter will be set to zero if the physical address in not available.

AcpiOsGetTableByName allocates a buffer for the ACPI table that should be freed by the caller
when finished with it.

9.11 Miscellaneous

9.11.1 AcpiOsGetTimer

Get current value of the system timer

UINT64
AcpiOsGetTimer (

void)

PARAMETERS

None.

RETURN VALUE

TimerValue The current value of the system timer in 100-nanosecond
units.

Functional Description:

used to implement the Timer ASL/AML function.
This function returns the current value of a fine-granularity 64-bit system timer. This interface is

ACPI Component Architecture User Guide and Programmer Reference

261

9.11.2 AcpiOsSignal

Break to the debugger or display a breakpoint message.

ACPI_STATUS
AcpiOsSignal (

UINT32 Function,
void *Info)

PARAMETERS

Function Signal to be sent to the host operating system – one of these
manifest constants:

ACPI_SIGNAL_FATAL

ACPI_SIGNAL_BREAKPOINT

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function is used to pass various signals and notifications to the host operating system. The
following signals are supported:

ACPI_SIGNAL_FATAL

This signal corresponds to the AML Fatal opcode. It is sent to the host OS only when this opcode is
encountered in the AML stream. The host OS may or may not return control from this signal.

The definition of the Info structure for this signal is as follows:

typedef struct AcpiFatalInfo
{

UINT32 Type;
UINT32 Code;
UINT32 Argument;

} ACPI_SIGNAL_FATAL_INFO;

ACPI_SIGNAL_BREAKPOINT

char *BreakpointMessage;

This signal corresponds to the AML Breakpoint opcode. The OSL implements a “Breakpoint”
operation as appropriate for the host OS. If in debug mode, this interface may cause a break into the
host kernel debugger.

The definition of the Info structure for this signal is as follows:

ACPI Component Architecture User Guide and Programmer Reference

262

9.11.3 AcpiOsGetLine

Get a input line of data.

ACPI_STATUS
AcpiOsGetLine (

char *Buffer,
UINT32 BufferLength,
UINT32 *BytesRead)

PARAMETERS

Buffer Where to return the input line.

BufferLength Length of the Buffer (max data to return)

*BytesRead Where the actual byte count is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The line was successfully obtained.

AE_BUFFER_OVERFLOW The line was too large for the input buffer.

Functional Description:

desired.

Get one line of input from the debugger command line. The purpose of this function is to support
the ACPI Debugger, and it is therefore optional depending on whether ACPI debugger support is

ACPI Component Architecture User Guide and Programmer Reference

263

}

10 ACPICA Deployment Guide

10.1 Using the ACPICA Subsystem Interfaces

10.1.1 Initialization Sequence

In order to allow the most flexibility for the host operating system, there is no single interface that
initializes the entire ACPICA subsystem. Instead, the subsystem is initialized in stages, at the times
that are appropriate for the host OS. The following example shows the sequence of initialization
calls that must be made; it is up to the host interface (OS Services Layer) to make these calls when
they are appropriate.

1. Initialize all ACPI Code:

Status = AcpiInitializeSubsystem ();

2. Load the ACPI tables from the firmware and build the internal namespace:

Status = AcpiLoadTables ();

3. Complete initialization and put the system into ACPI mode:

Status = AcpiEnableSubsystem ();

10.1.2 ACPICA Initialization Examples

10.1.2.1 Full ACPICA Initialization

ACPI_STATUS

InitializeFullAcpi (void)

{

ACPI_STATUS Status;

/* Initialize the ACPICA subsystem */

Status = AcpiInitializeSubsystem ();

if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Initialize the ACPICA Table Manager and get all ACPI tables */

Status = AcpiInitializeTables (NULL, 16, FALSE);

if (ACPI_FAILURE (Status))

{

return (Status);

ACPI Component Architecture User Guide and Programmer Reference

264

ACPI_STATUS Status;

/* Create the ACPI namespace from ACPI tables */

Status = AcpiLoadTables ();

if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Note: Local handlers should be installed here */

/* Initialize the ACPI hardware */

Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);

if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Complete the ACPI namespace object initialization */

Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);

if (ACPI_FAILURE (Status))

{

return (Status);

}

return (AE_OK);

}

10.1.2.2 ACPICA Initialization With Early ACPI Table Access

#define ACPI_MAX_INIT_TABLES 16

static ACPI_TABLE_DESC TableArray[ACPI_MAX_INIT_TABLES];

ACPI_STATUS

InitializeAcpiTables (void)

{

ACPI_STATUS Status;

/* Initialize the ACPICA Table Manager and get all ACPI tables */

Status = AcpiInitializeTables (TableArray, ACPI_MAX_INIT_TABLES, TRUE);

return (Status);

}

ACPI_STATUS

InitializeAcpi (void)

{

ACPI Component Architecture User Guide and Programmer Reference

265

, the following calls should be made:

/* Initialize the ACPICA subsystem */

Status = AcpiInitializeSubsystem ();

if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Copy the root table list to dynamic memory */

Status = AcpiReallocateRootTable ();

if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Create the ACPI namespace from ACPI tables */

Status = AcpiLoadTables ();

if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Note: Local handlers should be installed here */

/* Initialize the ACPI hardware */

Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);

if (ACPI_FAILURE (Status))

{

return (Status);

}

/* Complete the ACPI namespace object initialization */

Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);

if (ACPI_FAILURE (Status))

{

return (Status);

}

return (AE_OK);

}

10.1.3 Shutdown Sequence

The ACPICA Subsystem does not absolutely require a shutdown before the system terminates. It
does not hold any cached data that must be flushed before shutdown. However, if the ACPICA
subsystem is to be unloaded at any time during system operation, the subsystem should be shutdown
so that resources that are held internally can be released back to the host OS. These resources
include memory segments, an interrupt handler, and the ACPI hardware itself. To shutdown the
ACPICA Subsystem

ACPI Component Architecture User Guide and Programmer Reference

266

Status = AE_OK;

1. Unload the namespace and free all resources:

Status = AcpiTerminate ();

10.1.4 Traversing the ACPI Namespace (Low Level)

This example demonstrates traversal of the ACPI namespace using the low-level Acpi* primitives.
The code is in fact the implementation of the higher-level AcpiWalkNamespace interface, and
therefore this example has two purposes:

1. Demonstrate how the low-level namespace interfaces are used.

2. Provide an understanding of how the namespace walk interface works.

ACPI_STATUS
AcpiWalkNamespace (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartHandle,
UINT32 MaxDepth,
WALK_CALLBACK UserFunction,
void *Context,
void **ReturnValue)

{
ACPI_HANDLE ObjHandle = 0;
ACPI_HANDLE Scope;
ACPI_HANDLE NewScope;
void *UserReturnVal;
UINT32 Level = 1;

/* Parameter validation */

if ((Type > ACPI_TYPE_MAX) ||
(!MaxDepth) ||
(!UserFunction))

{
return_ACPI_STATUS (AE_BAD_PARAMETER);

}

/* Special case for the namespace root object */

if (StartObject == ACPI_ROOT_OBJECT)
{

StartObject = Gbl_RootObject;
}

/* Null child means "get first object" */

ParentHandle = StartObject;
ChildHandle = 0;
ChildType = ACPI_TYPE_ANY;
Level = 1;

/*
* Traverse the tree of objects until we bubble back up to where we
* started. When Level is zero, the loop is done because we have
* bubbled up to (and passed) the original parent handle (StartHandle)
*/

while (Level > 0)
{

/* Get the next typed object in this scope. Null returned if not found */

ACPI Component Architecture User Guide and Programmer Reference

267

}

if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ParentHandle, ChildHandle,
&ChildHandle)))

{
/* Found an object, Get the type if we are not searching for ANY */

if (Type != ACPI_TYPE_ANY)
{

AcpiGetType (ChildHandle, &ChildType);
}

if (ChildType == Type)
{

/* Found a matching object, invoke the user callback function */

Status = UserFunction (ChildHandle, Level, Context, ReturnValue);
switch (Status)
{
case AE_OK:
case AE_DEPTH:

break; /* Just keep going */

case AE_TERMINATE:
return_ACPI_STATUS (AE_OK); /* Exit now, with OK status */
break;

default:
return_ACPI_STATUS (Status); /* All others are valid exceptions */
break;

}
}

/*
* Depth first search: Attempt to go down another
* level in the namespace if we are allowed to. Don't go any further if we
* have reached the caller specified maximum depth or if the user function
* has specified that the maximum depth has been reached.
*/

if ((Level < MaxDepth) && (Status != AE_DEPTH))
{

if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ChildHandle,
0, NULL)))

{
/* There is at least one child of this object, visit the object */

Level++;
ParentHandle = ChildHandle;
ChildHandle = 0;

}
}

}

else
{

/*
* No more children in this object (AcpiGetNextObject failed),
* go back upwards in the namespace tree to the object's parent.
*/
Level--;
ChildHandle = ParentHandle;
AcpiGetParent (ParentHandle, &ParentHandle);

}
}

return_ACPI_STATUS (AE_OK); /* Complete walk, not terminated by user function */

ACPI Component Architecture User Guide and Programmer Reference

268

10.1.5 Traversing the ACPI Namespace (High Level)

This example demonstrates the use of the AcpiWalkNamespace interface and other Acpi* interfaces.
It shows how to properly invoke AcpiWalkNamespace and write a callback routine.

This code searches for all device objects in the namespace under the system bus (where most, if not
all devices usually reside.) The callback function always returns NULL, meaning that the walk is not
terminated until the entire namespace under the system bus has been traversed.

Part 1: This is the top-level procedure that invokes AcpiWalkNamespace.

DisplaySystemDevices (void)
{

ACPI_HANDLE SysBusHandle;

AcpiNameToHandle (0, NS_SYSTEM_BUS, &SysBusHandle);

printf ("Display of all devices in the namespace:\n");

AcpiWalkNamespace (ACPI_TYPE_DEVICE, SysBusHandle, INT_MAX,
DisplayOneDevice, NULL, NULL);

}

Part 2: This is the callback routine that is repeatedly invoked from AcpiWalkNamespace.

}

void *
DisplayOneDevice (

ACPI_HANDLE ObjHandle,
UINT32 Level,
void *Context)

{
ACPI_STATUS Status;
ACPI_DEVICE_INFO Info;
ACPI_BUFFER Path;
char Buffer[256];

Path.Length = sizeof (Buffer);
Path.Pointer = Buffer;

/* Get the full path of this device and print it */

Status = AcpiHandleToPathname (ObjHandle, &Path);
if (ACPI_SUCCESS (Status))
{

printf ("%s\n", Path.Pointer));
}

/* Get the device info for this device and print it */

Status = AcpiGetDeviceInfo (ObjHandle, &Info);
if (ACPI_SUCCESS (Status))
{

printf (" HID: %.8X, ADR: %.8X, Status: %x\n",
Info.HardwareId, Info.Address, Info.CurrentStatus));

}

return NULL;

ACPI Component Architecture User Guide and Programmer Reference

269

necessary cleanup and exits the interrupt.

10.2 Implementing the OS Services Layer

10.2.1 Parameter Validation

In all implementations of the OS Services Layer, the interfaces should adhere to the descriptions in
the document as far as the actual interface parameters as well as the returned exception codes. This
means that the parameter validation is not optional and that the ACPICA Subsystem layer depends
on correct exception codes returned from the OSL.

10.2.2 Memory Management

Implementation of the memory allocation functions should be straightforward. If the host operating
system has several kernel-level memory pools that can be used for allocation, it may be useful to
know some of the dynamic memory requirements of the ACPICA Subsystem.

During initialization, the ACPI tables are either mapped from BIOS memory or copied into local
memory segments. Some of these tables (especially the DSDT) can be fairly large, up to about 64K.
The namespace is built from multiple small memory segments, each of a fixed (but configurable)
length. The default namespace table length is 16 entries times about 32 bytes each for a total of 512
bytes per table and per allocation.

During operation, many internal objects are created and deleted while servicing requests. The size of
an internal object is about 32 bytes, and this is the primary run-time memory request size.

Several internal caches are used within the Subsystem to minimize the number of requests to the
memory manager.

10.2.3 Scheduling Services

The intent of the AcpiOsQueueForExecution interface is to schedule another thread. It makes no
difference whether this is a new thread created at the time this call is made, or simply a thread that is
allocated out of a pool of system threads. Only the ACPICA Debugger creates a permanent thread.

10.2.4 Mutual Exclusion and Synchronization

In a single thread environment, the spinlock, mutex, and semaphore interfaces can simply return
AE_OK. In a multiple thread environment, these interfaces must be implemented with real blocking
spinlocks, mutexes, and semaphores since the mutual exclusion support in the Subsystem relies
completely upon the proper implementation of this mechanism and these interfaces.

10.2.5 Interrupt Handling

In order to support the OS-independent interrupt handler that is implemented within the ACPICA
Subsystem, the OSL must provide a local interrupt handler whose interface conforms to the
requirements of the host operating system. This local interrupt handler is a wrapper for the OS-
independent handler; it is the actual handler that is installed for the given interrupt level. The task of
this wrapper is to handle incoming interrupts and dispatch them to the OS-independent handler via
the OS-independent handler interface. When the handler returns, the wrapper performs any

ACPI Component Architecture User Guide and Programmer Reference

270

instructions.

10.2.6 Stream I/O

The AcpiOsPrintf and AcpiOsVprintf functions can usually be implemented using a kernel-level
debug print facility. Kernel printf functions usually output data to a serial port or some other special
debug facility. If there is more than one type of debug print routine, use one that can be called from
within an interrupt handler so that Fixed Events and General-Purpose events can be traced.

10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration)

The intent of the hardware I/O interfaces is to allow these calls to be translated into calls or macros
provided by the host OS for this purpose. However, if the host does not provide a hardware
abstraction service, these functions can be implemented simply and directly via I/O machine

ACPI Component Architecture User Guide and Programmer Reference

271

Examples:

11 User-Mode Tools and Utilities

11.1 Generating the ACPICA Tools/Utilities from Source

There are two major methods provided to generate the ACPICA tools and utilities from source code:

1) Makefiles are provided to generate in a unix-like environment. They can be modified to
conform to other environments as needed. The tools may be generated in either 32-bit or
64-bit mode.

2) Project files are provided to generate with the 32-bit Microsoft Visual Studio 2008.

11.1.1 Generic Unix Makefiles

The generic makefiles build all of the utilities (including iASL) by default using the gcc compiler.
For iASL, current versions of Flex/Bison (or Lex/Yacc) are requried. See the iASL User Guide for
additional iASL generation information.

The make build can be invoked from within the ACPICA source tree in one of two ways. There
exists a top-level makefile within the acpica directory, and a similar makefile under the
acpica/generate/unix directory.

Examples:

cd acpica
make clean
make

cd acpica/generate/unix
make clean
make

Individual tools can be generated by specifying the tool name on the make command line:

Examples:

make acpiexec
make acpidump
make acpixtract
make iasl
make acpihelp
make acpisrc
make acpibin
make acpinames

The following command line options are supported:

OPT_CFLAGS – Additional flags (etc.) to be passed to the compiler can be added.

NOOPT – Set to TRUE in order to disable compiler optimizations and the _FORTIFY_SOURCE
gcc option. Some older versions of gcc (such as 4.4 or earlier) may have problems compiling with
optimizations enabled, and this flag is provided to workaround the problem.

ACPI Component Architecture User Guide and Programmer Reference

272

Note: you may have to change the permissions on these files in order to write to them.

make OPT_CFLAGS=-Os
make NOOPT=TRUE

11.1.2 Visual Studio Project Files

The master Visual Studio 2008 solution file is located at:

acpica/generate/msvc9/AcpiComponents.sln

After loading this solution file, all of the ACPICA tools can be generated for Windows. The project
files assume the standard ACPICA source tree.

See the Visual Studio readme file for additional instructions, located at:

acpica/generate/msvc9/readme.txt

Note: generation of the iASL compiler requires Flex and Bison for Windows. See the iASL User
Guid for more information, as well as the readme file located at:

acpica/source/compiler/readme.txt

11.1.2.1 Visual Studio 2008 Installation Notes

The ACPICA source code is written in ANSI C for maximum portability, and is generated with all
C language extensions disabled.

There are a couple of header files in Visual Studio 2008 that unfortunately contain non-ANSI “//”
style comments. These will be flagged as warnings during every compile because the language
extensions are disabled. The offending header files must be modified in order to eliminate these
warnings.

The VC include files are under one of these directories:

\Program Files\Microsoft Visual Studio 9.0\VC\include

\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include

To eliminate the warnings, the following files must must be modified:

sal.h

stdlib.h

For each file, add this statement to the start of the file:

#pragma warning(disable : 4001) /* no warning about “//” comments” */

And add this statement to the end of the file:

#pragma warning(default : 4001)

For stdlib.h, you may also need to disable warning 4001 again before this line, near line 774:

#pragma warning (disable:6540)

ACPI Component Architecture User Guide and Programmer Reference

273

to make the system aware of the updated $PATH.

11.1.2.2 Flex/Bison for Windows Installation Notes

In order to generate the iASL compiler, the Windows versions of the GNU Flex/Bison tools must be
installed, and the must be installed in a directory that contains no embedded spaces in the pathname.
This means that they cannot be installed in the default path which contains the “C:\Program Files”
directory. This is bug in Bison. The default Windows project file for iASL assumes that these tools
are installed at this location:

C:\GnuWin32

Once the tools are installed, ensure that this path is added to the default system $PATH environment
variable:

C:\GnuWin32\bin

Go to: ControlPanel/System/AdvancedSystemSettings/EnvironmentVariables

Important: Now Windows must be rebooted

ACPI Component Architecture User Guide and Programmer Reference

274

oi Disable integer optimization to Zero/One/Ones

11.2 iASL Compiler

The iASL compiler is a fully-featured translator for the ACPI Source Language (ASL). As part of
the Intel ACPI Component Architecture, the Intel ASL compiler implements translation for the
ACPI Source Language (ASL) to the ACPI Machine Language (AML).

iASL also includes the ACPICA disassembler, and will disassemble any ACPI table, including both
tables that contain AML (DSDT, SSDT, OEMx) and tables that contain data only (all other ACPI
tables such as FADT, MADT, ECDT, etc.)

The compiler is fully documented in the iASL Compiler User Reference.

Intel ACPI Component Architecture
ASL Optimizing Compiler version 20131211-32 [Dec 11 2013]
Copyright (c) 2000 - 2013 Intel Corporation

Supports ACPI Specification Revision 5.0A

Usage: iasl [Options] [Files]
Options:

General:
-@ <file> Specify command file
-I <dir> Specify additional include directory
-T <sig>|ALL|* Create table template file for ACPI <Sig>
-p <prefix> Specify path/filename prefix for all output files
-v Display compiler version
-vo Enable optimization comments
-vs Disable signon

Help:
-h This message
-hc Display operators allowed in constant expressions
-hf Display help for output filename generation
-hr Display ACPI reserved method names
-ht Display currently supported ACPI table names

Preprocessor:
-D <symbol> Define symbol for preprocessor use
-li Create preprocessed output file (*.i)
-P Preprocess only, create preprocessor output file (*.i)
-Pn Disable preprocessor

Errors, Warnings, and Remarks:
-va Disable all errors/warnings/remarks
-ve Report only errors (ignore warnings and remarks)
-vi Less verbose errors and warnings for use with IDEs
-vr Disable remarks
-vw <messageid> Disable specific warning or remark
-w1 -w2 -w3 Set warning reporting level
-we Report warnings as errors

AML Code Generation (*.aml):
-oa Disable all optimizations (compatibility mode)
-of Disable constant folding
-

ACPI Component Architecture User Guide and Programmer Reference

275

les

-on Disable named reference string optimization
-cr Disable Resource Descriptor error checking
-in Ignore NoOp operators
-r <revision> Override table header Revision (1-255)

Optional Source Code Output Files:
-sc -sa Create source file in C or assembler (*.c or *.asm)
-ic -ia Create include file in C or assembler (*.h or *.inc)
-tc -ta -ts Create hex AML table in C, assembler, or ASL (*.hex)
-so Create offset table in C (*.offset.h)

Optional Listing Files:
-l Create mixed listing file (ASL source and AML) (*.lst)
-ln Create namespace file (*.nsp)
-ls Create combined source file (*.src)

Data Table Compiler:
-G Compile custom table that contains generic operators
-vt Create verbose template files (full disassembly)

AML Disassembler:
-d <f1 f2 ...> Disassemble or decode binary ACPI tables to file

(*.dsl)
(Optional, file type is automatically detected)

-da <f1 f2 ...> Disassemble multiple tables from single namespace
-db Do not translate Buffers to Resource Templates
-dc <f1 f2 ...> Disassemble AML and immediately compile it

(Obtain DSDT from current system if no input file)
-e <f1 f2 ...> Include ACPI table(s) for external symbol resolution
-fe <file> Specify external symbol declaration file
-g Get ACPI tables and write to files (*.dat)
-in Ignore NoOp opcodes
-vt Dump binary table data in hex format within output

file

Debug Options:
-bf -bt Create debug file (full or parse tree only) (*.txt)
-f Ignore errors, force creation of AML output file(s)
-m <size> Set internal line buffer size (in Kbytes)
-n Parse only, no output generation
-ot Display compile times and statistics
-x <level> Set debug level for trace output
-z Do not insert new compiler ID for DataTab

ACPI Component Architecture User Guide and Programmer Reference

276

x <DebugLevel> Debug output level

11.3 AcpiExec – User Mode ACPI Execution/Simulation

This utility can be used to load any ACPI tables from file(s), execute control methods, single step
control methods, inspect the ACPI namespace, etc. When generated from source, it contains the
entire ACPICA Subsystem including the ACPICA Debugger. All hardware access via the AML is
simulated. All ACPICA debugger commands are available (See the ACPICA Debugger Reference
later in this document.)

Intel ACPI Component Architecture
AML Execution/Debug Utility version 20131115-32 [Nov 15 2013]
Copyright (c) 2000 - 2013 Intel Corporation

Usage: acpiexec [options] AMLfile1 AMLfile2 ...
Options:

-b "CommandLine" Batch mode command line execution (cmd1;cmd2;...)
-h -? Display this help message
-m [Method] Batch mode method execution. Default=MAIN

-da Disable method abort on error
-di Disable execution of STA/INI methods during init
-do Disable Operation Region address simulation
-dr Disable repair of method return values
-dt Disable allocation tracking (performance)

-ef Enable display of final memory statistics
-ei Enable additional tests for ACPICA interfaces
-em Enable Interpreter Serialized Mode
-es Enable Interpreter Slack Mode
-et Enable debug semaphore timeout

-f <Value> Operation Region initialization fill value
-r Use hardware-reduced FADT V5
-v Display version information
-vi Verbose initialization output
-vr Verbose region handler output
-

ACPI Component Architecture User Guide and Programmer Reference

277

underscore

11.4 AcpiHelp – Display ACPI Help Information

This utility displays information about all known ASL operators and keywords, AML opcodes, and
ASL/AML predefined names.

Intel ACPI Component Architecture
ACPI Help Utility version 20131115-32 [Nov 15 2013]
Copyright (c) 2000 - 2013 Intel Corporation

Usage: acpihelp <options> [NamePrefix | HexValue]
Options:

-h Display help
-v Display version information

ACPI Names and Symbols:
-k [NamePrefix] Find/Display ASL non-operator keyword(s)
-m [NamePrefix] Find/Display AML opcode name(s)
-p [NamePrefix] Find/Display ASL predefined method name(s)
-s [NamePrefix] Find/Display ASL operator name(s)

ACPI Values:
-e [HexValue] Decode ACPICA exception code
-i Display known ACPI Device IDs (_HID)
-o [HexValue] Decode hex AML opcode

NamePrefix/HexValue not specified means "Display All"

Default search with NamePrefix and no options:
Find ASL operator names - if NamePrefix does not start with underscore
Find ASL predefined method names - if NamePrefix starts with

ACPI Component Architecture User Guide and Programmer Reference

278

Default invocation extracts the DSDT and all SSDTs

11.5 AcpiDump – Dump System ACPI Tables

This portable utility obtains the binary system ACPI tables and dumps them to an ASCII text file
suitable for input to the AcpiXtract utility.

The actual actraction of tables from the system is dependent on the host OS. To port to a new OS, a
single module must be written to implement the interfaces that get ACPI tables.

Intel ACPI Component Architecture
ACPI Binary Table Dump Utility version 20130823-32 [Aug 23 2013]
Copyright (c) 2000 - 2013 Intel Corporation

Usage: acpidump [options]
Options:

-b Dump tables to binary files
-c Dump customized tables
-h -? This help message
-o <File> Redirect output to file
-r <Address> Dump tables from specified RSDP
-s Print table summaries only
-v Display version information
-z Verbose mode

Table Options:
-a <Address> Get table via a physical address
-f <BinaryFile> Get table via a binary file
-n <Signature> Get table via a name/signature

11.6 AcpiXtract – Extract ACPI Tables

This utility is used to extract binary ACPI tables from the ASCII output of the AcpiDump utility.

Intel ACPI Component Architecture
ACPI Binary Table Extraction Utility version 20131115-32 [Nov 15 2013]
Copyright (c) 2000 - 2013 Intel Corporation

Usage: acpixtract [option] <InputFile>
Options:

-a Extract all tables, not just DSDT/SSDT
-l List table summaries, do not extract
-s <signature> Extract all tables with <signature>
-v Display version information

Extract binary ACPI tables from text acpidump output

ACPI Component Architecture User Guide and Programmer Reference

279

51% code, 20% comments, 17% whitespace, 16% headers

11.7 AcpiSrc – Convert ACPICA Source Code

This utility is used to convert the ACPICA into Linux code format. It can also be used to clean the
ACPICA code by removing extra trailing blanks, etc., and to generate source code statistics.

Intel ACPI Component Architecture
ACPI Source Code Conversion Utility version 20130823-32 [Aug 23 2013]
Copyright (c) 2000 - 2013 Intel Corporation

Usage: acpisrc [-c|l|u] [-dsvy] <SourceDir> <DestinationDir>
Options:

-c Generate cleaned version of the source
-h Insert dual-license header into all modules
-l Generate Linux version of the source
-u Generate Custom source translation

-d Leave debug statements in code
-s Generate source statistics only
-v Display version information
-vb Verbose mode
-y Suppress file overwrite prompts

Example output – source code statistics for ACPICA:

Intel ACPI Component Architecture
ACPI Source Code Conversion Utility version 20130823-32 [Aug 23 2013]
Copyright (c) 2000 - 2013 Intel Corporation

Source code statistics only
AcpiSrc statistics:

339 Files processed
7670350 Total bytes (22.1K/file)

53 Tabs found
0 Missing if/else braces

27 Non-ANSI comments found
218962 Total Lines
113108 Lines of code
39405 Lines of non-comment whitespace
43889 Lines of comments
4810 Long lines found
2.9 Ratio of code to whitespace
2.6 Ratio of code to comments

ACPI Component Architecture User Guide and Programmer Reference

280

0 MAIN Method 00347690 01 Args 7 Len 0023 Aml 0034711E

11.8 AcpiNames – Example Namespace Dump

This utility is provided to give an example of a minimal configuration of ACPICA. It will load a
DSDT from a file and simply dump the entire namespace.

The ACPICA components that are used are the Table Manager and Namespace Manager. It does not
include the AML interpreter.

Functionality is a subset of the AcpiExec utility, so the purpose of AcpiNames is to show how to
configure ACPICA for a subset of the various available managers.

Example:

C:\acpinames dsdt.aml

Intel ACPI Component Architecture
ACPI Namespace Dump Utility version 20110413-32 [April 13 2011]
Copyright (c) 2000 - 2011 Intel Corporation

Loading Acpi table from file dsdt.aml
ACPI: RSDP 00424F04 0002C (v02 I_TEST)
ACPI: XSDT 00347150 0002C (v01 00000000 00000000)
ACPI: FACP 00424F28 000F4 (v03 00000000 00000000)
ACPI: DSDT 003470E8 00059 (v02 Intel Template 00000001 INTL 20110413)
ACPI: FACS 00425020 00040

ACPI Namespace:
0 _GPE Scope 00344E88 00
0 _PR_ Scope 00344EA8 00
0 _SB_ Device 00344EC8 00
0 _SI_ Scope 00344EE8 00
0 _TZ_ Device 00344F08 00
0 _REV Integer 00344F28 00 = 0000000000000003
0 _OS_ String 00344F80 00 Len 14 "Microsoft Windows NT"
0 _GL_ Mutex 00344FD8 00 Object 00344FF8
0 _OSI Method 00345030 00 Args 1 Len 0000 Aml 00000000
0 DUMP Method 00347558 01 Args 1 Len 0004 Aml 00347113

ACPI Component Architecture User Guide and Programmer Reference

281

12 ACPICA Debugger Reference

12.1 Overview

The ACPICA AML Debugger is an optional subcomponent of the ACPICA Subsystem. It can be
operated standalone or in conjunction with (or as an extension of) a native kernel debugger. The
debugger provides the ability to load ACPI tables, dump internal data structures, execute control
methods, disassemble control methods, single step control methods, and set breakpoints within
control methods.

12.2 Supported Environments

The debugger can be executed in a ring 0 (kernel) or ring 3 (application) environment. The
following combinations of debugger and front-end (user-interface) are supported:

 Ring 0 Debugger, Ring 0 Front-End: In this case, the front-end is a host kernel debugger,
and the Debugger operates as an extension to the host debugger.

 Ring 0 Debugger, Ring 3 Front-End. In this mode, the front-end is a ring 3 application that
obtains the command lines from the user and sends them to the debugger executing in Ring
0. The actual mechanism used for this communication is dependent on the host operating
system.

 Ring 3 Debugger, Ring 3 Front-End. In this mode, the entire ACPICA subsystem (including

and the display of arguments to each executed control method.

the debugger) resides in a Ring 3 application. A single thread can be used for the user
interface, debugger, and AML control method execution. An example of this mode is the
AcpiExec utility.

12.2.1 The AcpiExec Utility

An example of the Ring3/Ring3 model of execution is the user mode AcpiExec utility. This
application includes the entire ACPICA subsystem (including the Debugger) and allows the user to
load ACPI tables from files and execute methods contained in the tables.

Of course, hardware and memory access from Ring 3 is very limited. The AcpiExec utility simulates
hardware access.

12.3 Debugger Architecture

The ACPI debugger consists of the following architectural elements:

 A command line interpreter that receives entire command lines from the host, parses them
into commands and parameters, and dispatches the request to the appropriate handler for the
command.

 A group of modules that implement the various debugger commands.

 A group of callback routines that are invoked by the interpreter/dispatcher during the
execution control methods. These callbacks enable the single stepping of control methods

ACPI Component Architecture User Guide and Programmer Reference

282

When executing in a Ring 0 environment, the debugger initialization creates a separate thread for
the debugger CLI. This threads performs the following tasks until the debugger is shut down:

1. Wait for a command line by calling the AcpiOsGetLine interface

2. Execute the command

All output from the debugger is via the AcpiOsPrint and AcpiOsVprintf interfaces.

The overall architecture of the ACPI Debugger is shown in the diagram below. Note how the
Debugger CLI uses the AcpiOsGetLine interface to obtain user command lines, and how output
from the entire debugger and ACPICA subsystem can be directed to the console, a file, or both via
the implementation of the AcpiOsPrint interface within the OSL layer. Also note how the debugger
and ACPICA subsystem can reside in a different protection ring than the user console support and
file I/O support.

Figure 9. ACPICA Debugger Architecture

OsdPrint()

Console
Debugger Command

Line Interpreter

Debugger Command Implementations

ACPI CA Core Subsystem

Debug
Output

File

OS-Dependent Layer

OsdGetLine()

Ring3 or Ring0 Ring3 or Ring0

This is the actual command execution code

12.4 Configuration and Installation

The basic idea behind the debugger thread is that it receives a command line from somewhere and
then asynchronously executes it. The command line can come from a ring 3 application (a debugger
front-end), or it can come from the resident kernel debugger (you would install a debugger
extension that forwards command lines to the debugger.)

With this in mind, there are several key components of the debugger:

1. DbInitialize – Initializes the debugger semaphores and creates the debugger thread,
DbExecuteThread

2. DbCommandDispatch –

ACPI Component Architecture User Guide and Programmer Reference

283

3. DbExecuteThread – Waits for a command to become available (as indicated by the
MTX_DEBUG_CMD_READY mutex), executes the command, (via DbCommandDispatch),
then signals command completion via the MTX_DEBUG_CMD_COMPLETE mutex.

4. DbUserCommands – An example command loop that must execute in its own thread (this is

thread mode of the debugger.

the caller thread, not a thread that is part of the debugger). This loop obtains a command line
via AcpiOsGetLine, puts it into the LineBuf buffer, and signals the DbExecuteThread that a
command line is available. It is not necessary to use this procedure, however, if command
lines become available from somewhere besides AcpiOsGetLine.

5. DbSingleStep – Called from the dispatcher just before an AML opcode is executed.
Implements its own command loop that obtains command lines from either the
MTX_DEBUG_CMD_READY mutex (multi-thread mode), or by calling AcpiOsGetLine
directly (single thread mode). Drops out of the loop when the control method is aborted or is
allowed to continue running (perhaps just to the next opcode…)

This is the basic thread model and handshake with the outside world. To integrate the debugger into
a specific environment, it is your responsibility to get command lines to the DbExecuteThread via
the LineBuf and the MTX_DEBUG_CMD_READY mutex. Alternatively, you can just call the
DbCommandDispatch directly if you don’t need an asynchronous debugger thread. Additional
explanation follows.

The AcpiExec Ring3 application uses DbUserCommands to process command lines
(DbUserCommands is actually called from aemain.c). However, if integrating with a kernel
debugger, you will probably want to implement your own mechanism instead of using the
DbUserCommands loop. I would imagine this would entail the following:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Signal the DbExecuteThread that a command is available. (MTX_DEBUG_CMD_READY).

4. Wait for the command to complete (MTX_DEBUG_CMD_COMPLETE).

5. Return to the kernel debugger.

If you don’t need the extra debugger thread, you can simply execute commands in the caller’s
context:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Call DbCommandDispatch to execute the command directly.

4. Return to the kernel debugger.

The behavior of the debugger can be configured as follows (via the config.h header):

#define DEBUGGER_THREADING DEBUGGER_SINGLE_THREADED

This sets the single thread mode of the debugger.

#define DEBUGGER_THREADING DEBUGGER_MULTI_THREADED

This sets the multi-

ACPI Component Architecture User Guide and Programmer Reference

284

Disassemble a control method

Basically, in multithread mode, we just wait for some other thread to fill the LineBuf with a
command and signal the semaphore. In single thread mode, we explicitly call AcpiOsGetLine to get
a command line.

12.5 Command Overview

There are six classes of commands supported by the debugger:

1. The General-Purpose commands are available in all modes of the debugger. These
commands provide the basic functionality of loading tables, dumping internal data structures,
and starting the execution of control methods.

2. The Namespace Access commands are always available. These commands provide
information about the currently loaded ACPI namespace.

3. The Control Method Execution commands are available only during the single-step
execution of control methods. These commands allow the display and modification of method
arguments and local variables, control method disassemble, and the setting of method
breakpoints

4. The Hardware-Related commands are intended to simulate hardware events such as Fixed
events, GPEs, and SCIs by invoking the dispatch code for the event. This will in turn invoke
any host-installed handlers.

5. The File I/O commands are available only if a filesystem is available to the debugger.

6. The Debug Test commands provide various namespace tests.

12.6 Command Summary
General-Purpose Commands:

Allocations Display list of current memory allocations
Dump <Address>|<Namepath>

[Byte|Word|Dword|Qword] Display ACPI objects or memory
EnableAcpi Enable ACPI (hardware) mode
Handlers Info about global handlers
Help [Command] This help screen or individual command
History Display command history buffer
Level <DebugLevel>] [console Get/Set debug level for file or console
Locks Current status of internal mutexes
Osi [Install|Remove <name>] Display or modify global _OSI list
Quit or Exit Exit this command
Stats <SubCommand> Display namespace and memory statistics

Allocations Display list of current memory allocations
Memory Dump internal memory lists
Misc Namespace search and mutex stats
Objects Summary of namespace objects
Sizes Sizes for each of the internal objects
Stack Display CPU stack usage
Tables Info about current ACPI table(s)

Tables Display info about loaded ACPI tables
Unload <Namepath> Unload an ACPI table via namespace object
! <CommandNumber> Execute command from history buffer
!! Execute last command again

Namespace Access Commands:
Businfo Display system bus info
Disassemble <Method>

ACPI Component Architecture User Guide and Programmer Reference

285

Execute all ACPI predefined names (_STA, etc.)

Find <AcpiName> (? is wildcard) Find ACPI name(s) with wildcards
Integrity Validate namespace integrity
Methods Display list of loaded control methods
Namespace [Object] [Depth] Display loaded namespace tree/subtree
Notify <Object> <Value> Send a notification on Object
Objects <ObjectType> Display all objects of the given type
Owner <OwnerId> [Depth] Display loaded namespace by object owner
Paths Display full pathnames of namespace objects
Predefined Check all predefined names
Prefix [<NamePath>] Set or Get current execution prefix
References <Addr> Find all references to object at addr
Resources [DeviceName] Display Device resources (no arg = all devices)
Set N <NamedObject> <Value> Set value for named integer
Template <Object> Format/dump a Buffer/ResourceTemplate
Terminate Delete namespace and all internal objects
Type <Object> Display object type

Control Method Execution Commands:
Arguments (or Args) Display method arguments
Breakpoint <AmlOffset> Set an AML execution breakpoint
Call Run to next control method invocation
Debug <Namepath> [Arguments] Single Step a control method
Evaluate Synonym for Execute
Execute <Namepath> [Arguments] Execute control method

Hex Integer Integer method argument
"Ascii String" String method argument
(Hex Byte List) Buffer method argument
[Package Element List] Package method argument

Go Allow method to run to completion
Information Display info about the current method
Into Step into (not over) a method call
List [# of Aml Opcodes] Display method ASL statements
Locals Display method local variables
Results Display method result stack
Set <A|L> <#> <Value> Set method data (Arguments/Locals)
Stop Terminate control method
Thread <Threads><Loops><NamePath> Spawn threads to execute method(s)
Trace <method name> Trace method execution
Tree Display control method calling tree
<Enter> Single step next AML opcode (over calls)

Hardware Related Commands:
Event <F|G> <Value> Generate AcpiEvent (Fixed/GPE)
Gpe <GpeNum> <GpeBlock> Simulate a GPE
Gpes Display info on all GPEs
Sci Generate an SCI
Sleep [SleepState] Simulate sleep/wake sequence(s) (0-5)

File I/O Commands:
Close Close debug output file
Load <Input Filename> Load ACPI table from a file
Open <Output Filename> Open a file for debug output

Debug Test Commands:
Test <TestName> Invoke a debug test

Objects Read/write/compare all namespace data objects
Predefined

ACPI Component Architecture User Guide and Programmer Reference

286

12.7 General Purpose Commands

12.7.1 Allocations

Memory allocation status

SYNTAX

- allocations

This command dumps the current status of the dynamic memory allocations, as maintained by the
ACPICA subsystem debug memory allocation tracking mechanism. Primarily used to detect
memory leaks, the mechanism tracks the allocation and freeing of each memory block, and
maintains statistics on the amount of memory allocated, the number of allocations, etc.

12.7.2 Dump

Display objects and memory

SYNTAX

- dump <Address>|<Namepath> [Byte|Word|Dword|Qword]

A generic command to dump all internal ACPI objects and memory. The operand can be a
namespace name, a pointer to an ACPI object, or a pointer to random memory in the current address
space. The command determines the type of ACPI object and decodes it into the appropriate fields

12.7.3 Exit

Terminate

SYNTAX

- exit

Terminate the ACPICA subsystem and exit the debugger.

12.7.4 Handlers

Display information about currently installed handlers

Example:

SYNTAX

- handlers

Displays information about all currently installed global handlers.

ACPI Component Architecture User Guide and Programmer Reference

287

Operation Region Handlers:
SystemMemory (00) : User (00420420)

SystemIO (01) : User (00420420)
PCI_Config (02) : Default (00440F20)

EmbeddedControl (03) : User (00420420)
SMBus (04) : User (00420420)

SystemCMOS (05) : None
PCIBARTarget (06) : User (00420420)

IPMI (07) : User (00420420)
GeneralPurposeIo (08) : User (00420420)
GenericSerialBus (09) : User (00420420)

DataTable (7E) : Default (00441160)
FunctionalFixedHW (7F) : User (00420420)

User-defined ID (E4) : User (00420420)
User-defined ID (80) : User (00420420)

Fixed Event Handlers:
PM_Timer (00) : None

GlobalLock (01) : User (0041FEB0)
PowerButton (02) : None
SleepButton (03) : None

RealTimeClock (04) : User (0041FEB0)

Miscellaneous Global Handlers:
System Notifications : User (00480370)
Device Notifications : User (00480D30)

ACPI Table Events : User (00480D3C)
Control Method Exceptions : User (004805B0)

OSI Invocations : User (00480CE8)

12.7.5 Help

Get help

SYNTAX

- help

Displays a help screen with the syntax of each command and a short description of each.

12.7.6 History (! And !!)

Command line recall

!!

SYNTAX

- history

- ! <Command Number>

-

ACPI Component Architecture User Guide and Programmer Reference

288

last few commands. The “!” command can be used to select and re-execute a particular command
from the numbered command buffer, or the “!!” command can be used to simply re-execute the
immediately previous command.

12.7.7 Level

Set debug output level

SYNTAX

- level [<DebugLevel>] [console]

Sets the global debug output level of the ACPICA subsystem for both output directed to a file and
output to the console.

12.7.8 Locks

Display mutex info and status

SYNTAX

- locks

This command displays information and current status of the various mutexes used for internal
synchronization.

12.7.9 Osi

Display or modify the current list of supported interfaces for the _OSI method

Removes an interface from the global list.

SYNTAX

- osi [Install|Remove <interface name>]

This command displays or modifies the current contents of the global list of _OSI interfaces that are
supported.

SUBCOMMANDS

- osi

The standalone command will display the entire global list of _OSI interfaces.

- osi install “My interface”

Installs an interface name into the global list.

- osi remove “Windows 2000”

ACPI Component Architecture User Guide and Programmer Reference

289

12.7.10 Quit

Terminate

SYNTAX

- quit

Terminate the current execution mode. If executing (single stepping) a control method, the method
is immediately aborted with an exception and the debugger returns to the normal command line
mode. If no control method is executing, the ACPICA subsystem is terminated and the debugger
exits.

12.7.11 Stats

Namespace statistics

SYNTAX

- stats [Allocations|Memory|Misc|Objects|Sizes|Stack|Tables]

Display namespace statistics that were gathered when the namespace was loaded. This includes
information about the number of objects and their types, the amount of dynamic memory required,
and the number of search operations performed on the namespace database.

SUBCOMMANDS

Allocations: Display a list of current dynamic memory allocations

Memory: Dump internal memory lists (If ACPICA memory cache is configured)

Misc: Namespace search and mutex use statistics

Objects: Summary of namespace objects

Sizes: Memory allocation sizes for each of the internal objects

Stack: Display CPU stack usage

Tables: Memory information about currently loaded ACPI tables

12.7.12 Tables

Display ACPI table info

function.

SYNTAX

- tables

This command displays information about each of the loaded ACPI tables. It uses the internal
AcpiTbPrintTableHeader

ACPI Component Architecture User Guide and Programmer Reference

290

12.7.13 Unload

Unload table

SYNTAX

- unload <TableSignature> [Instance]

Unload an ACPI Table <Not implemented>

12.8 Namespace Access Commands

12.8.1 BusInfo

Display system bus information

SYNTAX

- businfo

This command displays information about all device objects that have a corresponding _PRT
method. Information includes the _ADR, _HID, _UID, and _CID.

12.8.2 Disassemble

Disassemble a control method

SYNTAX

- disassemble <Method>

This command will dissassemble the input method to the original ASL code.

12.8.3 Find

Find names in the Namespace

“A???” will match all names in the namespace that begin with the letter “A”.

SYNTAX

- find <name>

Find an ACPI name or names within the current ACPI namespace. All names that match the given
name are displayed as they are found in the namespace. Names are up to four characters, and
wildcards are supported. A ‘?’ in the name will match any character. Thus, the wildcarded name

ACPI Component Architecture User Guide and Programmer Reference

291

12.8.4 Integrity

Validate namespace

SYNTAX

- integrity

This command validates the integrity of the entire loaded namespace. It walks the entire namespace
and checks each namespace node for correctness.

12.8.5 Methods

List all control methods

SYNTAX

- methods

Displays a list of all control methods (and their full pathnames) that are contained within the current
ACPI namespace. (Alias for the command “Object Methods”.)

12.8.6 Namespace

Display the loaded ACPI namespace

SYNTAX

- namespace [<Address> | <Namepath>] [Depth]

Dump all or a portion of the current ACPI namespace. If given with no parameter, this command
displays the entire namespace, one named object per line with information about each object. If
given the name of an object or a pointer to an object, it displays the subtree rooted by that object.

12.8.7 Notify

Generate a Notify

invoked with the parameters specified.

SYNTAX

- notify <Namepath> <Value>

Generates a notify on the specified device. This means that the notify handler for the device is

ACPI Component Architecture User Guide and Programmer Reference

292

12.8.8 Objects

Display typed objects

SYNTAX

- objects <Object Type>

Display objects within the namespace of the requested type.

The ObjectType parameter must be one of the following:

ANY
INTEGERS
STRINGS
BUFFERS
PACKAGES
FIELDS
DEVICES
EVENTS
METHODS
MUTEXES
REGIONS
POWERRESOURCES
PROCESSORS
THERMALZONES
BUFFERFIELDS
DDBHANDLES
DEBUG
REGIONFIELDS
BANKFIELDS
INDEXFIELDS
REFERENCES
ALIAS

12.8.9 Owner

Display namespace by owner ID

Display objects within the namespace owned by the requested Owner ID.

SYNTAX

- owner <Owner ID> [Depth]

ACPI Component Architecture User Guide and Programmer Reference

293

12.8.10 Paths

Display the full pathnames of all objects in ACPI namespace

SYNTAX

- paths

Dumps the full pathnames and object types of all objects in the ACPI namespace. Alternative to the
namespace command.

12.8.11 Predefined

Display and check all predefined methods/objects

SYNTAX

- predefined

This command displays and validates all predefined methods and objects (names that start with
underscore and are predefined by the ACPI specification.)

The validation checks the input argument count (if object is a control method) against the count
defined in the ACPI spec.

12.8.12 Prefix

Get or Set current prefix

SYNTAX

- prefix [<NamePath>]

Sets the pathname prefix that is prepended to namestrings entered into the debug and execute
commands. This command is the equivalent of the “CD” command.

12.8.13 References

Find all references to an object within the namespace

Display all references to the object at the specified address.

SYNTAX

- references <Address>

ACPI Component Architecture User Guide and Programmer Reference

294

12.8.14 Resources

Display device resources

SYNTAX

- resources <Address>

Display resource lists (_PRS, _CRS, _AEI, etc.) for the Device object at the specified address.

12.8.15 Set N

Set object value

SYNTAX

- set N <NamedObject> <Value>

This command sets the value of a namespace object.

12.8.16 Template

Display a Resource Template (buffer)

SYNTAX

- template <Address>

Disassemble a ResourceTemplate at the input address. The object must be a buffer.

12.8.17 Terminate

Shutdown ACPICA subsystem

all known internal objects. Any objects left over after shutdown are displayed and may be examined.

SYNTAX

- terminate

Shutdown the ACPICA subsystem, but don’t exit the debugger. This command is useful to find
memory leaks in the form of objects left over after the subsystem deletes the entire namespace and

ACPI Component Architecture User Guide and Programmer Reference

295

12.8.18 Type

Display object type

SYNTAX

- type <Object>

This command displays the type of a namespace object.

12.9 Control Method Execution Commands

During single stepping of a control method, the following commands are available. The debugger
enters a slightly different command mode (as indicated by the ‘%’ prompt) when single stepping a
control method to indicate that these commands are now available

12.9.1 Arguments

Display Method arguments

SYNTAX

- arguments

- args

Display all arguments to the currently executing control method

12.9.2 Breakpoint

Set control method breakpoint

SYNTAX

- breakpoint <AML Offset>

Set a breakpoint at the AML offset given. When execution reaches this offset, execution is stopped
and the debugger is entered.

12.9.3 Call

Run to next call

Step execution of the current control method until the next method invocation (call) is encountered.

SYNTAX

- call

ACPI Component Architecture User Guide and Programmer Reference

296

12.9.4 Debug

Single step a control method

SYNTAX

- debug <Namepath> [Arg0 Arg1 …]

Begin execution of a control method in single step mode. Each AML opcode and its associated
operand(s) is disassembled and displayed before execution. A single carriage return (Enter) single
steps to the next AML opcode. The values of the arguments and the value of the return value (if
any) are displayed for each opcode. See the section below, “Specifying Method Arguments” for
details and syntax for Arg0…Argn.

12.9.5 Execute

Execute a control method

Strings are specified by surrounding the string with quotes.

SYNTAX

- execute <Namepath> [Arg0 Arg1 …]

Execute a control method. This command begins execution of the named method and lets it run to
completion without single stepping. The return result if any is displayed after execution completes.

Supported objects for method arguments are Integers, Strings, Buffers, and Packages

12.9.5.1 Specifying Method Arguments

For both the Debug and Execute commands, up to seven arguments (ACPI maximum) for the
control method may be specified on the command line. The following data types are supported:

Integers
Strings
Buffers
Packages (nested packages are supported)

The data types and command line syntax are described below. Individual arguments should be
separated by spaces.

If a method requires one or more arguments and either no or too few arguments are specified on the
command line, the debugger will create default arguments for the missing arguments. The default
arguments are of type Integer.

Integers

This is the simplest data type and consists of a integer hex value. The maximum data width is either
32 bits or 64 bits, depending on the version of the loaded DSDT. Version 1 or less uses 32-bit
integers. Version 2 or greater allows full 64-bit integers.

Strings

ACPI Component Architecture User Guide and Programmer Reference

297

Buffers

Buffers are specified via a list of hex byte values (separated by either commas or spaces). The list
must be surrounded by parentheses.

Packages

Packages are specified via a list of package elements (Integers, Strings, Buffers, and Packages are
supported). The list must be surrounded by brackets “[]”.

Example

This example shows a control method invocation with 4 arguments in this order: An integer, a
string, a buffer, and a nested package. The package object contains an integer, a string, a buffer, and
a nested package containing a single integer.

Execute TEST 1234 “abcd” (11 22 33 44) [5678 “efgh” (55 66 77 88) [9876]]

12.9.6 Go

Run method to next breakpoint

SYNTAX

- go

Cease single step mode and let the control method run freely until either a breakpoint is reached or
the method terminates.

12.9.7 Information

Info about a control method

SYNTAX

- information

12.9.8 Into

Step into call

the call returns. Use this command to single step the execution of a called control method.

SYNTAX

- into

Step into a control method invocation instead of over the call. The default single step behavior is to
step over control method calls, meaning that the call is executed and single stepping resumes after

ACPI Component Architecture User Guide and Programmer Reference

298

12.9.9 List

Disassemble AML code

SYNTAX

- list [<Opcode count>]

Disassemble the AML code of the current control method from the current AML offset for the
length given. Useful for finding interesting places to set breakpoints.

12.9.10 Locals

Display method local variables

SYNTAX

- locals

Display the current values of all of the local variables for the current control method. When stepping
into a control method invocation, the locals of the newly invoked method are displayed during the
time that method is single stepped.

12.9.11 Results

Display method result stack

SYNTAX

- results

Display the current contents of the internal “Result Stack” for the control method.

12.9.12 Set

Set arguments or locals

for method arguments.

SYNTAX

- set Arg|Local <ID> <Value>

Set the value of any of a method’s arguments or local variables. ID is 0-7 for method locals and 0-6

ACPI Component Architecture User Guide and Programmer Reference

299

12.9.13 Stop

Stop method

SYNTAX

- stop

Terminate the currently executing control method

12.9.14 Thread

Execute a control method with multiple threads

SYNTAX

- thread <number of threads> <number of loops> <Pathname>

Create the specified number of threads to execute the control method at <Pathname>. Each thread
will execute the method <number of loops> times. The command waits until all threads have
completed before returning.

12.9.15 Trace

Set a method trace

SYNTAX

- trace <method name>

This command sets a trace command that will trace the input method if and when it is executed.
Uses the AcpiDebugTrace interface.

12.9.16 Tree

Display calling tree

ing tree of the current method (Displays all nested control method invocations.)

SYNTAX

- tree

Display the call

ACPI Component Architecture User Guide and Programmer Reference

300

12.10 Hardware-Related Commands

12.10.1 Event

Generate an ACPI Event

SYNTAX

- event <Value>

Generate an ACPI event to test event handling <NOT IMPLEMENTED>

12.10.2 Gpe

Generate a GPE

SYNTAX

- gpe <Block Address> <GPE number>

Generate a GPE at the GPE number within the GPE block specified at the Block Address. Use 0 for
the block address to generate a GPE within the permanent FADT-defined GPE blocks (GPE0 and
GPE1.).

12.10.3 Gpes

Display GPE block information

SYNTAX

- gpes

Display information on all GPE blocks, including the FADT-defined GPE blocks (GPE0 and GPE1)
and all loaded GPE Block Devices.

12.10.4 Sci

Generate an ACPI System Control Interrupt

handlers.

SYNTAX

- sci

Generate an ACPI SCI to test SCI handling and handler dispatch. Invokes all host-installed

ACPI Component Architecture User Guide and Programmer Reference

301

12.10.5 Sleep

Simulate ACPI Sleep/Wake sequences

SYNTAX

- sleep <SleepState>

This command simulates the sleep/wake sequence. SleepState should be an integer, 0-5. The
following ACPICA interfaces are executed:

AcpiEnterSleepStatePrep
AcpiEnterSleepState
AcpiLeaveSleepState

If the optional SleepState is not specified (command is invoked with no arguments), then all of the
possible sleep states (0-5) are executed.

12.11 File I/O Commands

12.11.1 Close

Close debug output file

SYNTAX

- close

Close the debug output file, if one is currently open. Using Exit or Quit to terminate the debugger
will automatically close any open file.

12.11.2 Load

Load ACPI table

SYNTAX

- load <Filename>

Load an ACPI table into the namespace from a file.

12.11.3 Open

Open debug output file

pen <Filename>

SYNTAX

- o

ACPI Component Architecture User Guide and Programmer Reference

302

Open a file for debug output.

12.12 Debug Test Commands

12.12.1 Test Objects

Exercise namespace data objects (read/write/compare)

SYNTAX

- test objects

Perform a read/write/compare on all “data” objects in the namespace – Integers, Strings, Buffers,
FieldUnits, and BufferFields. Restores the original value of each object.

12.12.2 Test Predefined

Execute all predefined ACPI names in the namespace (_STA, etc.)

arguments that are appropriate for each name, as necessary.

SYNTAX

- test predefined

Executes all predefined names in the namespace (all names that begin with an underscore). Provides

ACPI Component Architecture User Guide and Programmer Reference

303

nk.This page intentionally left bla

	1 Introduction
	1.1 Document Structure
	1.2 Rationale and Justification
	1.3 Reference Documents
	1.4 Document History
	1.5 Overview of the ACPI Component Architecture

	2 Architecture Overview
	2.1 Overview of the ACPICA Subsystem
	2.1.1 OS-independent ACPICA Subsystem
	2.1.2 Operating System Services Layer
	2.1.3 Relationships Between Host OS, ACPICA, and Host OSL
	2.1.3.1 General Architectural Model
	2.1.3.2 Host Operating System Interaction
	2.1.3.3 OS Services Layer Interaction
	2.1.3.4 ACPICA Subsystem Interaction

	2.2 Architecture of the ACPICA Subsystem
	2.2.1 ACPI Table Management
	2.2.2 Early ACPI Table Access
	2.2.3 AML Interpreter
	2.2.4 Namespace Management
	2.2.5 Resource Management
	2.2.6 ACPI Hardware Management
	2.2.7 Event Handling
	2.2.8 Requests from Host OS to ACPICA Subsystem

	2.3 Architecture of the OS Services Layer (OSL)
	2.3.1 Types of OSL Services
	2.3.2 Requests from ACPICA Subsystem to OS

	3 Design Details
	3.1 ACPI Namespace Fundamentals
	3.1.1 Named Objects
	3.1.2 Scopes
	3.1.2.1 Example Namespace Scopes, Names, and Objects

	3.1.3 Predefined Objects
	3.1.4 Logical Namespace Layout

	3.2 Execution Model
	3.2.1 Initialization
	3.2.2 Memory Allocation
	3.2.2.1 Caller Allocates All Buffers
	3.2.2.2 ACPI Allocates Return Buffers

	3.2.3 Parameter Validation
	3.2.4 Exception Handling
	3.2.5 Multitasking and Reentrancy
	3.2.6 Event Handling
	3.2.6.1 Fixed Events
	3.2.6.2 General Purpose Events
	3.2.6.3 Notify Events

	3.2.7 Address Spaces and Operation Regions
	3.2.7.1 Installation of Address Space Handlers
	3.2.7.2 ACPI-Defined Address Spaces
	3.2.7.3 Sharing Resources between Device Drivers and AML
	3.2.7.3.1 ASL Shared Resource Example
	3.2.7.3.2 Custom Address Space Handler Installation

	3.3 Policies and Philosophies
	3.3.1 External Interfaces
	3.3.1.1 Exception Codes
	3.3.1.2 Memory Buffers

	3.3.2 Subsystem Initialization
	3.3.2.1 ACPI Table Validation
	3.3.2.2 Required ACPI Tables

	3.3.3 Major Design Decisions
	3.3.3.1 Performance versus Code/Data Size
	3.3.3.2 Object Management – No Garbage Collection

	4 Implementation Details
	4.1 Required Host OS Initialization Sequence
	4.1.1 Bootload and Low Level Kernel Initialization
	4.1.2 ACPICA Subsystem Initialization
	4.1.3 Other OS Initialization
	4.1.4 Device Enumeration, Configuration, and Initialization
	4.1.5 Final OS Initialization

	4.2 Required ACPICA Initialization Sequence
	4.2.1 Global Initialization – AcpiInitializeSubsystem
	4.2.2 ACPI Table and Namespace Initialization
	4.2.2.1 AcpiInitializeTables
	4.2.2.2 AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex
	4.2.2.3 AcpiLoadTables
	4.2.2.4 Internal ACPI Namespace Initialization

	4.2.3 Hardware Initialization – AcpiEnableSubsystem
	4.2.3.1 ACPI Hardware and Event Initialization

	4.2.4 Handler Installation
	4.2.4.1 Handler Types

	4.2.5 Object Initialization – AcpiIntializeObjects
	4.2.5.1 ACPI Device Initialization
	4.2.5.2 Other ACPI Object Initialization

	4.2.6 Other Operating System ACPI-related Initialization
	4.2.7 Just-in-time Operation Region Initialization
	4.2.7.1 SystemMemory Region Initialization
	4.2.7.2 PCI_Config Region Initialization

	4.2.8 System Shutdown – AcpiTerminate

	4.3 Multithreading Support
	4.3.1 Reentrancy
	4.3.2 Mutual Exclusion and Synchronization
	4.3.2.1 Internal use of Mutex Objects
	4.3.2.2 Internal use of Spinlock Objects

	4.3.3 Control Method Execution
	4.3.3.1 Control Method Blocking
	4.3.3.2 Control Method Execution Rules
	4.3.3.3 A Simple Multithreading Model
	4.3.3.4 A More Complex Multithreading Model

	4.3.4 ACPI Global Lock Support
	4.3.4.1 Obtaining The Global Lock
	4.3.4.2 Releasing the Global Lock
	4.3.4.3 Global Lock Interrupt Handler

	4.3.5 Single Thread Environments

	4.4 General Purpose Event (GPE) Support
	4.4.1 Runtime and Wake GPEs
	4.4.1.1 Execution of _PRW Methods
	4.4.1.2 Implicit Notify Support

	4.4.2 Using the ACPICA GPE Support Code
	4.4.2.1 Host OS Initialization
	4.4.2.2 GPE Handlers
	4.4.2.3 GPE Handler Execution
	4.4.2.4 Load and LoadTable ASL/AML Operators
	4.4.2.5 GPE Block Devices

	4.5 Miscellaneous ACPICA Behavior
	4.5.1 Why ACPICA Cannot Use C Bitfields
	4.5.2 Dynamically Loaded ACPI Tables
	4.5.3 Bus Master Arbitration (ARB_DIS)

	5 ACPICA Subsystem Features
	5.1 ACPI 5.0 Support
	5.1.1 Reduced Hardware Platforms
	5.1.1.1 Runtime Reduced Hardware Support
	5.1.1.2 Compile-Time Reduced Hardware Support

	5.1.2 New and Existing ACPI Tables
	5.1.3 Operation Regions and Space IDs
	5.1.4 Resource Descriptors
	5.1.5 ASL/AML Support
	5.1.6 Predefined ACPI Names
	5.1.7 ACPICA External Interfaces
	5.1.8 Miscellaneous and Tools
	5.1.9 ACPI Table Definition Language
	5.1.10 GPIO Event Model for ACPICA

	5.2 AML Interpreter Slack Mode
	5.3 AML Interpreter Math Mode (32-bit or 64-bit)
	5.4 Predefined Control Method Validation
	5.5 I/O Port Protection
	5.6 Debugging Support
	5.6.1 Error and Warning Messages
	5.6.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro)
	5.6.3 Function Tracing (ACPI_FUNCTION_TRACE Macro)
	5.6.4 ACPICA Debugger

	5.7 Environmental Support Requirements
	5.7.1 Resource Requirements
	5.7.2 C Library Functions
	5.7.3 Source Code Organization
	5.7.4 System Include Files
	5.7.4.1 Customization to the Target Environment

	6 Data Types and Interface Parameters
	6.1 ACPICA Interface Parameters
	6.1.1 ACPI Names and Pathnames
	6.1.2 Pointers
	6.1.3 Buffers

	6.2 ACPICA Basic Data Types
	6.2.1 UINT64 and COMPILER_DEPENDENT_UINT64
	6.2.2 ACPI_PHYSICAL_ADDRESS
	6.2.3 ACPI_IO_ADDRESS
	6.2.4 ACPI_SIZE
	6.2.5 ACPI_STRING – ASCII String
	6.2.6 ACPI_BUFFER – Input and Output Memory Buffers
	6.2.6.1 Input Buffer
	6.2.6.2 Output Buffer

	6.2.7 ACPI_STATUS – Interface Exception Return Codes
	6.2.8 ACPI_HANDLE – Object Handle
	6.2.8.1 Predefined Handles

	6.2.9 ACPI_OBJECT_TYPE – Object Type Codes
	6.2.10 ACPI_OBJECT – Method Parameters and Return Objects
	6.2.10.1 Using the ACPI_OBJECT

	6.2.11 ACPI_OBJECT_LIST – List of Objects
	6.2.12 ACPI_EVENT_TYPE – Fixed Event Type Codes
	6.2.13 ACPI_TABLE_HEADER – Common ACPI Table Header

	6.3 ACPI Resource Data Types
	6.3.1 PCI IRQ Routing Tables
	6.3.2 Device Resources
	6.3.2.1 ACPI_RESOURCE_TYPE – Resource Data Types

	6.4 ACPICA Exception Codes

	7 Subsystem Configuration
	7.1 Configuration Files
	7.2 Component Selection
	7.2.1 ACPI_DISASSEMBLER
	7.2.2 ACPI_DEBUGGER
	7.2.3 ACPI_REDUCED_HARDWARE

	7.3 Configurable Data Types
	7.3.1 ACPI_SPINLOCK
	7.3.2 ACPI_SEMAPHORE
	7.3.3 ACPI_MUTEX
	7.3.4 ACPI_CPU_FLAGS
	7.3.5 ACPI_THREAD_ID
	7.3.6 ACPI_CACHE_T
	7.3.7 ACPI_UINTPTR_T

	7.4 Subsystem Compile-Time Options
	7.4.1 ACPI_USE_SYSTEM_CLIBRARY
	7.4.2 ACPI_USE_STANDARD_HEADERS
	7.4.3 ACPI_DEBUG_OUTPUT
	7.4.4 ACPI_USE_LOCAL_CACHE
	7.4.5 ACPI_DBG_TRACK_ALLOCATIONS
	7.4.6 ACPI_MUTEX_TYPE
	7.4.7 ACPI_MUTEX_DEBUG
	7.4.8 ACPI_SIMPLE_RETURN_MACROS
	7.4.9 ACPI_USE_DO_WHILE_0

	7.5 Per-Compiler Configuration
	7.5.1 COMPILER_DEPENDENT_INT64
	7.5.2 COMPILER_DEPENDENT_UINT64
	7.5.3 ACPI_INLINE
	7.5.4 ACPI_USE_NATIVE_DIVIDE
	7.5.5 ACPI_DIV_64_BY_32 (Short 64-bit Divide)
	7.5.6 ACPI_SHIFT_RIGHT_64 (64-bit Shift)
	7.5.7 ACPI_EXPORT_SYMBOL
	7.5.8 ACPI_EXTERNAL_XFACE
	7.5.9 ACPI_INTERNAL_XFACE
	7.5.10 ACPI_INTERNAL_VAR_XFACE
	7.5.11 ACPI_SYSTEM_XFACE
	7.5.12 ACPI_PRINTF_LIKE
	7.5.13 ACPI_UNUSED_VAR

	7.6 Per-Machine Configuration
	7.6.1 ACPI_MACHINE_WIDTH
	7.6.2 ACPI_FLUSH_CPU_CACHE
	7.6.3 ACPI_OS_NAME
	7.6.4 ACPI_ACQUIRE_GLOBAL_LOCK
	7.6.5 ACPI_RELEASE_GLOBAL_LOCK

	7.7 Subsystem Runtime Configuration
	7.7.1 Interpreter Slack Mode
	7.7.2 ACPI Register Widths
	7.7.3 Serialized Control Methods
	7.7.4 Output from the AML Debug Object
	7.7.5 Copy the System DSDT to Local Memory
	7.7.6 Creation of_OSI Method
	7.7.7 I/O Address Truncation
	7.7.8 Runtime Validation/Repair of Predefined Names
	7.7.9 Reduced ACPI Hardware Flag
	7.7.10 Ignore XSDT, Use RSDT Instead
	7.7.11 Use 32-bit FADT Addresses to Resolve Conflicts

	7.8 Subsystem Configuration Constants
	7.8.1 ACPI_CHECKSUM_ABORT
	7.8.2 ACPI_MAX_LOOP_INTERATIONS
	7.8.3 ACPI_MAX_STATE_CACHE_DEPTH
	7.8.4 ACPI_MAX_PARSE_CACHE_DEPTH
	7.8.5 ACPI_MAX_OBJECT_CACHE_DEPTH
	7.8.6 ACPI_MAX_WALK_CACHE_DEPTH

	8 ACPICA Subsystem - External Interface Definition
	8.1 ACPICA Subsystem Initialization and Control
	8.1.1 AcpiInitializeSubsystem
	8.1.2 AcpiInstallInitializationHandler
	8.1.2.1 Interface to User Callback Function

	8.1.3 AcpiEnableSubsystem
	8.1.4 AcpiInitializeObjects
	8.1.5 AcpiSubsystemStatus
	8.1.6 AcpiTerminate
	8.1.7 AcpiInstallInterface
	8.1.7.1 Default Supported _OSI Strings
	8.1.7.2 Why ACPICA responds TRUE to _OSI (Windows)

	8.1.8 AcpiUpdateInterfaces
	8.1.9 AcpiRemoveInterface
	8.1.10 AcpiInstallInterfaceHandler
	8.1.10.1 Interface to _OSI Interface Handlers

	8.2 ACPI Table Management
	8.2.1 AcpiInitializeTables
	8.2.2 AcpiReallocateRootTable
	8.2.3 AcpiFindRootPointer
	8.2.4 AcpiLoadTables
	8.2.5 AcpiLoadTable
	8.2.6 AcpiUnloadParentTable
	8.2.7 AcpiGetTableHeader
	8.2.8 AcpiGetTable
	8.2.9 AcpiGetTableByIndex
	8.2.10 AcpiInstallTableHandler
	8.2.10.1 Interface to the Table Event Handler

	8.2.11 AcpiRemoveTableHandler

	8.3 ACPI Namespace Management
	8.3.1 AcpiEvaluateObject
	8.3.2 AcpiEvaluateObjectTyped
	8.3.3 AcpiGetObjectInfo
	8.3.4 AcpiGetNextObject
	8.3.5 AcpiGetParent
	8.3.6 AcpiGetType
	8.3.7 AcpiGetHandle
	8.3.8 AcpiGetName
	8.3.9 AcpiGetDevices
	8.3.10 AcpiAttachData
	8.3.11 AcpiDetachData
	8.3.12 AcpiGetData
	8.3.13 AcpiInstallMethod
	8.3.14 AcpiWalkNamespace
	8.3.14.1 Interface to User Callback Function

	8.3.15 AcpiAcquireMutex
	8.3.16 AcpiReleaseMutex

	8.4 ACPI Hardware Management
	8.4.1 AcpiEnable
	8.4.2 AcpiDisable
	8.4.3 AcpiReset
	8.4.4 AcpiReadBitRegister
	8.4.5 AcpiWriteBitRegister
	8.4.6 AcpiRead
	8.4.7 AcpiWrite
	8.4.8 AcpiAcquireGlobalLock
	8.4.9 AcpiReleaseGlobalLock
	8.4.10 AcpiGetTimerResolution
	8.4.11 AcpiGetTimerDuration
	8.4.12 AcpiGetTimer

	8.5 ACPI Sleep/Wake Support
	8.5.1 AcpiSetFirmwareWakingVector
	8.5.2 AcpiSetFirmwareWakingVector64
	8.5.3 AcpiGetSleepTypeData
	8.5.4 AcpiEnterSleepStatePrep
	8.5.5 AcpiEnterSleepState
	8.5.6 AcpiEnterSleepStateS4Bios
	8.5.7 AcpiLeaveSleepStatePrep
	8.5.8 AcpiLeaveSleepState

	8.6 ACPI Fixed Event Management
	8.6.1 AcpiEnableEvent
	8.6.2 AcpiDisableEvent
	8.6.3 AcpiClearEvent
	8.6.4 AcpiGetEventStatus
	8.6.5 AcpiInstallFixedEventHandler
	8.6.5.1 Interface to Fixed Event Handlers

	8.6.6 AcpiRemoveFixedEventHandler

	8.7 ACPI General Purpose Event (GPE) Management
	8.7.1 AcpiUpdateAllGpes
	8.7.2 AcpiEnableGpe
	8.7.3 AcpiDisableGpe
	8.7.4 AcpiClearGpe
	8.7.5 AcpiSetGpe
	8.7.6 AcpiFinishGpe
	8.7.7 AcpiSetupGpeForWake
	8.7.8 AcpiSetGpeWakeMask
	8.7.9 AcpiGetGpeStatus
	8.7.10 AcpiGetGpeDevice
	8.7.11 AcpiDisableAllGpes
	8.7.12 AcpiEnableAllRuntimeGpes
	8.7.13 AcpiInstallGpeBlock
	8.7.14 AcpiRemoveGpeBlock
	8.7.15 AcpiInstallGpeHandler
	8.7.15.1 Interface to General Purpose Event Handlers

	8.7.16 AcpiRemoveGpeHandler

	8.8 Miscellaneous Handler Support
	8.8.1 AcpiInstallSciHandler
	8.8.1.1 Interface to SCI Handlers

	8.8.2 AcpiRemoveSciHandler
	8.8.3 AcpiInstallGlobalEventHandler
	8.8.3.1 Interface to the Global Event Handler

	8.8.4 AcpiInstallNotifyHandler
	8.8.4.1 Interface to Notification Event Handlers

	8.8.5 AcpiRemoveNotifyHandler
	8.8.6 AcpiInstallAddressSpaceHandler
	8.8.6.1 Interface to Address Space Setup Handlers
	8.8.6.2 Interface to Address Space Handlers
	8.8.6.3 Context for the Default PCI Address Space Handler
	8.8.6.4 Context for the GPIO/SerialBus Address Space Handlers

	8.8.7 AcpiRemoveAddressSpaceHandler
	8.8.8 AcpiInstallExceptionHandler
	8.8.8.1 Interface to Exception Handlers

	8.9 ACPI Resource Management
	8.9.1 AcpiGetCurrentResources
	8.9.2 AcpiGetPossibleResources
	8.9.3 AcpiSetCurrentResources
	8.9.4 AcpiGetEventResources
	8.9.5 AcpiGetIRQRoutingTable
	8.9.6 AcpiGetVendorResource
	8.9.7 AcpiBufferToResource
	8.9.8 AcpiResourceToAddress64
	8.9.9 AcpiWalkResourceBuffer
	8.9.9.1 Interface to User Callback Function

	8.9.10 AcpiWalkResources

	8.10 Memory Management
	8.10.1 ACPI_ALLOCATE
	8.10.2 ACPI_ALLOCATE_ZEROED
	8.10.3 ACPI_FREE

	8.11 Formatted Output
	8.11.1 AcpiInfo and ACPI_INFO
	8.11.2 AcpiWarning and ACPI_WARNING
	8.11.3 AcpiError and ACPI_ERROR
	8.11.4 AcpiException and ACPI_EXCEPTION
	8.11.5 AcpiBiosWarning and ACPI_BIOS_WARNING
	8.11.6 AcpiBiosError and ACPI_BIOS_ERROR
	8.11.7 AcpiDebugPrint and ACPI_DEBUG_PRINT
	8.11.8 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW

	8.12 Miscellaneous Utilities
	8.12.1 AcpiCheckAddressRange
	8.12.2 AcpiDebugTrace
	8.12.3 AcpiDecodePldBuffer
	8.12.4 AcpiFormatException
	8.12.5 AcpiGetStatistics
	8.12.6 AcpiGetSystemInfo
	8.12.7 AcpiPurgeCachedObjects

	8.13 Global Variables
	8.13.1 AcpiDbgLevel & AcpiDbgLayer
	8.13.2 AcpiGbl_FADT
	8.13.3 AcpiCurrentGpeCount
	8.13.4 AcpiGbl_SystemAwakeAndRunning

	9 OS Services Layer - External Interface Definition
	9.1 Environmental and ACPI Tables
	9.1.1 AcpiOsInitialize
	9.1.2 AcpiOsTerminate
	9.1.3 AcpiOsGetRootPointer
	9.1.4 AcpiOsPredefinedOverride
	9.1.5 AcpiOsTableOverride
	9.1.6 AcpiOsPhysicalTableOverride

	9.2 Memory Management
	9.2.1 AcpiOsCreateCache
	9.2.2 AcpiOsDeleteCache
	9.2.3 AcpiOsPurgeCache
	9.2.4 AcpiOsAcquireObject
	9.2.5 AcpiOsReleaseObject
	9.2.6 AcpiOsMapMemory
	9.2.7 AcpiOsUnmapMemory
	9.2.8 AcpiOsGetPhysicalAddress
	9.2.9 AcpiOsAllocate
	9.2.10 AcpiOsFree
	9.2.11 AcpiOsReadable
	9.2.12 AcpiOsWritable

	9.3 Multithreading and Scheduling Services
	9.3.1 AcpiOsGetThreadId
	9.3.2 AcpiOsExecute
	9.3.3 AcpiOsSleep
	9.3.4 AcpiOsStall
	9.3.5 AcpiOsWaitEventsComplete

	9.4 Mutual Exclusion and Synchronization
	9.4.1 AcpiOsCreateMutex
	9.4.2 AcpiOsDeleteMutex
	9.4.3 AcpiOsAcquireMutex
	9.4.4 AcpiOsReleaseMutex
	9.4.5 AcpiOsCreateSemaphore
	9.4.6 AcpiOsDeleteSemaphore
	9.4.7 AcpiOsWaitSemaphore
	9.4.8 AcpiOsSignalSemaphore
	9.4.9 AcpiOsCreateLock
	9.4.10 AcpiOsDeleteLock
	9.4.11 AcpiOsAcquireLock
	9.4.12 AcpiOsReleaseLock

	9.5 Interrupt Handling
	9.5.1 AcpiOsInstallInterruptHandler
	9.5.1.1 Interface to OS-independent Interrupt Handlers

	9.5.2 AcpiOsRemoveInterruptHandler

	9.6 Memory Access and Memory Mapped I/O
	9.6.1 AcpiOsReadMemory
	9.6.2 AcpiOsWriteMemory

	9.7 Port Input/Output
	9.7.1 AcpiOsReadPort
	9.7.2 AcpiOsWritePort

	9.8 PCI Configuration Space Access
	9.8.1 AcpiOsReadPciConfiguration
	9.8.2 AcpiOsWritePciConfiguration

	9.9 Formatted Output
	9.9.1 AcpiOsPrintf
	9.9.2 AcpiOsVprintf
	9.9.3 AcpiOsRedirectOutput

	9.10 System ACPI Table Access
	9.10.1 AcpiOsGetTableByAddress
	9.10.2 AcpiOsGetTableByIndex
	9.10.3 AcpiOsGetTableByName

	9.11 Miscellaneous
	9.11.1 AcpiOsGetTimer
	9.11.2 AcpiOsSignal
	9.11.3 AcpiOsGetLine

	10 ACPICA Deployment Guide
	10.1 Using the ACPICA Subsystem Interfaces
	10.1.1 Initialization Sequence
	10.1.2 ACPICA Initialization Examples
	10.1.2.1 Full ACPICA Initialization
	10.1.2.2 ACPICA Initialization With Early ACPI Table Access

	10.1.3 Shutdown Sequence
	10.1.4 Traversing the ACPI Namespace (Low Level)
	10.1.5 Traversing the ACPI Namespace (High Level)

	10.2 Implementing the OS Services Layer
	10.2.1 Parameter Validation
	10.2.2 Memory Management
	10.2.3 Scheduling Services
	10.2.4 Mutual Exclusion and Synchronization
	10.2.5 Interrupt Handling
	10.2.6 Stream I/O
	10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration)

	11 User-Mode Tools and Utilities
	11.1 Generating the ACPICA Tools/Utilities from Source
	11.1.1 Generic Unix Makefiles
	11.1.2 Visual Studio Project Files
	11.1.2.1 Visual Studio 2008 Installation Notes
	11.1.2.2 Flex/Bison for Windows Installation Notes

	11.2 iASL Compiler
	11.3 AcpiExec – User Mode ACPI Execution/Simulation
	11.4 AcpiHelp – Display ACPI Help Information
	11.5 AcpiDump – Dump System ACPI Tables
	11.6 AcpiXtract – Extract ACPI Tables
	11.7 AcpiSrc – Convert ACPICA Source Code
	11.8 AcpiNames – Example Namespace Dump

	12 ACPICA Debugger Reference
	12.1 Overview
	12.2 Supported Environments
	12.2.1 The AcpiExec Utility

	12.3 Debugger Architecture
	12.4 Configuration and Installation
	12.5 Command Overview
	12.6 Command Summary
	12.7 General Purpose Commands
	12.7.1 Allocations
	12.7.2 Dump
	12.7.3 Exit
	12.7.4 Handlers
	12.7.5 Help
	12.7.6 History (! And !!)
	12.7.7 Level
	12.7.8 Locks
	12.7.9 Osi
	12.7.10 Quit
	12.7.11 Stats
	12.7.12 Tables
	12.7.13 Unload

	12.8 Namespace Access Commands
	12.8.1 BusInfo
	12.8.2 Disassemble
	12.8.3 Find
	12.8.4 Integrity
	12.8.5 Methods
	12.8.6 Namespace
	12.8.7 Notify
	12.8.8 Objects
	12.8.9 Owner
	12.8.10 Paths
	12.8.11 Predefined
	12.8.12 Prefix
	12.8.13 References
	12.8.14 Resources
	12.8.15 Set N
	12.8.16 Template
	12.8.17 Terminate
	12.8.18 Type

	12.9 Control Method Execution Commands
	12.9.1 Arguments
	12.9.2 Breakpoint
	12.9.3 Call
	12.9.4 Debug
	12.9.5 Execute
	12.9.5.1 Specifying Method Arguments

	12.9.6 Go
	12.9.7 Information
	12.9.8 Into
	12.9.9 List
	12.9.10 Locals
	12.9.11 Results
	12.9.12 Set
	12.9.13 Stop
	12.9.14 Thread
	12.9.15 Trace
	12.9.16 Tree

	12.10 Hardware-Related Commands
	12.10.1 Event
	12.10.2 Gpe
	12.10.3 Gpes
	12.10.4 Sci
	12.10.5 Sleep

	12.11 File I/O Commands
	12.11.1 Close
	12.11.2 Load
	12.11.3 Open

	12.12 Debug Test Commands
	12.12.1 Test Objects
	12.12.2 Test Predefined

