aboutsummaryrefslogtreecommitdiff
path: root/arch/arm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm')
-rw-r--r--arch/arm/Kconfig11
-rw-r--r--arch/arm/boot/Makefile10
-rw-r--r--arch/arm/boot/compressed/Makefile17
-rw-r--r--arch/arm/boot/compressed/efi-header.S111
-rw-r--r--arch/arm/boot/compressed/efi-stub.c475
-rw-r--r--arch/arm/boot/compressed/efi-stub.h5
-rw-r--r--arch/arm/boot/compressed/head.S83
-rw-r--r--arch/arm/boot/compressed/string.c21
8 files changed, 719 insertions, 14 deletions
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
index e6cf288b6704..5913f21a3b63 100644
--- a/arch/arm/Kconfig
+++ b/arch/arm/Kconfig
@@ -1894,6 +1894,17 @@ bool "UEFI runtime service support"
However, even with this option, the resultant kernel should
continue to boot on existing non-UEFI platforms.
+config EFI_STUB
+ bool "EFI stub support"
+ depends on !CPU_BIG_ENDIAN
+ ---help---
+ This kernel feature allows a zImage to be loaded directly
+ by EFI firmware without the use of a bootloader. A PE/COFF
+ header is added to the zImage in a way that makes the binary
+ both a Linux zImage and an PE/COFF executable that can be
+ executed directly by EFI firmware.
+ See Documentation/efi-stub.txt for more information.
+
config SECCOMP
bool
prompt "Enable seccomp to safely compute untrusted bytecode"
diff --git a/arch/arm/boot/Makefile b/arch/arm/boot/Makefile
index 84aa2caf07ed..f1192f5ddbae 100644
--- a/arch/arm/boot/Makefile
+++ b/arch/arm/boot/Makefile
@@ -31,7 +31,7 @@ ifeq ($(CONFIG_XIP_KERNEL),y)
$(obj)/xipImage: vmlinux FORCE
$(call if_changed,objcopy)
- @$(kecho) ' Kernel: $@ is ready (physical address: $(CONFIG_XIP_PHYS_ADDR))'
+ @$(kecho) ' Kernel: $@ is ready (physical address: $(CONFIG_XIP_PHYS_ADDR))' ' (#'`cat .version`')'
$(obj)/Image $(obj)/zImage: FORCE
@echo 'Kernel configured for XIP (CONFIG_XIP_KERNEL=y)'
@@ -46,14 +46,14 @@ $(obj)/xipImage: FORCE
$(obj)/Image: vmlinux FORCE
$(call if_changed,objcopy)
- @$(kecho) ' Kernel: $@ is ready'
+ @$(kecho) ' Kernel: $@ is ready' ' (#'`cat .version`')'
$(obj)/compressed/vmlinux: $(obj)/Image FORCE
$(Q)$(MAKE) $(build)=$(obj)/compressed $@
$(obj)/zImage: $(obj)/compressed/vmlinux FORCE
$(call if_changed,objcopy)
- @$(kecho) ' Kernel: $@ is ready'
+ @$(kecho) ' Kernel: $@ is ready' ' (#'`cat .version`')'
endif
@@ -78,7 +78,7 @@ fi
$(obj)/uImage: $(obj)/zImage FORCE
@$(check_for_multiple_loadaddr)
$(call if_changed,uimage)
- @$(kecho) ' Image $@ is ready'
+ @$(kecho) ' Image $@ is ready' ' (#'`cat .version`')'
$(obj)/bootp/bootp: $(obj)/zImage initrd FORCE
$(Q)$(MAKE) $(build)=$(obj)/bootp $@
@@ -86,7 +86,7 @@ $(obj)/bootp/bootp: $(obj)/zImage initrd FORCE
$(obj)/bootpImage: $(obj)/bootp/bootp FORCE
$(call if_changed,objcopy)
- @$(kecho) ' Kernel: $@ is ready'
+ @$(kecho) ' Kernel: $@ is ready' ' (#'`cat .version`')'
PHONY += initrd FORCE
initrd:
diff --git a/arch/arm/boot/compressed/Makefile b/arch/arm/boot/compressed/Makefile
index 7ac1610252ba..551dbf9c78ba 100644
--- a/arch/arm/boot/compressed/Makefile
+++ b/arch/arm/boot/compressed/Makefile
@@ -103,11 +103,22 @@ libfdt_objs := $(addsuffix .o, $(basename $(libfdt)))
$(addprefix $(obj)/,$(libfdt) $(libfdt_hdrs)): $(obj)/%: $(srctree)/scripts/dtc/libfdt/%
$(call cmd,shipped)
-$(addprefix $(obj)/,$(libfdt_objs) atags_to_fdt.o): \
+$(addprefix $(obj)/,$(libfdt_objs) atags_to_fdt.o efi-stub.o): \
$(addprefix $(obj)/,$(libfdt_hdrs))
ifeq ($(CONFIG_ARM_ATAG_DTB_COMPAT),y)
-OBJS += $(libfdt_objs) atags_to_fdt.o
+OBJS += atags_to_fdt.o
+USE_LIBFDT = y
+endif
+
+ifeq ($(CONFIG_EFI_STUB),y)
+CFLAGS_efi-stub.o += -DTEXT_OFFSET=$(TEXT_OFFSET)
+OBJS += efi-stub.o
+USE_LIBFDT = y
+endif
+
+ifeq ($(USE_LIBFDT),y)
+OBJS += $(libfdt_objs)
endif
targets := vmlinux vmlinux.lds \
@@ -125,7 +136,7 @@ ORIG_CFLAGS := $(KBUILD_CFLAGS)
KBUILD_CFLAGS = $(subst -pg, , $(ORIG_CFLAGS))
endif
-ccflags-y := -fpic -mno-single-pic-base -fno-builtin -I$(obj)
+ccflags-y := -fpic -mno-single-pic-base -fno-builtin -fno-stack-protector -I$(obj)
asflags-y := -DZIMAGE
# Supply kernel BSS size to the decompressor via a linker symbol.
diff --git a/arch/arm/boot/compressed/efi-header.S b/arch/arm/boot/compressed/efi-header.S
new file mode 100644
index 000000000000..6965e0fd9d7d
--- /dev/null
+++ b/arch/arm/boot/compressed/efi-header.S
@@ -0,0 +1,111 @@
+@ Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
+@
+@ This file contains the PE/COFF header that is part of the
+@ EFI stub.
+@
+
+ .org 0x3c
+ @
+ @ The PE header can be anywhere in the file, but for
+ @ simplicity we keep it together with the MSDOS header
+ @ The offset to the PE/COFF header needs to be at offset
+ @ 0x3C in the MSDOS header.
+ @ The only 2 fields of the MSDOS header that are used are this
+ @ PE/COFF offset, and the "MZ" bytes at offset 0x0.
+ @
+ .long pe_header @ Offset to the PE header.
+
+ .align 3
+pe_header:
+ .ascii "PE"
+ .short 0
+
+coff_header:
+ .short 0x01c2 @ ARM or Thumb
+ .short 2 @ nr_sections
+ .long 0 @ TimeDateStamp
+ .long 0 @ PointerToSymbolTable
+ .long 1 @ NumberOfSymbols
+ .short section_table - optional_header @ SizeOfOptionalHeader
+ .short 0x306 @ Characteristics.
+ @ IMAGE_FILE_32BIT_MACHINE |
+ @ IMAGE_FILE_DEBUG_STRIPPED |
+ @ IMAGE_FILE_EXECUTABLE_IMAGE |
+ @ IMAGE_FILE_LINE_NUMS_STRIPPED
+
+optional_header:
+ .short 0x10b @ PE32 format
+ .byte 0x02 @ MajorLinkerVersion
+ .byte 0x14 @ MinorLinkerVersion
+
+ .long _edata - efi_stub_entry @ SizeOfCode
+
+ .long 0 @ SizeOfInitializedData
+ .long 0 @ SizeOfUninitializedData
+
+ .long efi_stub_entry @ AddressOfEntryPoint
+ .long efi_stub_entry @ BaseOfCode
+ .long 0 @ data
+
+extra_header_fields:
+ .long 0 @ ImageBase
+ .long 0x20 @ SectionAlignment
+ .long 0x20 @ FileAlignment
+ .short 0 @ MajorOperatingSystemVersion
+ .short 0 @ MinorOperatingSystemVersion
+ .short 0 @ MajorImageVersion
+ .short 0 @ MinorImageVersion
+ .short 0 @ MajorSubsystemVersion
+ .short 0 @ MinorSubsystemVersion
+ .long 0 @ Win32VersionValue
+
+ .long _edata @ SizeOfImage
+
+ @ Everything before the entry point is considered part of the header
+ .long efi_stub_entry @ SizeOfHeaders
+ .long 0 @ CheckSum
+ .short 0xa @ Subsystem (EFI application)
+ .short 0 @ DllCharacteristics
+ .long 0 @ SizeOfStackReserve
+ .long 0 @ SizeOfStackCommit
+ .long 0 @ SizeOfHeapReserve
+ .long 0 @ SizeOfHeapCommit
+ .long 0 @ LoaderFlags
+ .long 0x0 @ NumberOfRvaAndSizes
+
+ # Section table
+section_table:
+
+ #
+ # The EFI application loader requires a relocation section
+ # because EFI applications must be relocatable. This is a
+ # dummy section as far as we are concerned.
+ #
+ .ascii ".reloc"
+ .byte 0
+ .byte 0 @ end of 0 padding of section name
+ .long 0
+ .long 0
+ .long 0 @ SizeOfRawData
+ .long 0 @ PointerToRawData
+ .long 0 @ PointerToRelocations
+ .long 0 @ PointerToLineNumbers
+ .short 0 @ NumberOfRelocations
+ .short 0 @ NumberOfLineNumbers
+ .long 0x42100040 @ Characteristics (section flags)
+
+
+ .ascii ".text"
+ .byte 0
+ .byte 0
+ .byte 0 @ end of 0 padding of section name
+ .long _edata - efi_stub_entry @ VirtualSize
+ .long efi_stub_entry @ VirtualAddress
+ .long _edata - efi_stub_entry @ SizeOfRawData
+ .long efi_stub_entry @ PointerToRawData
+
+ .long 0 @ PointerToRelocations (0 for executables)
+ .long 0 @ PointerToLineNumbers (0 for executables)
+ .short 0 @ NumberOfRelocations (0 for executables)
+ .short 0 @ NumberOfLineNumbers (0 for executables)
+ .long 0xe0500020 @ Characteristics (section flags)
diff --git a/arch/arm/boot/compressed/efi-stub.c b/arch/arm/boot/compressed/efi-stub.c
new file mode 100644
index 000000000000..87584e4262ad
--- /dev/null
+++ b/arch/arm/boot/compressed/efi-stub.c
@@ -0,0 +1,475 @@
+/*
+ * linux/arch/arm/boot/compressed/efi-stub.c
+ *
+ * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
+ *
+ * This file implements the EFI boot stub for the ARM kernel
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <linux/efi.h>
+#include <libfdt.h>
+#include "efi-stub.h"
+
+/* EFI function call wrappers. These are not required for
+ * ARM, but wrappers are required for X86 to convert between
+ * ABIs. These wrappers are provided to allow code sharing
+ * between X86 and ARM. Since these wrappers directly invoke the
+ * EFI function pointer, the function pointer type must be properly
+ * defined, which is not the case for X86 One advantage of this is
+ * it allows for type checking of arguments, which is not
+ * possible with the X86 wrappers.
+ */
+#define efi_call_phys0(f) f()
+#define efi_call_phys1(f, a1) f(a1)
+#define efi_call_phys2(f, a1, a2) f(a1, a2)
+#define efi_call_phys3(f, a1, a2, a3) f(a1, a2, a3)
+#define efi_call_phys4(f, a1, a2, a3, a4) f(a1, a2, a3, a4)
+#define efi_call_phys5(f, a1, a2, a3, a4, a5) f(a1, a2, a3, a4, a5)
+
+/* The maximum uncompressed kernel size is 32 MBytes, so we will reserve
+ * that for the decompressed kernel. We have no easy way to tell what
+ * the actuall size of code + data the uncompressed kernel will use.
+ */
+#define MAX_UNCOMP_KERNEL_SIZE 0x02000000
+
+/* The kernel zImage should be located between 32 Mbytes
+ * and 128 MBytes from the base of DRAM. The min
+ * address leaves space for a maximal size uncompressed image,
+ * and the max address is due to how the zImage decompressor
+ * picks a destination address.
+ */
+#define ZIMAGE_OFFSET_LIMIT 0x08000000
+#define MIN_ZIMAGE_OFFSET MAX_UNCOMP_KERNEL_SIZE
+
+#define PRINTK_PREFIX "EFIstub: "
+
+struct fdt_region {
+ u64 base;
+ u64 size;
+};
+
+
+/* Include shared EFI stub code */
+#include "../../../../drivers/firmware/efi/efi-stub-helper.c"
+
+static int relocate_kernel(efi_system_table_t *sys_table,
+ unsigned long *zimage_addr,
+ unsigned long zimage_size,
+ unsigned long min_addr, unsigned long max_addr)
+{
+ unsigned long cur_zimage_addr;
+ unsigned long new_addr = 0;
+
+ efi_status_t status;
+
+ if (!zimage_addr || !zimage_size)
+ return EFI_INVALID_PARAMETER;
+
+ cur_zimage_addr = *zimage_addr;
+
+ if (cur_zimage_addr > min_addr
+ && (cur_zimage_addr + zimage_size) < max_addr) {
+ /* We don't need to do anything, as kernel is at an
+ * acceptable address already.
+ */
+ return EFI_SUCCESS;
+ }
+ /*
+ * The EFI firmware loader could have placed the kernel image
+ * anywhere in memory, but the kernel has restrictions on the
+ * min and max physical address it can run at.
+ */
+ status = efi_low_alloc(sys_table, zimage_size, 0,
+ &new_addr, min_addr);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Failed to allocate usable memory for kernel.\n");
+ return status;
+ }
+
+ if (new_addr > (max_addr - zimage_size)) {
+ efi_free(sys_table, zimage_size, new_addr);
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Failed to allocate usable memory for kernel.\n");
+ return EFI_INVALID_PARAMETER;
+ }
+
+ /* We know source/dest won't overlap since both memory ranges
+ * have been allocated by UEFI, so we can safely use memcpy.
+ */
+ memcpy((void *)new_addr, (void *)(unsigned long)cur_zimage_addr,
+ zimage_size);
+
+ /* Return the load address */
+ *zimage_addr = new_addr;
+
+ return status;
+}
+
+
+/* Convert the unicode UEFI command line to ASCII to pass to kernel.
+ * Size of memory allocated return in *cmd_line_len.
+ * Returns NULL on error.
+ */
+static char *convert_cmdline_to_ascii(efi_system_table_t *sys_table,
+ efi_loaded_image_t *image,
+ unsigned long *cmd_line_len,
+ u32 max_addr)
+{
+ u16 *s2;
+ u8 *s1 = NULL;
+ unsigned long cmdline_addr = 0;
+ int load_options_size = image->load_options_size / 2; /* ASCII */
+ void *options = image->load_options;
+ int options_size = 0;
+ int status;
+ int i;
+ u16 zero = 0;
+
+ if (options) {
+ s2 = options;
+ while (*s2 && *s2 != '\n' && options_size < load_options_size) {
+ s2++;
+ options_size++;
+ }
+ }
+
+ if (options_size == 0) {
+ /* No command line options, so return empty string*/
+ options_size = 1;
+ options = &zero;
+ }
+
+ options_size++; /* NUL termination */
+
+ status = efi_high_alloc(sys_table, options_size, 0,
+ &cmdline_addr, max_addr);
+ if (status != EFI_SUCCESS)
+ return NULL;
+
+ s1 = (u8 *)cmdline_addr;
+ s2 = (u16 *)options;
+
+ for (i = 0; i < options_size - 1; i++)
+ *s1++ = *s2++;
+
+ *s1 = '\0';
+
+ *cmd_line_len = options_size;
+ return (char *)cmdline_addr;
+}
+
+
+static int update_fdt(efi_system_table_t *sys_table, void *orig_fdt, void *fdt,
+ int new_fdt_size, char *cmdline_ptr, u64 initrd_addr,
+ u64 initrd_size, efi_memory_desc_t *memory_map,
+ int map_size, int desc_size)
+{
+ int node;
+ int status;
+ unsigned long fdt_val;
+
+ status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
+ if (status != 0)
+ goto fdt_set_fail;
+
+ node = fdt_subnode_offset(fdt, 0, "chosen");
+ if (node < 0) {
+ node = fdt_add_subnode(fdt, 0, "chosen");
+ if (node < 0) {
+ status = node; /* node is error code when negative */
+ goto fdt_set_fail;
+ }
+ }
+
+ if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
+ status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
+ strlen(cmdline_ptr) + 1);
+ if (status)
+ goto fdt_set_fail;
+ }
+
+ /* Set intird address/end in device tree, if present */
+ if (initrd_size != 0) {
+ u64 initrd_image_end;
+ u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
+ status = fdt_setprop(fdt, node, "linux,initrd-start",
+ &initrd_image_start, sizeof(u64));
+ if (status)
+ goto fdt_set_fail;
+ initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
+ status = fdt_setprop(fdt, node, "linux,initrd-end",
+ &initrd_image_end, sizeof(u64));
+ if (status)
+ goto fdt_set_fail;
+ }
+
+ /* Add FDT entries for EFI runtime services in chosen node. */
+ node = fdt_subnode_offset(fdt, 0, "chosen");
+ fdt_val = cpu_to_fdt32((unsigned long)sys_table);
+ status = fdt_setprop(fdt, node, "efi-system-table",
+ &fdt_val, sizeof(fdt_val));
+ if (status)
+ goto fdt_set_fail;
+
+ fdt_val = cpu_to_fdt32(desc_size);
+ status = fdt_setprop(fdt, node, "efi-mmap-desc-size",
+ &fdt_val, sizeof(fdt_val));
+ if (status)
+ goto fdt_set_fail;
+
+ fdt_val = cpu_to_fdt32(map_size);
+ status = fdt_setprop(fdt, node, "efi-runtime-mmap-size",
+ &fdt_val, sizeof(fdt_val));
+ if (status)
+ goto fdt_set_fail;
+
+ fdt_val = cpu_to_fdt32((unsigned long)memory_map);
+ status = fdt_setprop(fdt, node, "efi-runtime-mmap",
+ &fdt_val, sizeof(fdt_val));
+
+ /* Stuff the whole memory map into FDT */
+ status = fdt_setprop(fdt, node, "efi-runtime-mmap-blob",
+ memory_map, sizeof(map_size));
+
+ if (status)
+ goto fdt_set_fail;
+
+ return EFI_SUCCESS;
+
+fdt_set_fail:
+ if (status == -FDT_ERR_NOSPACE)
+ return EFI_BUFFER_TOO_SMALL;
+
+ return EFI_LOAD_ERROR;
+}
+
+
+
+int efi_entry(void *handle, efi_system_table_t *sys_table,
+ unsigned long *zimage_addr)
+{
+ efi_loaded_image_t *image;
+ int status;
+ unsigned long nr_pages;
+ const struct fdt_region *region;
+
+ void *fdt;
+ int err;
+ int node;
+ unsigned long zimage_size = 0;
+ unsigned long dram_base;
+ /* addr/point and size pairs for memory management*/
+ u64 initrd_addr;
+ u64 initrd_size = 0;
+ u64 fdt_addr;
+ u64 fdt_size = 0;
+ u64 kernel_reserve_addr;
+ u64 kernel_reserve_size = 0;
+ char *cmdline_ptr;
+ unsigned long cmdline_size = 0;
+
+ unsigned long map_size, desc_size;
+ unsigned long mmap_key;
+ efi_memory_desc_t *memory_map;
+
+ unsigned long new_fdt_size;
+ unsigned long new_fdt_addr;
+
+ efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
+
+ /* Check if we were booted by the EFI firmware */
+ if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
+ goto fail;
+
+ efi_printk(sys_table, PRINTK_PREFIX"Booting Linux using EFI stub.\n");
+
+
+ /* get the command line from EFI, using the LOADED_IMAGE protocol */
+ status = efi_call_phys3(sys_table->boottime->handle_protocol,
+ handle, &proto, (void *)&image);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
+ goto fail;
+ }
+
+ /* We are going to copy this into device tree, so we don't care where in
+ * memory it is.
+ */
+ cmdline_ptr = convert_cmdline_to_ascii(sys_table, image,
+ &cmdline_size, 0xFFFFFFFF);
+ if (!cmdline_ptr) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Unable to allocate memory for command line.\n");
+ goto fail;
+ }
+
+#if 1
+ /* HACK, so we can boot from boot manager. If we are passed a real
+ * command line, use it.
+ *
+ * TODO_RFRANZ - for debug only, not for real patch series
+ */
+ if (!cmdline_ptr[0]) {
+ cmdline_ptr = "initrd=initrd dtb=dtb console=ttyAMA0 earlyprintk=keep";
+ efi_printk(sys_table, PRINTK_PREFIX"Booted from boot manager, forcing command line to: ");
+ efi_printk(sys_table, cmdline_ptr);
+ efi_printk(sys_table, "\n");
+ }
+#endif
+
+ /* We first load the device tree, as we need to get the base address of
+ * DRAM from the device tree. The zImage, device tree, and initrd
+ * have address restrictions that are relative to the base of DRAM.
+ */
+ status = handle_cmdline_files(sys_table, image, cmdline_ptr, "dtb=",
+ 0xffffffff, &fdt_addr, &fdt_size);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Unable to load device tree blob.\n");
+ goto fail_free_cmdline;
+ }
+
+ err = fdt_check_header((void *)(unsigned long)fdt_addr);
+ if (err != 0) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Device tree header not valid\n");
+ goto fail_free_fdt;
+ }
+ if (fdt_totalsize((void *)(unsigned long)fdt_addr) > fdt_size) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Incomplete device tree.\n");
+ goto fail_free_fdt;
+
+ }
+
+
+ /* Look up the base of DRAM from the device tree. fdt_addr is
+ * a 64 bit value (efi_phys_addr_t), but EFI guarantees that
+ * all addresses are 32 bit for ARM32. */
+ fdt = (void *)(u32)fdt_addr;
+ node = fdt_subnode_offset(fdt, 0, "memory");
+ region = fdt_getprop(fdt, node, "reg", NULL);
+ if (region) {
+ dram_base = fdt64_to_cpu(region->base);
+ } else {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: No 'memory' node in device tree.\n");
+ goto fail_free_fdt;
+ }
+
+ /* Reserve memory for the uncompressed kernel image. */
+ kernel_reserve_addr = dram_base;
+ kernel_reserve_size = MAX_UNCOMP_KERNEL_SIZE;
+ nr_pages = round_up(kernel_reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
+ status = efi_call_phys4(sys_table->boottime->allocate_pages,
+ EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
+ nr_pages, &kernel_reserve_addr);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Unable to allocate memory for uncompressed kernel.\n");
+ goto fail_free_fdt;
+ }
+
+ /* Relocate the zImage, if required. */
+ zimage_size = image->image_size;
+ status = relocate_kernel(sys_table, zimage_addr, zimage_size,
+ dram_base + MIN_ZIMAGE_OFFSET,
+ dram_base + ZIMAGE_OFFSET_LIMIT);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Failed to relocate kernel\n");
+ goto fail_free_kernel_reserve;
+ }
+
+ status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
+ dram_base + ZIMAGE_OFFSET_LIMIT,
+ &initrd_addr, &initrd_size);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Unable to load initrd\n");
+ goto fail_free_zimage;
+ }
+
+ /* Estimate size of new FDT, and allocate memory for it. We
+ * will allocate a bigger buffer if this ends up being too
+ * small, so a rough guess is OK here.*/
+ new_fdt_size = fdt_size + cmdline_size + 0x200;
+ while (1) {
+ status = efi_high_alloc(sys_table, new_fdt_size, 0,
+ &new_fdt_addr,
+ dram_base + ZIMAGE_OFFSET_LIMIT);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Unable to allocate memory for new device tree.\n");
+ goto fail_free_initrd;
+ }
+
+ /* Now that we have done our final memory allocation (and free)
+ * we can get the memory map key needed
+ * forexit_boot_services.*/
+ status = efi_get_memory_map(sys_table, &memory_map, &map_size,
+ &desc_size, &mmap_key);
+ if (status != EFI_SUCCESS)
+ goto fail_free_new_fdt;
+
+ status = update_fdt(sys_table,
+ fdt, (void *)new_fdt_addr, new_fdt_size,
+ cmdline_ptr,
+ initrd_addr, initrd_size,
+ memory_map, map_size, desc_size);
+
+ /* Succeeding the first time is the expected case. */
+ if (status == EFI_SUCCESS)
+ break;
+
+ if (status == EFI_BUFFER_TOO_SMALL) {
+ /* We need to allocate more space for the new
+ * device tree, so free existing buffer that is
+ * too small. Also free memory map, as we will need
+ * to get new one that reflects the free/alloc we do
+ * on the device tree buffer. */
+ efi_free(sys_table, new_fdt_size, new_fdt_addr);
+ efi_call_phys1(sys_table->boottime->free_pool,
+ memory_map);
+ new_fdt_size += new_fdt_size/4;
+ }
+ else
+ {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Unable to constuct new device tree.\n");
+ goto fail_free_mmap;
+ }
+ }
+
+ /* Now we are ready to exit_boot_services.*/
+ status = efi_call_phys2(sys_table->boottime->exit_boot_services,
+ handle, mmap_key);
+
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table, PRINTK_PREFIX"ERROR: Exit boot services failed.\n");
+ goto fail_free_mmap;
+ }
+
+
+ /* Now we need to return the FDT address to the calling
+ * assembly to this can be used as part of normal boot.
+ */
+ return new_fdt_addr;
+
+fail_free_mmap:
+ efi_call_phys1(sys_table->boottime->free_pool, memory_map);
+
+fail_free_new_fdt:
+ efi_free(sys_table, new_fdt_size, new_fdt_addr);
+
+fail_free_initrd:
+ efi_free(sys_table, initrd_size, initrd_addr);
+
+fail_free_zimage:
+ efi_free(sys_table, zimage_size, *zimage_addr);
+
+fail_free_kernel_reserve:
+ efi_free(sys_table, kernel_reserve_size, kernel_reserve_addr);
+
+fail_free_fdt:
+ efi_free(sys_table, fdt_size, fdt_addr);
+
+fail_free_cmdline:
+ efi_free(sys_table, cmdline_size, (u32)cmdline_ptr);
+
+fail:
+ return EFI_STUB_ERROR;
+}
diff --git a/arch/arm/boot/compressed/efi-stub.h b/arch/arm/boot/compressed/efi-stub.h
new file mode 100644
index 000000000000..0fe937679f5a
--- /dev/null
+++ b/arch/arm/boot/compressed/efi-stub.h
@@ -0,0 +1,5 @@
+#ifndef _ARM_EFI_STUB_H
+#define _ARM_EFI_STUB_H
+/* Error code returned to ASM code instead of valid FDT address. */
+#define EFI_STUB_ERROR (~0)
+#endif
diff --git a/arch/arm/boot/compressed/head.S b/arch/arm/boot/compressed/head.S
index 75189f13cf54..aae3c75c2ec0 100644
--- a/arch/arm/boot/compressed/head.S
+++ b/arch/arm/boot/compressed/head.S
@@ -10,6 +10,7 @@
*/
#include <linux/linkage.h>
#include <asm/assembler.h>
+#include "efi-stub.h"
.arch armv7-a
/*
@@ -120,21 +121,92 @@
*/
.align
.arm @ Always enter in ARM state
+ .text
start:
.type start,#function
- .rept 7
+#ifdef CONFIG_EFI_STUB
+ @ Magic MSDOS signature for PE/COFF + ADD opcode
+ @ the EFI stub only supports little endian, as the EFI functions
+ @ it invokes are little endian.
+ .word 0x62805a4d
+#else
+ mov r0, r0
+#endif
+ .rept 5
mov r0, r0
.endr
- ARM( mov r0, r0 )
- ARM( b 1f )
- THUMB( adr r12, BSYM(1f) )
- THUMB( bx r12 )
+
+ adrl r12, BSYM(zimage_continue)
+ ARM( mov pc, r12 )
+ THUMB( bx r12 )
+ @ zimage_continue will be in ARM or thumb mode as configured
.word 0x016f2818 @ Magic numbers to help the loader
.word start @ absolute load/run zImage address
.word _edata @ zImage end address
+
+#ifdef CONFIG_EFI_STUB
+ @ Portions of the MSDOS file header must be at offset
+ @ 0x3c from the start of the file. All PE/COFF headers
+ @ are kept contiguous for simplicity.
+#include "efi-header.S"
+
+efi_stub_entry:
+ @ The EFI stub entry point is not at a fixed address, however
+ @ this address must be set in the PE/COFF header.
+ @ EFI entry point is in A32 mode, switch to T32 if configured.
+ THUMB( adr r12, BSYM(1f) )
+ THUMB( bx r12 )
THUMB( .thumb )
1:
+ @ Save lr on stack for possible return to EFI firmware.
+ @ Don't care about fp, but need 64 bit alignment....
+ stmfd sp!, {fp, lr}
+
+ @ allocate space on stack for passing current zImage address
+ @ and for the EFI stub to return of new entry point of
+ @ zImage, as EFI stub may copy the kernel. Pointer address
+ @ is passed in r2. r0 and r1 are passed through from the
+ @ EFI firmware to efi_entry
+ adr r3, start
+ str r3, [sp, #-8]!
+ mov r2, sp @ pass pointer in r2
+ bl efi_entry
+ ldr r3, [sp], #8 @ get new zImage address from stack
+
+ @ Check for error return from EFI stub. r0 has FDT address
+ @ or EFI_STUB_ERROR error code.
+ cmp r0, #EFI_STUB_ERROR
+ beq efi_load_fail
+
+ @ Save return values of efi_entry
+ stmfd sp!, {r0, r3}
+ bl cache_clean_flush
+ bl cache_off
+ ldmfd sp!, {r0, r3}
+
+ @ Set parameters for booting zImage according to boot protocol
+ @ put FDT address in r2, it was returned by efi_entry()
+ @ r1 is FDT machine type, and r0 needs to be 0
+ mov r2, r0
+ mov r1, #0xFFFFFFFF
+ mov r0, #0
+
+ @ Branch to (possibly) relocated zImage that is in r3
+ @ Make sure we are in A32 mode, as zImage requires
+ THUMB( bx r3 )
+ ARM( mov pc, r3 )
+
+efi_load_fail:
+ @ Return EFI_LOAD_ERROR to EFI firmware on error.
+ @ Switch back to ARM mode for EFI is done based on
+ @ return address on stack in case we are in THUMB mode
+ ldr r0, =0x80000001
+ ldmfd sp!, {fp, pc} @ put lr from stack into pc
+#endif
+
+ THUMB( .thumb )
+zimage_continue:
mrs r9, cpsr
#ifdef CONFIG_ARM_VIRT_EXT
bl __hyp_stub_install @ get into SVC mode, reversibly
@@ -167,7 +239,6 @@ not_angel:
* by the linker here, but it should preserve r7, r8, and r9.
*/
- .text
#ifdef CONFIG_AUTO_ZRELADDR
@ determine final kernel image address
diff --git a/arch/arm/boot/compressed/string.c b/arch/arm/boot/compressed/string.c
index 36e53ef9200f..5397792942db 100644
--- a/arch/arm/boot/compressed/string.c
+++ b/arch/arm/boot/compressed/string.c
@@ -111,6 +111,27 @@ char *strchr(const char *s, int c)
return (char *)s;
}
+/**
+ * strstr - Find the first substring in a %NUL terminated string
+ * @s1: The string to be searched
+ * @s2: The string to search for
+ */
+char *strstr(const char *s1, const char *s2)
+{
+ size_t l1, l2;
+
+ l2 = strlen(s2);
+ if (!l2)
+ return (char *)s1;
+ l1 = strlen(s1);
+ while (l1 >= l2) {
+ l1--;
+ if (!memcmp(s1, s2, l2))
+ return (char *)s1;
+ s1++;
+ }
+ return NULL;
+}
#undef memset
void *memset(void *s, int c, size_t count)