summaryrefslogtreecommitdiff
path: root/IntelFrameworkModulePkg/Bus/Pci/IdeBusDxe/Ide.c
blob: ffc818036ae4db17f982ea48c41de6a766a83849 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
/** @file
  The file ontaining the helper functions implement of the Ide Bus driver
  
  Copyright (c) 2006 - 2008, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include "IdeBus.h"

BOOLEAN ChannelDeviceDetected = FALSE;
BOOLEAN SlaveDeviceExist      = FALSE;
UINT8   SlaveDeviceType       = INVALID_DEVICE_TYPE;
BOOLEAN MasterDeviceExist     = FALSE;
UINT8   MasterDeviceType      = INVALID_DEVICE_TYPE;

/**
  read a one-byte data from a IDE port.

  @param  PciIo  The PCI IO protocol instance
  @param  Port   the IDE Port number 

  @return  the one-byte data read from IDE port
**/
UINT8
IDEReadPortB (
  IN  EFI_PCI_IO_PROTOCOL   *PciIo,
  IN  UINT16                Port
  )
{
  UINT8 Data;

  Data = 0;
  //
  // perform 1-byte data read from register
  //
  PciIo->Io.Read (
              PciIo,
              EfiPciIoWidthUint8,
              EFI_PCI_IO_PASS_THROUGH_BAR,
              (UINT64) Port,
              1,
              &Data
              );
  return Data;
}
/**
  Reads multiple words of data from the IDE data port.
  Call the IO abstraction once to do the complete read,
  not one word at a time

  @param  PciIo Pointer to the EFI_PCI_IO instance
  @param  Port IO port to read
  @param  Count No. of UINT16's to read
  @param  Buffer Pointer to the data buffer for read

**/
VOID
IDEReadPortWMultiple (
  IN  EFI_PCI_IO_PROTOCOL   *PciIo,
  IN  UINT16                Port,
  IN  UINTN                 Count,
  OUT VOID                  *Buffer
  )
{
  UINT16  *AlignedBuffer;
  UINT16  *WorkingBuffer;
  UINTN   Size;

  //
  // Prepare an 16-bit alligned working buffer. CpuIo will return failure and
  // not perform actual I/O operations if buffer pointer passed in is not at
  // natural boundary. The "Buffer" argument is passed in by user and may not
  // at 16-bit natural boundary.
  //
  Size = sizeof (UINT16) * Count;

  gBS->AllocatePool (
        EfiBootServicesData,
        Size + 1,
        (VOID**)&WorkingBuffer
        );

  AlignedBuffer = (UINT16 *) ((UINTN)(((UINTN) WorkingBuffer + 0x1) & (~0x1)));

  //
  // Perform UINT16 data read from FIFO
  //
  PciIo->Io.Read (
              PciIo,
              EfiPciIoWidthFifoUint16,
              EFI_PCI_IO_PASS_THROUGH_BAR,
              (UINT64) Port,
              Count,
              (UINT16*)AlignedBuffer
              );

  //
  // Copy data to user buffer
  //
  CopyMem (Buffer, (UINT16*)AlignedBuffer, Size);
  gBS->FreePool (WorkingBuffer);
}

/**
  write a 1-byte data to a specific IDE port.

  @param  PciIo  PCI IO protocol instance
  @param  Port   The IDE port to be writen
  @param  Data   The data to write to the port
**/
VOID
IDEWritePortB (
  IN  EFI_PCI_IO_PROTOCOL   *PciIo,
  IN  UINT16                Port,
  IN  UINT8                 Data
  )
{
  //
  // perform 1-byte data write to register
  //
  PciIo->Io.Write (
              PciIo,
              EfiPciIoWidthUint8,
              EFI_PCI_IO_PASS_THROUGH_BAR,
              (UINT64) Port,
              1,
              &Data
              );

}

/**
  write a 1-word data to a specific IDE port.

  @param  PciIo  PCI IO protocol instance
  @param  Port   The IDE port to be writen
  @param  Data   The data to write to the port
**/
VOID
IDEWritePortW (
  IN  EFI_PCI_IO_PROTOCOL   *PciIo,
  IN  UINT16                Port,
  IN  UINT16                Data
  )
{
  //
  // perform 1-word data write to register
  //
  PciIo->Io.Write (
              PciIo,
              EfiPciIoWidthUint16,
              EFI_PCI_IO_PASS_THROUGH_BAR,
              (UINT64) Port,
              1,
              &Data
              );
}

/**
  Write multiple words of data to the IDE data port.
  Call the IO abstraction once to do the complete read,
  not one word at a time

  @param  PciIo Pointer to the EFI_PCI_IO instance
  @param  Port IO port to read
  @param  Count No. of UINT16's to read
  @param  Buffer Pointer to the data buffer for read

**/
VOID
IDEWritePortWMultiple (
  IN  EFI_PCI_IO_PROTOCOL   *PciIo,
  IN  UINT16                Port,
  IN  UINTN                 Count,
  IN  VOID                  *Buffer
  )
{
  UINT16  *AlignedBuffer;
  UINT32  *WorkingBuffer;
  UINTN   Size;

  //
  // Prepare an 16-bit alligned working buffer. CpuIo will return failure and
  // not perform actual I/O operations if buffer pointer passed in is not at
  // natural boundary. The "Buffer" argument is passed in by user and may not
  // at 16-bit natural boundary.
  //
  Size = sizeof (UINT16) * Count;

  gBS->AllocatePool (
        EfiBootServicesData,
        Size + 1,
        (VOID **) &WorkingBuffer
        );

  AlignedBuffer = (UINT16 *) ((UINTN)(((UINTN) WorkingBuffer + 0x1) & (~0x1)));

  //
  // Copy data from user buffer to working buffer
  //
  CopyMem ((UINT16 *) AlignedBuffer, Buffer, Size);

  //
  // perform UINT16 data write to the FIFO
  //
  PciIo->Io.Write (
              PciIo,
              EfiPciIoWidthFifoUint16,
              EFI_PCI_IO_PASS_THROUGH_BAR,
              (UINT64) Port,
              Count,
              (UINT16 *) AlignedBuffer
              );

  gBS->FreePool (WorkingBuffer);
}
/**
  Get IDE IO port registers' base addresses by mode. In 'Compatibility' mode,
  use fixed addresses. In Native-PCI mode, get base addresses from BARs in
  the PCI IDE controller's Configuration Space.

  The steps to get IDE IO port registers' base addresses for each channel
  as follows:

  1. Examine the Programming Interface byte of the Class Code fields in PCI IDE
  controller's Configuration Space to determine the operating mode.

  2. a) In 'Compatibility' mode, use fixed addresses shown in the Table 1 below.
  <pre>
  ___________________________________________
  |           | Command Block | Control Block |
  |  Channel  |   Registers   |   Registers   |
  |___________|_______________|_______________|
  |  Primary  |  1F0h - 1F7h  |  3F6h - 3F7h  |
  |___________|_______________|_______________|
  | Secondary |  170h - 177h  |  376h - 377h  |
  |___________|_______________|_______________|

  Table 1. Compatibility resource mappings
  </pre>

  b) In Native-PCI mode, IDE registers are mapped into IO space using the BARs
  in IDE controller's PCI Configuration Space, shown in the Table 2 below.
  <pre>
  ___________________________________________________
  |           |   Command Block   |   Control Block   |
  |  Channel  |     Registers     |     Registers     |
  |___________|___________________|___________________|
  |  Primary  | BAR at offset 0x10| BAR at offset 0x14|
  |___________|___________________|___________________|
  | Secondary | BAR at offset 0x18| BAR at offset 0x1C|
  |___________|___________________|___________________|

  Table 2. BARs for Register Mapping
  </pre>
  @note Refer to Intel ICH4 datasheet, Control Block Offset: 03F4h for
  primary, 0374h for secondary. So 2 bytes extra offset should be
  added to the base addresses read from BARs.

  For more details, please refer to PCI IDE Controller Specification and Intel
  ICH4 Datasheet.

  @param  PciIo Pointer to the EFI_PCI_IO_PROTOCOL instance
  @param  IdeRegsBaseAddr Pointer to IDE_REGISTERS_BASE_ADDR to
           receive IDE IO port registers' base addresses
           
  @retval EFI_UNSUPPORTED return this value when the BARs is not IO type
  @retval EFI_SUCCESS     Get the Base address successfully
  @retval other           read the pci configureation data error

**/
EFI_STATUS
GetIdeRegistersBaseAddr (
  IN  EFI_PCI_IO_PROTOCOL         *PciIo,
  OUT IDE_REGISTERS_BASE_ADDR     *IdeRegsBaseAddr
  )
{
  EFI_STATUS  Status;
  PCI_TYPE00  PciData;

  Status = PciIo->Pci.Read (
                        PciIo,
                        EfiPciIoWidthUint8,
                        0,
                        sizeof (PciData),
                        &PciData
                        );

  if (EFI_ERROR (Status)) {
    return Status;
  }

  if ((PciData.Hdr.ClassCode[0] & IDE_PRIMARY_OPERATING_MODE) == 0) {
    IdeRegsBaseAddr[IdePrimary].CommandBlockBaseAddr  = 0x1f0;
    IdeRegsBaseAddr[IdePrimary].ControlBlockBaseAddr  = 0x3f6;
    IdeRegsBaseAddr[IdePrimary].BusMasterBaseAddr     =
    (UINT16)((PciData.Device.Bar[4] & 0x0000fff0));
  } else {
    //
    // The BARs should be of IO type
    //
    if ((PciData.Device.Bar[0] & BIT0) == 0 ||
        (PciData.Device.Bar[1] & BIT0) == 0) {
      return EFI_UNSUPPORTED;
    }

    IdeRegsBaseAddr[IdePrimary].CommandBlockBaseAddr  =
    (UINT16) (PciData.Device.Bar[0] & 0x0000fff8);
    IdeRegsBaseAddr[IdePrimary].ControlBlockBaseAddr  =
    (UINT16) ((PciData.Device.Bar[1] & 0x0000fffc) + 2);
    IdeRegsBaseAddr[IdePrimary].BusMasterBaseAddr     =
    (UINT16) ((PciData.Device.Bar[4] & 0x0000fff0));
  }

  if ((PciData.Hdr.ClassCode[0] & IDE_SECONDARY_OPERATING_MODE) == 0) {
    IdeRegsBaseAddr[IdeSecondary].CommandBlockBaseAddr  = 0x170;
    IdeRegsBaseAddr[IdeSecondary].ControlBlockBaseAddr  = 0x376;
    IdeRegsBaseAddr[IdeSecondary].BusMasterBaseAddr     =
    (UINT16) ((PciData.Device.Bar[4] & 0x0000fff0));
  } else {
    //
    // The BARs should be of IO type
    //
    if ((PciData.Device.Bar[2] & BIT0) == 0 ||
        (PciData.Device.Bar[3] & BIT0) == 0) {
      return EFI_UNSUPPORTED;
    }

    IdeRegsBaseAddr[IdeSecondary].CommandBlockBaseAddr  =
    (UINT16) (PciData.Device.Bar[2] & 0x0000fff8);
    IdeRegsBaseAddr[IdeSecondary].ControlBlockBaseAddr  =
    (UINT16) ((PciData.Device.Bar[3] & 0x0000fffc) + 2);
    IdeRegsBaseAddr[IdeSecondary].BusMasterBaseAddr     =
    (UINT16) ((PciData.Device.Bar[4] & 0x0000fff0));
  }

  return EFI_SUCCESS;
}

/**
  This function is used to requery IDE resources. The IDE controller will
  probably switch between native and legacy modes during the EFI->CSM->OS
  transfer. We do this everytime before an BlkIo operation to ensure its
  succeess.

  @param  IdeDev The BLK_IO private data which specifies the IDE device
  
  @retval EFI_INVALID_PARAMETER return this value when the channel is invalid
  @retval EFI_SUCCESS           reassign the IDE IO resource successfully
  @retval other                 get the IDE current base address effor

**/
EFI_STATUS
ReassignIdeResources (
  IN  IDE_BLK_IO_DEV  *IdeDev
  )
{
  EFI_STATUS              Status;
  IDE_REGISTERS_BASE_ADDR IdeRegsBaseAddr[IdeMaxChannel];
  UINT16                  CommandBlockBaseAddr;
  UINT16                  ControlBlockBaseAddr;

  if (IdeDev->Channel >= IdeMaxChannel) {
    return EFI_INVALID_PARAMETER;
  }
  
  //
  // Requery IDE IO port registers' base addresses in case of the switch of
  // native and legacy modes
  //
  Status = GetIdeRegistersBaseAddr (IdeDev->PciIo, IdeRegsBaseAddr);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  ZeroMem (IdeDev->IoPort, sizeof (IDE_BASE_REGISTERS));
  CommandBlockBaseAddr                = IdeRegsBaseAddr[IdeDev->Channel].CommandBlockBaseAddr;
  ControlBlockBaseAddr                = IdeRegsBaseAddr[IdeDev->Channel].ControlBlockBaseAddr;

  IdeDev->IoPort->Data                = CommandBlockBaseAddr;
  (*(UINT16 *) &IdeDev->IoPort->Reg1) = (UINT16) (CommandBlockBaseAddr + 0x01);
  IdeDev->IoPort->SectorCount         = (UINT16) (CommandBlockBaseAddr + 0x02);
  IdeDev->IoPort->SectorNumber        = (UINT16) (CommandBlockBaseAddr + 0x03);
  IdeDev->IoPort->CylinderLsb         = (UINT16) (CommandBlockBaseAddr + 0x04);
  IdeDev->IoPort->CylinderMsb         = (UINT16) (CommandBlockBaseAddr + 0x05);
  IdeDev->IoPort->Head                = (UINT16) (CommandBlockBaseAddr + 0x06);

  (*(UINT16 *) &IdeDev->IoPort->Reg)  = (UINT16) (CommandBlockBaseAddr + 0x07);
  (*(UINT16 *) &IdeDev->IoPort->Alt)  = ControlBlockBaseAddr;
  IdeDev->IoPort->DriveAddress        = (UINT16) (ControlBlockBaseAddr + 0x01);
  IdeDev->IoPort->MasterSlave         = (UINT16) ((IdeDev->Device == IdeMaster) ? 1 : 0);

  IdeDev->IoPort->BusMasterBaseAddr   = IdeRegsBaseAddr[IdeDev->Channel].BusMasterBaseAddr;
  return EFI_SUCCESS;
}

/**
  This function is called by DiscoverIdeDevice(). It is used for detect
  whether the IDE device exists in the specified Channel as the specified
  Device Number.

  There is two IDE channels: one is Primary Channel, the other is
  Secondary Channel.(Channel is the logical name for the physical "Cable".)
  Different channel has different register group.

  On each IDE channel, at most two IDE devices attach,
  one is called Device 0 (Master device), the other is called Device 1
  (Slave device). The devices on the same channel co-use the same register
  group, so before sending out a command for a specified device via command
  register, it is a must to select the current device to accept the command
  by set the device number in the Head/Device Register.

  @param IdeDev  pointer to IDE_BLK_IO_DEV data structure, used to record all the
                 information of the IDE device.

  @retval EFI_SUCCESS successfully detects device.

  @retval other       any failure during detection process will return this value.

**/
EFI_STATUS
DetectIDEController (
  IN  IDE_BLK_IO_DEV  *IdeDev
  )
{
  EFI_STATUS  Status;
  UINT8       SectorCountReg;
  UINT8       LBALowReg;
  UINT8       LBAMidReg;
  UINT8       LBAHighReg;
  UINT8       InitStatusReg;
  UINT8       StatusReg;

  //
  // Select slave device
  //
  IDEWritePortB (
    IdeDev->PciIo,
    IdeDev->IoPort->Head,
    (UINT8) ((1 << 4) | 0xe0)
    );
  gBS->Stall (100);

  //
  // Save the init slave status register
  //
  InitStatusReg = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg.Status);

  //
  // Select Master back
  //
  IDEWritePortB (
    IdeDev->PciIo,
    IdeDev->IoPort->Head,
    (UINT8) ((0 << 4) | 0xe0)
    );
  gBS->Stall (100);

  //
  // Send ATA Device Execut Diagnostic command.
  // This command should work no matter DRDY is ready or not
  //
  IDEWritePortB (IdeDev->PciIo, IdeDev->IoPort->Reg.Command, 0x90);

  Status    = WaitForBSYClear (IdeDev, 3500);
  if (EFI_ERROR (Status)) {
    DEBUG((EFI_D_ERROR, "New detecting method: Send Execute Diagnostic Command: WaitForBSYClear: Status: %d\n", Status));
    return Status;
  }
  //
  // Read device signature
  //
  //
  // Select Master
  //
  IDEWritePortB (
    IdeDev->PciIo,
    IdeDev->IoPort->Head,
    (UINT8) ((0 << 4) | 0xe0)
    );
  gBS->Stall (100);
  SectorCountReg = IDEReadPortB (
                     IdeDev->PciIo,
                     IdeDev->IoPort->SectorCount
                     );
  LBALowReg      = IDEReadPortB (
                     IdeDev->PciIo,
                     IdeDev->IoPort->SectorNumber
                     );
  LBAMidReg      = IDEReadPortB (
                     IdeDev->PciIo,
                     IdeDev->IoPort->CylinderLsb
                     );
  LBAHighReg     = IDEReadPortB (
                     IdeDev->PciIo,
                     IdeDev->IoPort->CylinderMsb
                     );
  if ((SectorCountReg == 0x1) &&
      (LBALowReg      == 0x1) &&
      (LBAMidReg      == 0x0) &&
      (LBAHighReg     == 0x0)) {
    MasterDeviceExist = TRUE;
    MasterDeviceType  = ATA_DEVICE_TYPE;
  } else {
    if ((LBAMidReg      == 0x14) &&
        (LBAHighReg     == 0xeb)) {
      MasterDeviceExist = TRUE;
      MasterDeviceType  = ATAPI_DEVICE_TYPE;
    }
  }

  //
  // For some Hard Drive, it takes some time to get
  // the right signature when operating in single slave mode.
  // We stall 20ms to work around this.
  //
  if (!MasterDeviceExist) {
    gBS->Stall (20000);
  }

  //
  // Select Slave
  //
  IDEWritePortB (
    IdeDev->PciIo,
    IdeDev->IoPort->Head,
    (UINT8) ((1 << 4) | 0xe0)
    );
  gBS->Stall (100);
  SectorCountReg = IDEReadPortB (
                     IdeDev->PciIo,
                     IdeDev->IoPort->SectorCount
                     );
  LBALowReg  = IDEReadPortB (
                 IdeDev->PciIo,
                 IdeDev->IoPort->SectorNumber
                 );
  LBAMidReg  = IDEReadPortB (
                 IdeDev->PciIo,
                 IdeDev->IoPort->CylinderLsb
                 );
  LBAHighReg = IDEReadPortB (
                 IdeDev->PciIo,
                 IdeDev->IoPort->CylinderMsb
                 );
  StatusReg  = IDEReadPortB (
                 IdeDev->PciIo,
                 IdeDev->IoPort->Reg.Status
                 );
  if ((SectorCountReg == 0x1) &&
      (LBALowReg      == 0x1) &&
      (LBAMidReg      == 0x0) &&
      (LBAHighReg     == 0x0)) {
    SlaveDeviceExist = TRUE;
    SlaveDeviceType  = ATA_DEVICE_TYPE;
  } else {
    if ((LBAMidReg     == 0x14) &&
        (LBAHighReg    == 0xeb)) {
      SlaveDeviceExist = TRUE;
      SlaveDeviceType  = ATAPI_DEVICE_TYPE;
    }
  }

  //
  // When single master is plugged, slave device
  // will be wrongly detected. Here's the workaround
  // for ATA devices by detecting DRY bit in status
  // register.
  // NOTE: This workaround doesn't apply to ATAPI.
  //
  if (MasterDeviceExist && SlaveDeviceExist &&
      (StatusReg & ATA_STSREG_DRDY) == 0               &&
      (InitStatusReg & ATA_STSREG_DRDY) == 0           &&
      MasterDeviceType == SlaveDeviceType   &&
      SlaveDeviceType != ATAPI_DEVICE_TYPE) {
    SlaveDeviceExist = FALSE;
  }

  //
  // Indicate this channel has been detected
  //
  ChannelDeviceDetected = TRUE;
  return EFI_SUCCESS;
}
/**
  Detect if there is disk attached to this port

  @param  IdeDev The BLK_IO private data which specifies the IDE device.
  
  @retval EFI_NOT_FOUND   The device or channel is not found
  @retval EFI_SUCCESS     The device is found

**/
EFI_STATUS
DiscoverIdeDevice (
  IN IDE_BLK_IO_DEV *IdeDev
  )
{
  EFI_STATUS  Status;
  EFI_STATUS  LongPhyStatus;

  //
  // If a channel has not been checked, check it now. Then set it to "checked" state
  // After this step, all devices in this channel have been checked.
  //
  if (!ChannelDeviceDetected) {
    Status = DetectIDEController (IdeDev);
    if (EFI_ERROR (Status)) {
      return EFI_NOT_FOUND;
    }
  }

  Status = EFI_NOT_FOUND;

  //
  // Device exists. test if it is an ATA device.
  // Prefer the result from DetectIDEController,
  // if failed, try another device type to handle
  // devices that not follow the spec.
  //
  if ((IdeDev->Device == IdeMaster) && (MasterDeviceExist)) {
    if (MasterDeviceType == ATA_DEVICE_TYPE) {
      Status = ATAIdentify (IdeDev);
      if (EFI_ERROR (Status)) {
        Status = ATAPIIdentify (IdeDev);
        if (!EFI_ERROR (Status)) {
          MasterDeviceType = ATAPI_DEVICE_TYPE;
        }
      }
    } else {
      Status = ATAPIIdentify (IdeDev);
      if (EFI_ERROR (Status)) {
        Status = ATAIdentify (IdeDev);
        if (!EFI_ERROR (Status)) {
          MasterDeviceType = ATA_DEVICE_TYPE;
        }
      }
    }
  }
  if ((IdeDev->Device == IdeSlave) && (SlaveDeviceExist)) {
    if (SlaveDeviceType == ATA_DEVICE_TYPE) {
      Status = ATAIdentify (IdeDev);
      if (EFI_ERROR (Status)) {
        Status = ATAPIIdentify (IdeDev);
        if (!EFI_ERROR (Status)) {
          SlaveDeviceType = ATAPI_DEVICE_TYPE;
        }
      }
    } else {
      Status = ATAPIIdentify (IdeDev);
      if (EFI_ERROR (Status)) {
        Status = ATAIdentify (IdeDev);
        if (!EFI_ERROR (Status)) {
          SlaveDeviceType = ATA_DEVICE_TYPE;
        }
      }
    }
  }
  if (EFI_ERROR (Status)) {
    return EFI_NOT_FOUND;
  }
  //
  // Init Block I/O interface
  //
  LongPhyStatus = AtaEnableLongPhysicalSector (IdeDev);
  if (!EFI_ERROR (LongPhyStatus)) {
    IdeDev->BlkIo.Revision = EFI_BLOCK_IO_PROTOCOL_REVISION2;
  } else {
    IdeDev->BlkIo.Revision = EFI_BLOCK_IO_PROTOCOL_REVISION;
  }
  IdeDev->BlkIo.Reset               = IDEBlkIoReset;
  IdeDev->BlkIo.ReadBlocks          = IDEBlkIoReadBlocks;
  IdeDev->BlkIo.WriteBlocks         = IDEBlkIoWriteBlocks;
  IdeDev->BlkIo.FlushBlocks         = IDEBlkIoFlushBlocks;

  IdeDev->BlkMedia.LogicalPartition = FALSE;
  IdeDev->BlkMedia.WriteCaching     = FALSE;

  //
  // Init Disk Info interface
  //
  gBS->CopyMem (&IdeDev->DiskInfo.Interface, &gEfiDiskInfoIdeInterfaceGuid, sizeof (EFI_GUID));
  IdeDev->DiskInfo.Inquiry    = IDEDiskInfoInquiry;
  IdeDev->DiskInfo.Identify   = IDEDiskInfoIdentify;
  IdeDev->DiskInfo.SenseData  = IDEDiskInfoSenseData;
  IdeDev->DiskInfo.WhichIde   = IDEDiskInfoWhichIde;

  return EFI_SUCCESS;
}

/**
  This interface is used to initialize all state data related to the detection of one
  channel.
**/
VOID
InitializeIDEChannelData (
  VOID
  )
{
  ChannelDeviceDetected = FALSE;
  MasterDeviceExist = FALSE;
  MasterDeviceType  = 0xff;
  SlaveDeviceExist  = FALSE;
  SlaveDeviceType   = 0xff;
}
/**
  This function is used to poll for the DRQ bit clear in the Status
  Register. DRQ is cleared when the device is finished transferring data.
  So this function is called after data transfer is finished.

  @param IdeDev                 pointer pointing to IDE_BLK_IO_DEV data structure, used 
                                to record all the information of the IDE device.
  @param TimeoutInMilliSeconds  used to designate the timeout for the DRQ clear.

  @retval EFI_SUCCESS           DRQ bit clear within the time out.

  @retval EFI_TIMEOUT           DRQ bit not clear within the time out.

  @note
  Read Status Register will clear interrupt status.

**/
EFI_STATUS
DRQClear (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           TimeoutInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   StatusRegister;
  UINT8   ErrorRegister;

  Delay = (UINT32) (((TimeoutInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);
  do {

    StatusRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg.Status);

    //
    // wait for BSY == 0 and DRQ == 0
    //
    if ((StatusRegister & (ATA_STSREG_DRQ | ATA_STSREG_BSY)) == 0) {
      break;
    }

    if ((StatusRegister & (ATA_STSREG_BSY | ATA_STSREG_ERR)) == ATA_STSREG_ERR) {

      ErrorRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg1.Error);
      if ((ErrorRegister & ATA_ERRREG_ABRT) == ATA_ERRREG_ABRT) {
        return EFI_ABORTED;
      }
    }

    //
    //  Stall for 30 us
    //
    gBS->Stall (30);

    Delay--;

  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}
/**
  This function is used to poll for the DRQ bit clear in the Alternate
  Status Register. DRQ is cleared when the device is finished
  transferring data. So this function is called after data transfer
  is finished.

  @param IdeDev                pointer pointing to IDE_BLK_IO_DEV data structure, used 
                               to record all the information of the IDE device.

  @param TimeoutInMilliSeconds used to designate the timeout for the DRQ clear.

  @retval EFI_SUCCESS          DRQ bit clear within the time out.

  @retval EFI_TIMEOUT          DRQ bit not clear within the time out.
  @note   Read Alternate Status Register will not clear interrupt status.

**/
EFI_STATUS
DRQClear2 (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           TimeoutInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   AltRegister;
  UINT8   ErrorRegister;

  Delay = (UINT32) (((TimeoutInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);
  do {

    AltRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Alt.AltStatus);

    //
    //  wait for BSY == 0 and DRQ == 0
    //
    if ((AltRegister & (ATA_STSREG_DRQ | ATA_STSREG_BSY)) == 0) {
      break;
    }

    if ((AltRegister & (ATA_STSREG_BSY | ATA_STSREG_ERR)) == ATA_STSREG_ERR) {

      ErrorRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg1.Error);
      if ((ErrorRegister & ATA_ERRREG_ABRT) == ATA_ERRREG_ABRT) {
        return EFI_ABORTED;
      }
    }

    //
    // Stall for 30 us
    //
    gBS->Stall (30);

    Delay--;

  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}

/**
  This function is used to poll for the DRQ bit set in the
  Status Register.
  DRQ is set when the device is ready to transfer data. So this function
  is called after the command is sent to the device and before required
  data is transferred.

  @param IdeDev                pointer pointing to IDE_BLK_IO_DEV data structure,used to
                               record all the information of the IDE device.
  @param TimeoutInMilliSeconds used to designate the timeout for the DRQ ready.

  @retval EFI_SUCCESS          DRQ bit set within the time out.
  @retval EFI_TIMEOUT          DRQ bit not set within the time out.
  @retval EFI_ABORTED          DRQ bit not set caused by the command abort.

  @note  Read Status Register will clear interrupt status.

**/
EFI_STATUS
DRQReady (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           TimeoutInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   StatusRegister;
  UINT8   ErrorRegister;

  Delay = (UINT32) (((TimeoutInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);
  do {
    //
    //  read Status Register will clear interrupt
    //
    StatusRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg.Status);

    //
    //  BSY==0,DRQ==1
    //
    if ((StatusRegister & (ATA_STSREG_BSY | ATA_STSREG_DRQ)) == ATA_STSREG_DRQ) {
      break;
    }

    if ((StatusRegister & (ATA_STSREG_BSY | ATA_STSREG_ERR)) == ATA_STSREG_ERR) {

      ErrorRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg1.Error);
      if ((ErrorRegister & ATA_ERRREG_ABRT) == ATA_ERRREG_ABRT) {
        return EFI_ABORTED;
      }
    }

    //
    // Stall for 30 us
    //
    gBS->Stall (30);

    Delay--;
  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}
/**
  This function is used to poll for the DRQ bit set in the Alternate Status Register.
  DRQ is set when the device is ready to transfer data. So this function is called after 
  the command is sent to the device and before required data is transferred.

  @param IdeDev                pointer pointing to IDE_BLK_IO_DEV data structure, used to 
                               record all the information of the IDE device.

  @param TimeoutInMilliSeconds used to designate the timeout for the DRQ ready.

  @retval EFI_SUCCESS           DRQ bit set within the time out.
  @retval EFI_TIMEOUT           DRQ bit not set within the time out.
  @retval EFI_ABORTED           DRQ bit not set caused by the command abort.
  @note  Read Alternate Status Register will not clear interrupt status.

**/
EFI_STATUS
DRQReady2 (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           TimeoutInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   AltRegister;
  UINT8   ErrorRegister;

  Delay = (UINT32) (((TimeoutInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);

  do {
    //
    //  Read Alternate Status Register will not clear interrupt status
    //
    AltRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Alt.AltStatus);
    //
    // BSY == 0 , DRQ == 1
    //
    if ((AltRegister & (ATA_STSREG_BSY | ATA_STSREG_DRQ)) == ATA_STSREG_DRQ) {
      break;
    }

    if ((AltRegister & (ATA_STSREG_BSY | ATA_STSREG_ERR)) == ATA_STSREG_ERR) {

      ErrorRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg1.Error);
      if ((ErrorRegister & ATA_ERRREG_ABRT) == ATA_ERRREG_ABRT) {
        return EFI_ABORTED;
      }
    }

    //
    // Stall for 30 us
    //
    gBS->Stall (30);

    Delay--;
  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}

/**
  This function is used to poll for the BSY bit clear in the Status Register. BSY
  is clear when the device is not busy. Every command must be sent after device is not busy.

  @param IdeDev                pointer pointing to IDE_BLK_IO_DEV data structure, used 
                               to record all the information of the IDE device.
  @param TimeoutInMilliSeconds used to designate the timeout for the DRQ ready.

  @retval EFI_SUCCESS          BSY bit clear within the time out.
  @retval EFI_TIMEOUT          BSY bit not clear within the time out.

  @note Read Status Register will clear interrupt status.
**/
EFI_STATUS
WaitForBSYClear (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           TimeoutInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   StatusRegister;

  Delay = (UINT32) (((TimeoutInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);
  do {

    StatusRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg.Status);
    if ((StatusRegister & ATA_STSREG_BSY) == 0x00) {
      break;
    }

    //
    // Stall for 30 us
    //
    gBS->Stall (30);

    Delay--;

  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}
/**
  This function is used to poll for the BSY bit clear in the Alternate Status Register. 
  BSY is clear when the device is not busy. Every command must be sent after device is 
  not busy.

  @param IdeDev               pointer pointing to IDE_BLK_IO_DEV data structure, used to record 
                              all the information of the IDE device.
  @param TimeoutInMilliSeconds used to designate the timeout for the DRQ ready.

  @retval EFI_SUCCESS         BSY bit clear within the time out.
  @retval EFI_TIMEOUT         BSY bit not clear within the time out.
  @note   Read Alternate Status Register will not clear interrupt status.

**/
EFI_STATUS
WaitForBSYClear2 (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           TimeoutInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   AltRegister;

  Delay = (UINT32) (((TimeoutInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);
  do {
    AltRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Alt.AltStatus);
    if ((AltRegister & ATA_STSREG_BSY) == 0x00) {
      break;
    }

    gBS->Stall (30);

    Delay--;

  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}
/**
  This function is used to poll for the DRDY bit set in the Status Register. DRDY
  bit is set when the device is ready to accept command. Most ATA commands must be 
  sent after DRDY set except the ATAPI Packet Command.

  @param IdeDev               pointer pointing to IDE_BLK_IO_DEV data structure, used
                              to record all the information of the IDE device.
  @param DelayInMilliSeconds  used to designate the timeout for the DRQ ready.

  @retval EFI_SUCCESS         DRDY bit set within the time out.
  @retval EFI_TIMEOUT         DRDY bit not set within the time out.

  @note  Read Status Register will clear interrupt status.
**/
EFI_STATUS
DRDYReady (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           DelayInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   StatusRegister;
  UINT8   ErrorRegister;

  Delay = (UINT32) (((DelayInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);
  do {
    StatusRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg.Status);
    //
    //  BSY == 0 , DRDY == 1
    //
    if ((StatusRegister & (ATA_STSREG_DRDY | ATA_STSREG_BSY)) == ATA_STSREG_DRDY) {
      break;
    }

    if ((StatusRegister & (ATA_STSREG_BSY | ATA_STSREG_ERR)) == ATA_STSREG_ERR) {

      ErrorRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg1.Error);
      if ((ErrorRegister & ATA_ERRREG_ABRT) == ATA_ERRREG_ABRT) {
        return EFI_ABORTED;
      }
    }

    gBS->Stall (30);

    Delay--;
  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}
/**
  This function is used to poll for the DRDY bit set in the Alternate Status Register. 
  DRDY bit is set when the device is ready to accept command. Most ATA commands must 
  be sent after DRDY set except the ATAPI Packet Command.

  @param IdeDev              pointer pointing to IDE_BLK_IO_DEV data structure, used
                             to record all the information of the IDE device.
  @param DelayInMilliSeconds used to designate the timeout for the DRQ ready.

  @retval EFI_SUCCESS      DRDY bit set within the time out.
  @retval EFI_TIMEOUT      DRDY bit not set within the time out.

  @note  Read Alternate Status Register will clear interrupt status.

**/
EFI_STATUS
DRDYReady2 (
  IN  IDE_BLK_IO_DEV  *IdeDev,
  IN  UINTN           DelayInMilliSeconds
  )
{
  UINT32  Delay;
  UINT8   AltRegister;
  UINT8   ErrorRegister;

  Delay = (UINT32) (((DelayInMilliSeconds * STALL_1_MILLI_SECOND) / 30) + 1);
  do {
    AltRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Alt.AltStatus);
    //
    //  BSY == 0 , DRDY == 1
    //
    if ((AltRegister & (ATA_STSREG_DRDY | ATA_STSREG_BSY)) == ATA_STSREG_DRDY) {
      break;
    }

    if ((AltRegister & (ATA_STSREG_BSY | ATA_STSREG_ERR)) == ATA_STSREG_ERR) {

      ErrorRegister = IDEReadPortB (IdeDev->PciIo, IdeDev->IoPort->Reg1.Error);
      if ((ErrorRegister & ATA_ERRREG_ABRT) == ATA_ERRREG_ABRT) {
        return EFI_ABORTED;
      }
    }

    gBS->Stall (30);

    Delay--;
  } while (Delay > 0);

  if (Delay == 0) {
    return EFI_TIMEOUT;
  }

  return EFI_SUCCESS;
}
/**
  Release resources of an IDE device before stopping it.

  @param IdeBlkIoDevice  Standard IDE device private data structure

**/
VOID
ReleaseIdeResources (
  IN  IDE_BLK_IO_DEV  *IdeBlkIoDevice
  )
{
  if (IdeBlkIoDevice == NULL) {
    return ;
  }

  //
  // Release all the resourses occupied by the IDE_BLK_IO_DEV
  //

  if (IdeBlkIoDevice->SenseData != NULL) {
    gBS->FreePool (IdeBlkIoDevice->SenseData);
    IdeBlkIoDevice->SenseData = NULL;
  }

  if (IdeBlkIoDevice->Cache != NULL) {
    gBS->FreePool (IdeBlkIoDevice->Cache);
    IdeBlkIoDevice->Cache = NULL;
  }

  if (IdeBlkIoDevice->IdData != NULL) {
    gBS->FreePool (IdeBlkIoDevice->IdData);
    IdeBlkIoDevice->IdData = NULL;
  }

  if (IdeBlkIoDevice->InquiryData != NULL) {
    gBS->FreePool (IdeBlkIoDevice->InquiryData);
    IdeBlkIoDevice->InquiryData = NULL;
  }

  if (IdeBlkIoDevice->ControllerNameTable != NULL) {
    FreeUnicodeStringTable (IdeBlkIoDevice->ControllerNameTable);
    IdeBlkIoDevice->ControllerNameTable = NULL;
  }

  if (IdeBlkIoDevice->IoPort != NULL) {
    gBS->FreePool (IdeBlkIoDevice->IoPort);
  }

  if (IdeBlkIoDevice->DevicePath != NULL) {
    gBS->FreePool (IdeBlkIoDevice->DevicePath);
  }

  if (IdeBlkIoDevice->ExitBootServiceEvent != NULL) {
    gBS->CloseEvent (IdeBlkIoDevice->ExitBootServiceEvent);
    IdeBlkIoDevice->ExitBootServiceEvent = NULL;
  }

  gBS->FreePool (IdeBlkIoDevice);
  IdeBlkIoDevice = NULL;

  return ;
}
/**
  Set the calculated Best transfer mode to a detected device.

  @param IdeDev       Standard IDE device private data structure
  @param TransferMode The device transfer mode to be set
  @return Set transfer mode Command execute status.

**/
EFI_STATUS
SetDeviceTransferMode (
  IN IDE_BLK_IO_DEV       *IdeDev,
  IN ATA_TRANSFER_MODE    *TransferMode
  )
{
  EFI_STATUS  Status;
  UINT8       DeviceSelect;
  UINT8       SectorCount;

  DeviceSelect  = 0;
  DeviceSelect  = (UINT8) ((IdeDev->Device) << 4);
  SectorCount   = *((UINT8 *) TransferMode);

  //
  // Send SET FEATURE command (sub command 0x03) to set pio mode.
  //
  Status = AtaNonDataCommandIn (
            IdeDev,
            ATA_CMD_SET_FEATURES,
            DeviceSelect,
            0x03,
            SectorCount,
            0,
            0,
            0
            );

  return Status;
}
/**
  Set drive parameters for devices not support PACKETS command.

  @param IdeDev          Standard IDE device private data structure
  @param DriveParameters The device parameters to be set into the disk
  @return SetParameters Command execute status.

**/
EFI_STATUS
SetDriveParameters (
  IN IDE_BLK_IO_DEV       *IdeDev,
  IN ATA_DRIVE_PARMS      *DriveParameters
  )
{
  EFI_STATUS  Status;
  UINT8       DeviceSelect;

  DeviceSelect  = 0;
  DeviceSelect  = (UINT8) ((IdeDev->Device) << 4);

  //
  // Send Init drive parameters
  //
  Status = AtaNonDataCommandIn (
            IdeDev,
            ATA_CMD_INIT_DRIVE_PARAM,
            (UINT8) (DeviceSelect + DriveParameters->Heads),
            0,
            DriveParameters->Sector,
            0,
            0,
            0
            );

  //
  // Send Set Multiple parameters
  //
  Status = AtaNonDataCommandIn (
            IdeDev,
            ATA_CMD_SET_MULTIPLE_MODE,
            DeviceSelect,
            0,
            DriveParameters->MultipleSector,
            0,
            0,
            0
            );
  return Status;
}

/**
  Enable Interrupt on IDE controller.

  @param  IdeDev   Standard IDE device private data structure

  @retval  EFI_SUCCESS Enable Interrupt successfully
**/
EFI_STATUS
EnableInterrupt (
  IN IDE_BLK_IO_DEV       *IdeDev
  )
{
  UINT8 DeviceControl;

  //
  // Enable interrupt for DMA operation
  //
  DeviceControl = 0;
  IDEWritePortB (IdeDev->PciIo, IdeDev->IoPort->Alt.DeviceControl, DeviceControl);

  return EFI_SUCCESS;
}