/** @file * Main file supporting the SEC Phase for Versatile Express * * Copyright (c) 2011, ARM Limited. All rights reserved. * * This program and the accompanying materials * are licensed and made available under the terms and conditions of the BSD License * which accompanies this distribution. The full text of the license may be found at * http://opensource.org/licenses/bsd-license.php * * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. * **/ #include #include #include #include #include #include #include #include #include #include #include #define ARM_PRIMARY_CORE 0 #define SerialPrint(txt) SerialPortWrite ((UINT8*)txt, AsciiStrLen(txt)+1); extern VOID *monitor_vector_table; VOID ArmSetupGicNonSecure ( IN INTN GicDistributorBase, IN INTN GicInterruptInterfaceBase ); // Vector Table for Sec Phase VOID SecVectorTable ( VOID ); VOID NonSecureWaitForFirmware ( VOID ); VOID enter_monitor_mode( IN VOID* Stack ); VOID return_from_exception ( IN UINTN NonSecureBase ); VOID copy_cpsr_into_spsr ( VOID ); VOID CEntryPoint ( IN UINTN CoreId ) { CHAR8 Buffer[100]; UINTN CharCount; UINTN JumpAddress; // Primary CPU clears out the SCU tag RAMs, secondaries wait if (CoreId == ARM_PRIMARY_CORE) { if (FixedPcdGet32(PcdMPCoreSupport)) { ArmInvalidScu(); } // SEC phase needs to run library constructors by hand. This assumes we are linked against the SerialLib // In non SEC modules the init call is in autogenerated code. SerialPortInitialize (); // Start talking CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"UEFI firmware built at %a on %a\n\r",__TIME__, __DATE__); SerialPortWrite ((UINT8 *) Buffer, CharCount); // Initialize the Debug Agent for Source Level Debugging InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, NULL, NULL); SaveAndSetDebugTimerInterrupt (TRUE); // Now we've got UART, make the check: // - The Vector table must be 32-byte aligned ASSERT(((UINT32)SecVectorTable & ((1 << 5)-1)) == 0); } // Invalidate the data cache. Doesn't have to do the Data cache clean. ArmInvalidateDataCache(); //Invalidate Instruction Cache ArmInvalidateInstructionCache(); //Invalidate I & D TLBs ArmInvalidateInstructionAndDataTlb(); // Enable Full Access to CoProcessors ArmWriteCPACR (CPACR_CP_FULL_ACCESS); // Enable SWP instructions ArmEnableSWPInstruction(); // Enable program flow prediction, if supported. ArmEnableBranchPrediction(); if (FixedPcdGet32(PcdVFPEnabled)) { ArmEnableVFP(); } if (CoreId == ARM_PRIMARY_CORE) { // Initialize peripherals that must be done at the early stage // Example: Some L2x0 controllers must be initialized in Secure World ArmPlatformSecInitialize (); // If we skip the PEI Core we could want to initialize the DRAM in the SEC phase. // If we are in standalone, we need the initialization to copy the UEFI firmware into DRAM if (FeaturePcdGet(PcdSystemMemoryInitializeInSec)) { // Initialize system memory (DRAM) ArmPlatformInitializeSystemMemory (); } // Some platform can change their physical memory mapping ArmPlatformBootRemapping (); } // Test if Trustzone is supported on this platform if (ArmPlatformTrustzoneSupported()) { if (FixedPcdGet32(PcdMPCoreSupport)) { // Setup SMP in Non Secure world ArmSetupSmpNonSecure (CoreId); } // Enter Monitor Mode enter_monitor_mode((VOID*)(PcdGet32(PcdCPUCoresSecMonStackBase) + (PcdGet32(PcdCPUCoreSecMonStackSize) * CoreId))); //Write the monitor mode vector table address ArmWriteVMBar((UINT32) &monitor_vector_table); //-------------------- Monitor Mode --------------------- // Setup the Trustzone Chipsets if (CoreId == ARM_PRIMARY_CORE) { ArmPlatformTrustzoneInit(); // Wake up the secondary cores by sending a interrupt to everyone else // NOTE 1: The Software Generated Interrupts are always enabled on Cortex-A9 // MPcore test chip on Versatile Express board, So the Software doesn't have to // enable SGI's explicitly. // 2: As no other Interrupts are enabled, doesn't have to worry about the priority. // 3: As all the cores are in secure state, use secure SGI's // PL390GicEnableDistributor (PcdGet32(PcdGicDistributorBase)); PL390GicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase)); // Send SGI to all Secondary core to wake them up from WFI state. PL390GicSendSgiTo (PcdGet32(PcdGicDistributorBase), GIC_ICDSGIR_FILTER_EVERYONEELSE, 0x0E); } else { // The secondary cores need to wait until the Trustzone chipsets configuration is done // before switching to Non Secure World // Enabled GIC CPU Interface PL390GicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase)); // Waiting for the SGI from the primary core ArmCallWFI(); // Acknowledge the interrupt and send End of Interrupt signal. PL390GicAcknowledgeSgiFrom (PcdGet32(PcdGicInterruptInterfaceBase), ARM_PRIMARY_CORE); } // Transfer the interrupt to Non-secure World PL390GicSetupNonSecure (PcdGet32(PcdGicDistributorBase),PcdGet32(PcdGicInterruptInterfaceBase)); // Write to CP15 Non-secure Access Control Register : // - Enable CP10 and CP11 accesses in NS World // - Enable Access to Preload Engine in NS World // - Enable lockable TLB entries allocation in NS world // - Enable R/W access to SMP bit of Auxiliary Control Register in NS world ArmWriteNsacr(NSACR_NS_SMP | NSACR_TL | NSACR_PLE | NSACR_CP(10) | NSACR_CP(11)); // CP15 Secure Configuration Register with Non Secure bit (SCR_NS), CPSR.A modified in any // security state (SCR_AW), CPSR.F modified in any security state (SCR_FW) ArmWriteScr(SCR_NS | SCR_FW | SCR_AW); } else { if (CoreId == ARM_PRIMARY_CORE) { SerialPrint ("Trust Zone Configuration is disabled\n\r"); } // Trustzone is not enabled, just enable the Distributor and CPU interface if (CoreId == ARM_PRIMARY_CORE) { PL390GicEnableDistributor (PcdGet32(PcdGicDistributorBase)); } PL390GicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase)); // With Trustzone support the transition from Sec to Normal world is done by return_from_exception(). // If we want to keep this function call we need to ensure the SVC's SPSR point to the same Program // Status Register as the the current one (CPSR). copy_cpsr_into_spsr (); } JumpAddress = PcdGet32 (PcdNormalFvBaseAddress); ArmPlatformSecExtraAction (CoreId, &JumpAddress); return_from_exception (JumpAddress); //-------------------- Non Secure Mode --------------------- // PEI Core should always load and never return ASSERT (FALSE); } VOID SecCommonExceptionEntry ( IN UINT32 Entry, IN UINT32 LR ) { CHAR8 Buffer[100]; UINTN CharCount; switch (Entry) { case 0: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reset Exception at 0x%X\n\r",LR); break; case 1: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Undefined Exception at 0x%X\n\r",LR); break; case 2: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"SWI Exception at 0x%X\n\r",LR); break; case 3: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"PrefetchAbort Exception at 0x%X\n\r",LR); break; case 4: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"DataAbort Exception at 0x%X\n\r",LR); break; case 5: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reserved Exception at 0x%X\n\r",LR); break; case 6: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"IRQ Exception at 0x%X\n\r",LR); break; case 7: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"FIQ Exception at 0x%X\n\r",LR); break; default: CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Unknown Exception at 0x%X\n\r",LR); break; } SerialPortWrite ((UINT8 *) Buffer, CharCount); while(1); }