// SPDX-License-Identifier: BSD-2-Clause /* * Copyright 2015 Linaro Limited * Copyright 2013-2014 Andrew Turner. * Copyright 2013-2014 Ian Lepore. * Copyright 2013-2014 Rui Paulo. * Copyright 2013 Eitan Adler. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include /* The register names */ #define FP 11 #define SP 13 #define LR 14 #define PC 15 /* * Definitions for the instruction interpreter. * * The ARM EABI specifies how to perform the frame unwinding in the * Exception Handling ABI for the ARM Architecture document. To perform * the unwind we need to know the initial frame pointer, stack pointer, * link register and program counter. We then find the entry within the * index table that points to the function the program counter is within. * This gives us either a list of three instructions to process, a 31-bit * relative offset to a table of instructions, or a value telling us * we can't unwind any further. * * When we have the instructions to process we need to decode them * following table 4 in section 9.3. This describes a collection of bit * patterns to encode that steps to take to update the stack pointer and * link register to the correct values at the start of the function. */ /* A special case when we are unable to unwind past this function */ #define EXIDX_CANTUNWIND 1 /* * Entry types. * These are the only entry types that have been seen in the kernel. */ #define ENTRY_MASK 0xff000000 #define ENTRY_ARM_SU16 0x80000000 #define ENTRY_ARM_LU16 0x81000000 /* Instruction masks. */ #define INSN_VSP_MASK 0xc0 #define INSN_VSP_SIZE_MASK 0x3f #define INSN_STD_MASK 0xf0 #define INSN_STD_DATA_MASK 0x0f #define INSN_POP_TYPE_MASK 0x08 #define INSN_POP_COUNT_MASK 0x07 #define INSN_VSP_LARGE_INC_MASK 0xff /* Instruction definitions */ #define INSN_VSP_INC 0x00 #define INSN_VSP_DEC 0x40 #define INSN_POP_MASKED 0x80 #define INSN_VSP_REG 0x90 #define INSN_POP_COUNT 0xa0 #define INSN_FINISH 0xb0 #define INSN_POP_REGS 0xb1 #define INSN_VSP_LARGE_INC 0xb2 /* An item in the exception index table */ struct unwind_idx { uint32_t offset; uint32_t insn; }; static bool copy_in(void *dst, const void *src, size_t n, bool kernel_data) { if (!kernel_data) return !tee_svc_copy_from_user(dst, src, n); memcpy(dst, src, n); return true; } /* Expand a 31-bit signed value to a 32-bit signed value */ static int32_t expand_prel31(uint32_t prel31) { return prel31 | SHIFT_U32(prel31 & BIT32(30), 1); } /* * Perform a binary search of the index table to find the function * with the largest address that doesn't exceed addr. */ static struct unwind_idx *find_index(uint32_t addr, vaddr_t exidx, size_t exidx_sz) { vaddr_t idx_start, idx_end; unsigned int min, mid, max; struct unwind_idx *start; struct unwind_idx *item; int32_t prel31_addr; vaddr_t func_addr; start = (struct unwind_idx *)exidx; idx_start = exidx; idx_end = exidx + exidx_sz; min = 0; max = (idx_end - idx_start) / sizeof(struct unwind_idx); while (min != max) { mid = min + (max - min + 1) / 2; item = &start[mid]; prel31_addr = expand_prel31(item->offset); func_addr = (vaddr_t)&item->offset + prel31_addr; if (func_addr <= addr) { min = mid; } else { max = mid - 1; } } return &start[min]; } /* Reads the next byte from the instruction list */ static bool unwind_exec_read_byte(struct unwind_state_arm32 *state, uint32_t *ret_insn, bool kernel_stack) { uint32_t insn; if (!copy_in(&insn, (void *)state->insn, sizeof(insn), kernel_stack)) return false; /* Read the unwind instruction */ *ret_insn = (insn >> (state->byte * 8)) & 0xff; /* Update the location of the next instruction */ if (state->byte == 0) { state->byte = 3; state->insn += sizeof(uint32_t); state->entries--; } else state->byte--; return true; } static bool pop_vsp(uint32_t *reg, vaddr_t *vsp, bool kernel_stack, vaddr_t stack, size_t stack_size) { if (!core_is_buffer_inside(*vsp, sizeof(*reg), stack, stack_size)) { DMSG("vsp out of bounds %#" PRIxVA, *vsp); return false; } if (!copy_in(reg, (void *)*vsp, sizeof(*reg), kernel_stack)) return false; (*vsp) += sizeof(*reg); return true; } /* Executes the next instruction on the list */ static bool unwind_exec_insn(struct unwind_state_arm32 *state, bool kernel_stack, vaddr_t stack, size_t stack_size) { uint32_t insn; vaddr_t vsp = state->registers[SP]; int update_vsp = 0; /* Read the next instruction */ if (!unwind_exec_read_byte(state, &insn, kernel_stack)) return false; if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) { state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4; } else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) { state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4; } else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) { uint32_t mask; unsigned int reg; /* Load the mask */ if (!unwind_exec_read_byte(state, &mask, kernel_stack)) return false; mask |= (insn & INSN_STD_DATA_MASK) << 8; /* We have a refuse to unwind instruction */ if (mask == 0) return false; /* Update SP */ update_vsp = 1; /* Load the registers */ for (reg = 4; mask && reg < 16; mask >>= 1, reg++) { if (mask & 1) { if (!pop_vsp(&state->registers[reg], &vsp, kernel_stack, stack, stack_size)) return false; state->update_mask |= 1 << reg; /* If we have updated SP kep its value */ if (reg == SP) update_vsp = 0; } } } else if ((insn & INSN_STD_MASK) == INSN_VSP_REG && ((insn & INSN_STD_DATA_MASK) != 13) && ((insn & INSN_STD_DATA_MASK) != 15)) { /* sp = register */ state->registers[SP] = state->registers[insn & INSN_STD_DATA_MASK]; } else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) { unsigned int count, reg; /* Read how many registers to load */ count = insn & INSN_POP_COUNT_MASK; /* Update sp */ update_vsp = 1; /* Pop the registers */ for (reg = 4; reg <= 4 + count; reg++) { if (!pop_vsp(&state->registers[reg], &vsp, kernel_stack, stack, stack_size)) return false; state->update_mask |= 1 << reg; } /* Check if we are in the pop r14 version */ if ((insn & INSN_POP_TYPE_MASK) != 0) { if (!pop_vsp(&state->registers[14], &vsp, kernel_stack, stack, stack_size)) return false; } } else if (insn == INSN_FINISH) { /* Stop processing */ state->entries = 0; } else if (insn == INSN_POP_REGS) { uint32_t mask; unsigned int reg; if (!unwind_exec_read_byte(state, &mask, kernel_stack)) return false; if (mask == 0 || (mask & 0xf0) != 0) return false; /* Update SP */ update_vsp = 1; /* Load the registers */ for (reg = 0; mask && reg < 4; mask >>= 1, reg++) { if (mask & 1) { if (!pop_vsp(&state->registers[reg], &vsp, kernel_stack, stack, stack_size)) return false; state->update_mask |= 1 << reg; } } } else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) { uint32_t uleb128; /* Read the increment value */ if (!unwind_exec_read_byte(state, &uleb128, kernel_stack)) return false; state->registers[SP] += 0x204 + (uleb128 << 2); } else { /* We hit a new instruction that needs to be implemented */ DMSG("Unhandled instruction %.2x\n", insn); return false; } if (update_vsp) state->registers[SP] = vsp; return true; } /* Performs the unwind of a function */ static bool unwind_tab(struct unwind_state_arm32 *state, bool kernel_stack, vaddr_t stack, size_t stack_size) { uint32_t entry; uint32_t insn; /* Set PC to a known value */ state->registers[PC] = 0; if (!copy_in(&insn, (void *)state->insn, sizeof(insn), kernel_stack)) { DMSG("Bad insn addr %p", (void *)state->insn); return true; } /* Read the personality */ entry = insn & ENTRY_MASK; if (entry == ENTRY_ARM_SU16) { state->byte = 2; state->entries = 1; } else if (entry == ENTRY_ARM_LU16) { state->byte = 1; state->entries = ((insn >> 16) & 0xFF) + 1; } else { DMSG("Unknown entry: %x\n", entry); return true; } while (state->entries > 0) { if (!unwind_exec_insn(state, kernel_stack, stack, stack_size)) return true; } /* * The program counter was not updated, load it from the link register. */ if (state->registers[PC] == 0) { state->registers[PC] = state->registers[LR]; /* * If the program counter changed, flag it in the update mask. */ if (state->start_pc != state->registers[PC]) state->update_mask |= 1 << PC; } return false; } bool unwind_stack_arm32(struct unwind_state_arm32 *state, vaddr_t exidx, size_t exidx_sz, bool kernel_stack, vaddr_t stack, size_t stack_size) { struct unwind_idx *index; bool finished; if (!exidx_sz) return false; /* Reset the mask of updated registers */ state->update_mask = 0; /* The pc value is correct and will be overwritten, save it */ state->start_pc = state->registers[PC]; /* Find the item to run */ index = find_index(state->start_pc, exidx, exidx_sz); finished = false; if (index->insn != EXIDX_CANTUNWIND) { if (index->insn & (1U << 31)) { /* The data is within the instruction */ state->insn = (vaddr_t)&index->insn; } else { /* A prel31 offset to the unwind table */ state->insn = (vaddr_t)&index->insn + expand_prel31(index->insn); } /* Run the unwind function */ finished = unwind_tab(state, kernel_stack, stack, stack_size); } /* This is the top of the stack, finish */ if (index->insn == EXIDX_CANTUNWIND) finished = true; return !finished; } static uint32_t offset_prel31(uint32_t addr, int32_t offset) { return (addr + offset) & 0x7FFFFFFFUL; } TEE_Result relocate_exidx(void *exidx, size_t exidx_sz, int32_t offset) { size_t num_items = exidx_sz / sizeof(struct unwind_idx); struct unwind_idx *start = (struct unwind_idx *)exidx; size_t n; for (n = 0; n < num_items; n++) { struct unwind_idx *item = &start[n]; if (item->offset & BIT32(31)) return TEE_ERROR_BAD_FORMAT; /* Offset to the start of the function has to be adjusted */ item->offset = offset_prel31(item->offset, offset); if (item->insn == EXIDX_CANTUNWIND) continue; if (item->insn & BIT32(31)) { /* insn is a table entry itself */ continue; } /* * insn is an offset to an entry in .ARM.extab so it has to be * adjusted */ item->insn = offset_prel31(item->insn, offset); } return TEE_SUCCESS; } #if defined(CFG_UNWIND) && (TRACE_LEVEL > 0) void print_stack_arm32(int level, struct unwind_state_arm32 *state, vaddr_t exidx, size_t exidx_sz, bool kernel_stack, vaddr_t stack, size_t stack_size) { trace_printf_helper_raw(level, true, "Call stack:"); do { trace_printf_helper_raw(level, true, " 0x%08" PRIx32, state->registers[PC]); } while (unwind_stack_arm32(state, exidx, exidx_sz, kernel_stack, stack, stack_size)); } #endif #if defined(CFG_UNWIND) && defined(ARM32) && (TRACE_LEVEL > 0) void print_kernel_stack(int level) { struct unwind_state_arm32 state; uaddr_t exidx = (vaddr_t)__exidx_start; size_t exidx_sz = (vaddr_t)__exidx_end - (vaddr_t)__exidx_start; vaddr_t stack = thread_stack_start(); size_t stack_size = thread_stack_size(); memset(&state, 0, sizeof(state)); /* r7: Thumb-style frame pointer */ state.registers[7] = read_r7(); /* r11: ARM-style frame pointer */ state.registers[FP] = read_fp(); state.registers[SP] = read_sp(); state.registers[LR] = read_lr(); state.registers[PC] = (uint32_t)print_kernel_stack; print_stack_arm32(level, &state, exidx, exidx_sz, true /*kernel_stack*/, stack, stack_size); } #endif